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Abstract

Forecasting with many predictors is of interest, for instance, in macroeconomics
and finance. This paper compares two methods for dealing with many predictors,
that is, principal component regression (PCR) and principal covariate regression
(PCovR). The forecast performance of these methods is compared by simulating
data from factor models and from regression models. The simulations show that, in
general, PCR performs better for the first type of data and PCovR performs better
for the second type of data. The simulations also clarify the effect of the choice of
the PCovR weight on the forecast quality.
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1 Introduction

In many forecasting applications in macroeconomics and finance, a large num-
ber of predictor variables are available that may all help to forecast the variable
of interest. In such situations, one should somehow compress the predictor in-
formation. For instance, if T observations are available for a set of k predictors,
then for k > T it is simply impossible to estimate a multiple regression model
that includes all predictors as separate regressors. If k ≤ T but k is large, then
it is still not advisable to estimate a regression model with all predictors as re-
gressors because the resulting forecasts will have large variance. The forecasts
may improve if the information in the predictors is somehow compressed and
a forecast equation containing fewer predictors is used.
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Several methods for forecasting with many predictors have been proposed in
the literature. We refer to Stock and Watson (2004) for a survey. For example,
in ‘Principal Component Regression’ (PCR) the predictor information is first
summarized by a (small) number of principal components, which are then
used as prediction factors in a low-dimensional multiple regression model.
This approach is followed, for instance, by Stock and Watson (1999, 2002a,b)
within the context of dynamic factor models to forecast key macroeconomic
variables like production and inflation from large sets of economic and financial
predictor variables. An essential aspect of PCR and similar methods is that
they consist of two stages, as first the factors are constructed and then the
forecast equation is estimated. The resulting factors need not necessarily be
the ones that forecast best, as the construction of the factors in the first stage
is not directly related to their use in forecasting in the second stage.

In this paper, we consider an alternative method that combines the two stages
of predictor compression and forecasting in a single criterion. This method,
called Principal Covariate Regression (PCovR), was proposed by De Jong and
Kiers (1992). In contrast to PCR, PCovR is a data-based method that does
not employ an explicit underlying statistical model. As the construction of
the PCovR factors is directly related to their use in forecasting, this may give
better forecasts as compared to two-step methods like PCR.

We compare the forecast performance of PCR and PCovR by means of simu-
lation experiments. We investigate various factors that may affect the forecast
performance, including the number of predictors and the correlation of the
predictors with the variable to be predicted. The forecast quality is evaluated
by means of the root mean squared (one-step-ahead, out of sample) forecast
error (RMSE). As the choice of the number of factors is of special interest, we
consider the RMSE obtained by applying information-based selection criteria,
as in Stock and Watson (1999).

The remainder of this paper is organized as follows. In Section 2, we formulate
the forecasting problem with compressed predictors in more detail and we de-
scribe the methods PCR and PCovR. Section 3 discusses the general set-up of
the simulation experiments, and Section 4 describes the forecast performance
of PCR and PCovR for data generated by factor models and regression mod-
els. Section 5 concludes with a brief overview and with some suggestions for
further research.
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2 Forecasting with compressed predictors

2.1 The forecast model

First we introduce some notation. The observations consist of time series of
length T on a variable to be predicted (y) and on a set of predictor variables
(X). Let k be the number of predictors, then y is a T × 1 vector and X is a
T ×k matrix. The idea is to compress the information in the k variables X by
means of p factors F , with p (much) smaller than k. Here F is a T × p matrix
consisting of linear combinations of the X variables, so that

F = XA

for some k × p matrix A. These factors are used to forecast y by means of a
linear regression model. The (one-step-ahead, conditional) forecast equation
for yT+1 at period T is written as

ŷT+1 = α + fT+1β = α + xT+1Aβ. (1)

Here α is the constant term, β is a p×1 vector, and fT+1 = xT+1A where xT+1

is the 1 × k vector of values of the predictors at time T + 1. The forecast of
yT+1 is conditional, as it depends on xT+1 which is assumed to be given. The
(multi) h-step-ahead forecast equation, with h > 1, has the same structure,
replacing ŷT+1 and xT+1 in (1) respectively by ŷT+h and xT+h. We restrict our
attention to h = 1 in this paper.

To apply this model in practice, we should estimate the number of factors
p and the parameters (A,α, β) of the forecast equation (1). The next two
subsections describe two methods to construct the factors F and to estimate
(1) for given value of p, that is, principal component regression and principal
covariate regression. In Section 4, we evaluate the forecast performance if p is
selected by means of an information criterion.

2.2 Principal component regression (PCR)

The method of principal component regression (PCR) consists of two estima-
tion steps. In the first step, A is estimated by means of principal components.
That is, the p factors are obtained by minimizing the squared Frobenius norm
||X − X̂||2 under the restriction that X̂ has rank p. The squared Frobenius
norm of a matrix is simply the sum of squares of all elements of the matrix.
The X-variables should be standardized to prevent scale effects. For instance,
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each column (variable) of X is scaled to have zero mean and unit norm. The es-
timates A can then be obtained from the singular value decomposition (SVD)
of X.

For later purposes, it is helpful to describe this first step of PCR in more
detail. Let X = USV ′ be an SVD of X where the singular values in the
matrix S are listed in decreasing order. Then X̂ = UpSpV

′
p where Up and Vp

consist respectively of the first p columns of U and V and where Sp is the
p× p diagonal matrix with the p largest singular values of X on the diagonal.
If we define W = VpV

′
p , then it is easily checked that X̂ = XW = XAB for

any k × p matrix A and p× k matrix B such that AB = W . For instance, if
we take

A = VpS
−1
p

and B = SpV
′
p , it follows that the factors F = XA satisfy

F ′F = A′X ′XA = Ip

so that the p factors in F are scaled and mutually orthogonal. The factors
F constructed in this way are the (first p) principal components of X. So, in
PCR the parameter matrix A is estimated by minimizing

fX(A,B) = ||X −XAB||2. (2)

In the second step, the parameters α and β in (1) are estimated by ordinary
least squares (OLS), for given values of A. Let F = XA, then the second step
corresponds to minimizing

fy(α, β) = ||y − α− Fβ||2 = ||y − α−XAβ||2. (3)

Summarizing, PCR consists of an SVD for (2) followed by OLS in (3). The next
subsection discusses a method that integrates these two steps by minimizing
a single criterion function.

2.3 Principal covariate regression (PCovR)

Principal covariate regression (PCovR) combines the two stages of compress-
ing the predictors and estimating the parameters of the forecast equation by
optimizing a single criterion. This method was proposed by De Jong and Kiers
(1992). In PCovR, the parameters (A,B, α, β) are estimated simultaneously
by minimizing a weighted average of the forecast errors (3) and the predictor
compression errors (2). For given weights w1 > 0 and w2 > 0 and for given
number of factors p, the criterion to be minimized is

f(A,B, α, β) = w1||y − α−XAβ||2 + w2||X −XAB||2. (4)
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Here the T×p matrix F = XA consists of p factors that compress the predictor
information in the T ×k matrix X, as p is always chosen to be (much) smaller
than rank(X), and hence also (much) smaller than k. As the choice of the
factors F is based partly on their quality in fitting y, this may lead to better
forecasts as compared to two-step methods like PCR. As before, A is a k × p
matrix of rank p, B a p×k matrix, α is a scalar and β a p×1 vector. Clearly, if
(A,B, α, β) is an optimal set of coefficients then (AR, R−1B, α, R−1β) is also
optimal for every invertible p× p matrix R. Therefore, A may be chosen such
that F ′F = A′X ′XA = Ip. With this restriction, the parameters are identified
up to an orthogonal transformation R, that is, with R′R = Ip.

The vector norm in (4) is the Euclidean norm and the matrix norm is the
Frobenius norm. To prevent scaling effects of the variables y and X, and
because only the relative weight w1/w2 is of importance, we will consider
weights of the form

w1 =
w

||y||2 , w2 =
1− w

||X||2 , (5)

with 0 ≤ w ≤ 1. The user has to choose the weight w, balancing the objectives
of good predictor compression for X (for w small) and good (in-sample) fit for
y (for w large). The parameter w should be chosen between 0 and 1, because
otherwise the criterion (4) becomes unbounded from below and has no optimal
solution. The limiting case where the weight w approaches zero gives PCR,
and if w approaches one then this gives OLS.

The minimization of (4) is a nonlinear—in fact, bilinear—optimization prob-
lem, because of the product terms Aβ and AB. The optimal estimates of
(A,B, α, β) can be computed by means of two SVD’s, as explained in the
Appendix.

3 Design of the simulation experiments

3.1 Data generating process

In Section 4, we will compare the forecast performance of PCR and PCovR
by means of various simulation experiments. The specification of the data
generating process (DGP) and of the employed forecast model are varied to
investigate the forecast performance under different conditions. Therefore, we
discuss in this section the general set-up of the experiments.

The three simulation experiments in Section 4 can all be seen as instances of
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dynamic factor models. For more background on this kind of models we refer
to Stock and Watson (2002a), see also Boivin and Ng (2003). In a stationary
dynamic factor model, the observed data (y, X) are related to unobserved
underlying factors F that evolve dynamically over time. Let ft be the 1 × p
vector with factor scores at times t, then a first-order model for the factors is
given by ft = ft−1Φ+ut where Φ is a p×p stable matrix and ut is uncorrelated
with ft−1. The DGP is described by

yt = ftβ + εt, xt = ftΛ + vt, ft = ft−1Φ + ut. (6)

We write the model in terms of row vectors of observations and error terms at
time t, to conform with the notation that the t-th row xt of the T × k matrix
X contains the observations at time t for the k predictors. In (6), β is a p× 1
vector and Λ is a p× k matrix of factor loadings.

The three experiments in Section 4 correspond to three different choices for
the factor loading matrix Λ. Section 4.1 considers a ‘factor DGP’ with p = 2
factors, where each factor loads on a set of k/2 predictor variables. Section 4.2
considers a ‘regression DGP’ with p = k factors, where each factor loads on a
single predictor. Finally, Section 4.3 discusses a ‘dyadic factor DGP’ that lies
in between the two foregoing cases. For each experiment, we consider different
specifications for the number of predictors k, for the parameters β, and for the
squared correlations ρ2

yf and ρ2
xf , that is, for the amount of information that

the predictors X carry on the factors F and for the extent to which y can be
predicted from F .

The variables in the simulations are normalized, as follows. The matrix Φ is
diagonal, with coefficient −1 < φ < 1 on the diagonal, and the error terms ut

are mutually independent white noise processes with mean zero and variance
(1−φ2). Therefore, all p factors are mutually independent and the covariance
matrix is var(ft) = Ip. The errors vt = (v1,t, . . . , vk,t) are mutually indepen-
dent white noise processes with mean zero and with variance σ2

vi
, and vt is

independent of ut and hence also of ft. All predictors are normalized to have
mean zero and variance one. Let xi, λi and vi denote respectively the i-th
predictor variable, the i-th column of Λ and the i-th component of v, so that
xi,t = ftλi + vi,t. Then var(xi,t) = 1 = ||λi||2 + σ2

vi
and ρ2

xif
= ||λi||2, so that a

desired squared correlation ρ2
xif

is achieved by scaling λi so that ||λi||2 = ρ2
xif

and by taking
σ2

vi
= 1− ρ2

xif
.

The errors εt are white noise, independent from (ut, vt) and with mean zero
and variance σ2

ε . As ρ2
yf = ||β||2/(||β||2 +σ2

ε), it follows that a desired squared
correlation ρ2

yf is achieved by taking

σ2
ε = ||β||2 1− ρ2

yf

ρ2
yf

. (7)
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3.2 Forecast models

The purpose is to forecast the dependent variable y one-step-ahead on the
basis of observed past data on y and current and past data on a set of k
predictors X. The forecast equation given in (1) is ŷT+1 = α + fT+1β, and
we compare different methods to estimate the factor fT+1 = xT+1A and the
parameters (α, β) from observations on the dependent variable y (for times
t ≤ T ) and on the k predictor variables X (for times t ≤ T + 1). The forecast
of yT+1 is conditional, as xT+1 is assumed to be given. In Section 4, we will
report detailed results obtained for simulations with T = 100, and results for
T = 400 will be discussed in more general terms.

We consider forecast models with various possible values for the number of
factors p. To condense the information, we do not report the results for all
values of p. Instead, we employ information criteria to choose p and report the
resulting outcomes. In the simulations, we used five criteria, that is, the Bayes
information criterion (BIC), the Akaike information criterion, and three in-
formation criteria developed specifically for choosing the number of factors by
Bai and Ng (2002). It turned out that BIC performs best in all simulations, as
on average it provides more accurate forecasts with fewer factors as compared
to the other four criteria. Therefore, in what follows we will only report the
results obtained by BIC 1 . Let ŷt = a + f̂tb be the fitted values of y and let
s2

p = ||y − ŷ||2/T be the residual variance of y, obtained by using p factors.
Then the number of factors p is selected by minimizing the BIC criterion

BIC(p) = log(s2
p) + (p + 1)

log(T )

T
.

Note that, although the PCR factors depend only on X and not on y, the
BIC criterion depends on the fit for y, so that the (past) forecast quality
plays a role in selecting the number of factors and the corresponding forecast
model. For PCR, sometimes relatively large values of p are required because
some of the DGP’s of Section 4 do not have a parsimonious dynamic factor
structure. For instance, the DGP in Section 4.3 has p = 7 factors if k = 10,
p = 31 if k = 40, and p = 63 if k = 100. For PCR, the number of factors
is therefore only restricted to p ≤ 0.8k, so that the compression obtained by
replacing X by F should be at least a modest 20%. For simplicity, only a grid
of values for p is considered, that is, for k = 100 the considered values for p
are (1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80), and for k = 10 and
k = 40 the values p ≤ 0.8k from this grid are considered. So the total number
of PCR forecast models is (at most) eighteen.

On the other hand, for PCovR the number of factors is always restricted

1 The results for the other criteria are available upon request.
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to p ≤ 3. In a sense, all DGP’s in Section 4 correspond to p = 1 relevant
prediction factor, that is, Fβ, so that even p = 1 could be a reasonable choice
for PCovR. We analyzed the consequences of allowing values larger than three
for p. The far majority of PCovR models chosen by BIC have p = 1 or p = 2
factors, except in cases of severe overfitting, as will be discussed at the end of
Section 4.1. For ease of comparison of PCovR with PCR, we also report the
results for PCR if the number of factors is restricted to p ≤ 3, and we indicate
this method by PCR3.

To apply PCovR, we further have to specify the weight factor w in (4) and
(5). We consider a grid of five values for w, that is, (0.0001, 0.01, 0.1, 0.5, 0.9).
For w = 0.0001, most weight is assigned to approximating X, in which case
PCovR will be close to PCR. At the other extreme, for w = 0.9 most weight
is assigned to fitting y. The consequences of the choice of the weight w on the
forecast quality is discussed at the end of Section 4.1. In particular, it turns
out that large weights w should be excluded in some situations in order to
prevent overfitting.

3.3 Forecast evaluation

For each DGP, we perform one thousand simulation runs with T = 100. The
data of each run are used to compute a single one-step-ahead forecast of yT+1.
As the number of factors p is chosen by BIC, this gives two PCR forecasts (one
with p selected from a large grid and another with p selected from {1, 2, 3})
and five PCovR forecasts (one for each choice of the weight factor w). The
forecast quality of the resulting seven methods is compared by the root mean
squared forecast error (RMSE) of yT+1 over the thousand simulation runs.
The RMSE is defined as

RMSEj =

√√√√ 1

1000

1000∑

i=1

(yT+1,i − ŷT+1,ij)2

σ2
ε

, (8)

where j denotes the employed forecast method, yT+1,i is the actual value of
y at the forecast time T + 1 = 101 in the i-th simulation run, and ŷT+1,ij is
the value forecasted by method j in the i-th simulation run (i = 1, . . . , 1000,
j = 1, . . . , 7). The squared forecast error (yT+1,i − ŷT+1,ij)

2 is divided by the
error variance σ2

ε , as this provides a natural benchmark for the forecast errors
that would be obtained if the DGP (6) were estimated perfectly.

The variance of the dependent variable y depends on the DGP. Therefore,
to facilitate the interpretation of the reported RMSE values, we also report
the RMSE for the model-free ‘zero-prediction’ ŷT+1 = 0, which is equal to
the square root of var(yt)/σ

2
ε . We call this the relative standard deviation of
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y, denoted by rsd(y). The variance of yt in (6) is (||β||2 + σ2
ε), and with the

expression in (7) for σ2
ε this gives

rsd(y) =

√√√√var(y)

σ2
ε

=

√√√√ ||β||2 + σ2
ε

σ2
ε

=

√√√√1 +
ρ2

yf

1− ρ2
yf

=

√√√√ 1

1− ρ2
yf

.

4 Three simulation experiments

4.1 Simulation with factor DGP

In the first simulation experiment, the data are generated by a dynamic fac-
tor model with p = 2 factors. The parameters in the model (6) are chosen as
follows. The 2× 2 matrix Φ is a diagonal matrix with value φ = 0.7 on the di-
agonal, and the errors ut are mutually independent white noise processes with
mean zero and variance 0.51, so that var(ft) = I2. For the case of k predictors,
the first factor loads with coefficient 0.9 on the first k/2 predictors and the
second factor loads with coefficient 0.6 on the remaining k/2 predictors. Let
1k/2 and 0k/2 denote the 1× (k/2) row vector with all elements equal to 1 and
0 respectively, then the 2× k factor loading matrix is

Λ =




0.9(1k/2) 0k/2

0k/2 0.6(1k/2)


 .

The predictors are normalized to have variance 1, so that the error variance of
v in (6) is σ2

v = 0.19 for predictors loaded by the first factor and σ2
v = 0.64 for

predictors loaded by the second factor. The corresponding squared correlations
ρ2

xif
between the predictors and the factors are respectively 0.81 and 0.36. The

2× 1 parameter vector β is either (1 0)′, (0 1)′ or (1 1)′, so that y depends
respectively on the first factor, on the second factor, and on both factors. The
number of predictors k is 10, 40 or 100. The squared correlation ρ2

yf between
yt and the factor ft is either 0.1, 0.5 or 0.9.

With three options for the number k of predictors, three options for the pa-
rameter vector β and three options for the correlation between y and the
factors, the total number of DGP’s is 27. As the DGP’s have p = 2 factors, we
estimated PCR and PCovR models with p = 1, 2, or 3 factors, giving in total
18 models. That is, we actually consider PCR3 with p ≤ 3 instead of PCR,
as allowing for more than three principal components does not improve the
forecast performance for this DGP. For each of the six methods (PCR3 and
PCovR with five possible weights), the number of factors p for each data set
is selected by BIC.
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Table 1 shows the RMSE’s and the mean of the selected number p of factors
over the thousand simulation runs. The reported values are rounded to two
decimals. As the RMSE is measured relative to the best (DGP) predictor, all
RMSE values are larger than 1 and measure the loss in forecast quality as
compared to the optimal forecast based on exact knowledge of the DGP. A
** in Table 1 stands for RMSE values between 10 and 100 and *** stands for
values between 100 and 1000.

We summarize the main results in Table 1. First we consider PCR3. This
method performs rather well, as expected. On average, the RMSE decreases
for larger k as more predictors contain information on the relevant prediction
factor ftβ. Response related to the first factor (the case β = (1 0)′) is easiest
to forecast, and response related to the second factor (the case β = (0 1)′)
is the hardest. The RMSE mostly increases if ρ2

yf increases, but the gain as
compared to the zero-prediction also increases. Note that larger values of ρ2

yf

correspond to a smaller error variance σ2
ε in (7), so that it becomes harder to

get close to the ‘perfect prediction’ benchmark used in the definition of the
RMSE in (8). Finally, the number of principal component factors is mostly
close to p = 2 if ρ2

yf = 0.5 or 0.9, but somewhat lower if ρ2
yf = 0.1 and also if

the response is related to the first factor (the case β = (1 0)′).

Next we consider the results for the PCovR method. PCovR with weight w =
0.0001 gives results that are nearly identical to those of PCR3, as expected.
For k = 10, the RMSE is comparable to that of PCR3 for all weights, but the
number of factors for PCovR is consistently lower than for PCR3, and more
distinctively so for larger weights. For k = 40, the RMSE is almost identical
to that of PCR3 for w = 0.0001 and w = 0.01, but larger weights perform
worse. For k = 40 and ρ2

yf = 0.1 or 0.5, the average number of factors p is
the largest for w = 0.1 (ranging between 2.6 and 3), the smallest for w = 0.9
(with p = 1 always), and roughly between 1 and 2 for w = 0.0001. An intuitive
explanation of this pattern is that for w ≈ 1 it suffices to construct a single
factor that fits y well and that for w ≈ 0 it is best to construct the two DGP
factors to approximate X well. For more moderate values of the weight w, it
may require three factors to achieve a good approximation of both y and X.
However, for k = 40 and ρ2

yf = 0.9, the average of p in most cases decreases if
w increases, from p ≈ 2 for w ≤ 0.1 to p = 1 for w = 0.9.

We discuss three further issues of interest, that is, overfitting in the case of
k = 100 predictors, the performance in larger samples with T = 400, and
misspecification of the forecast model.

For k = 100, PCovR with weight w = 0.01 or larger does not perform accept-
ably anymore. This is due to overfitting, which can be explained intuitively,
as follows. Consider a PCovR model with p = 2 factors based on k = 100 pre-
dictors to forecast y on the basis of T = 100 past observations. Generically,
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the 100× 100 predictor matrix X will be invertible. In this case, one factor f ∗

can be used to fit y in (4) perfectly, leaving the second factor to approximate
X. The perfect fit for y is obtained by defining f ∗ = Xa∗, where the 100× 1
vector a∗ is defined by a∗ = X−1y. Clearly, this choice of a∗ gives a perfect fit
for y, which is particularly attractive if in the PCovR criterion (4) the weight
w is large, but the forecasts generated in this way will be unreliable.

The foregoing arguments indicate that large weights w should be excluded if
the number of predictors k is large relative to the number of observations T .
We investigated the performance of PCovR in larger samples by increasing the
number of observations from T = 100 (as reported in Table 1) to T = 400. The
considered DGP’s are the same as before, so that the number of observations
is now considerably larger than the number of predictors, as k ≤ 100. The
RMSE of all models decreases, and very substantially so for PCovR with large
weights. For instance, for k = 40 and w = 0.9, the RMSE ranges for T = 100
between 1.26 and 1.76 (see Table 1) and for T = 400 between 1.00 and 1.37.
The improvements are even more substantial for k = 100; for w = 0.01, the
RMSE ranges from 3.00 to over 10 for T = 100 and from 1.00 to 1.14 for
T = 400, and for w = 0.9 the RMSE is always over 100 for T = 100 whereas
it ranges between 1.12 and 1.27 for T = 400. The best forecasts for this DGP
are still obtained for small weights. For k = 10 and k = 40, the RMSE’s of
PCR3 and PCovR with w ≤ 0.10 are nearly identical, and for k = 100 this
holds true for w ≤ 0.01.

Finally, we mention some consequences of misspecification of the forecast
model, that is, models where p is chosen either too small or too large as
compared to the DGP with p = 2. The price of over-specification in models
with p = 3 factors is in general small, as the RMSE of PCR3 and PCovR in-
creases in most cases only by at most 0.01. Exceptions are PCovR for k = 100
with w ≥ 0.01, as the previously discussed problem of overfitting in this sit-
uation gets worse for p = 3, and PCovR for k = 40 and w = 0.1 or 0.5,
where the increase in RMSE is of the order 0.1 to 0.2. The consequences of
under-specification in models with p = 1 factor depend on the DGP and on
the employed model. For PCR3, the RMSE increases for all DGP’s, least so
for β = (1 0)′ and most for (0 1)′. These results are as expected, as for p = 1
PCR3 will select the first factor, whereas for β = (0 1)′ the relevant predictor
is the second factor. For instance, for the DGP with k = 40, β = (0 1)′ and
ρ2

yf = 0.9, the RMSE for PCR3 with p = 1 is 3.07, as compared to 1.38 if p = 2
and 1.39 if p = 3. For PCovR with p = 1 factor, the RMSE also increases as
compared to p = 2 for small weights, but in some cases the loss is very small.
For instance, again for the DGP with k = 40, β = (0 1)′ and ρ2

yf = 0.9, the
RMSE of PCovR with w = 0.5 is 1.68 for p = 1, as compared to 1.67 for p = 2
and 1.68 for p = 3. Further, for w = 0.9 the RMSE hardly depends on p for
all DGP’s, with differences of at most 0.01, except in overfitting cases with
k = 100 and w ≥ 0.01. So PCovR is less sensitive to under-specification than
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PCovR in some situations, which is due to the fact that the relevant forecast
factor in (1) can in principle be modelled by a single factor.

4.2 Simulation with regression DGP

In the second simulation, the data are generated by a regression model, that
is, yt = xtβ + εt. More precisely, in terms of dynamic factor models, the data
are generated by (6) with p = k factors and with the following parameters.
The factor loading matrix is Λ = Ik and vt = 0, so that all factors are observed
without error and there are no ‘common’ factors, but only independent factors
that generate the predictor variables X. Further, Φ is a k× k diagonal matrix
with value φ = 0.7 on the diagonal, and σ2

u = 0.51. So the k predictors are
mutually independent autoregressive processes of order one with covariance
matrix var(xt) = Ik. We consider again the cases k = 10, 40, and 100. The
k×1 vector β is either (1, 0, . . . , 0)′ or (1/

√
k)(1, 1, . . . , 1)′, so that the relevant

predictor is respectively one of the observed predictors and the average of all
observed predictors. The vector β is scaled so that in both cases var(xtβ) = 1.
The squared correlation ρ2

yf = ρ2
yx between yt and the relevant predictor xtβ

is either 0.1, 0.5 or 0.9.

With three options for the number k of predictors, two options for the param-
eter vector β and three options for the correlation between y and X, the total
number of DGP’s is eighteen. As the DGP has p = k factors, we estimated
PCR models with p ranging in a grid from p = 1 to (maximally, for k = 100)
p = 80, as discussed in Section 3.2. For PCovR, we estimate models with
p = 1, 2, or 3 factors, as the DGP has a single relevant prediction factor, that
is, Fβ. For ease of comparison we also report the results of PCR3, that is,
PCR with at most three factors.

As before, to limit the output tables, the number of factors for the PCR and
PCovR models are selected by BIC. Table 2 shows the RMSE and the mean
of p for the considered DGP’s (in rows) and models (in columns), and we
summarize the main results. PCovR performs better than PCR in most cases.
The difference is the largest for k = 10, ρ2

yx = 0.9, and w = 0.5 or w = 0.9. In
these cases, PCR uses on average p = 7.5 factors with an RMSE of around 1.5,
whereas PCovR uses on average p = 1 factor with an RMSE of around 1.1.
The higher RMSE of PCR is not due to allowing a larger number of factors, as
PCR3 for these cases uses on average p = 2.5 factors with an RMSE of around
2.5, which is considerably worse than the RMSE of PCR. The results in Table
2 show that the RMSE of PCR is consistently lower than that of PCR3, and
most notably so for k = 10 and k = 40 with ρ2

yx = 0.5 or 0.9. For k = 40,
PCovR is still better than PCR, and hence also better than PCR3, but the
gain in RMSE is more modest than for k = 10. For instance, for k = 40,
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ρ2
yx = 0.9, and w = 0.5 or w = 0.9, PCovR has an RMSE of around 1.36 to

1.39, as compared to 1.63 to 1.68 for PCR and 2.98 for PCR3. For k = 40, the
average number of factors for PCovR (roughly 1 to 2) is again much smaller
than for PCR (with a mean of more than 25 if ρ2

yx = 0.9). For k = 100, PCovR
only provides acceptable predictions for w = 0.0001, with RMSE’s comparable
to PCR but with much fewer factors. For instance, if k = 100 and ρ2

yx = 0.9
then PCovR uses on average roughly 2 factors, and PCR uses on average
more than 32 factors. Larger weights do not give acceptable forecasts due to
overfitting, as explained at the end of Section 4.1. Further, for all DGP’s with
ρ2

yx = 0.1, the RMSE of the zero-prediction ŷT+1 = 0—shown in the column
rsd(y) in Table 2—is in most cases smaller than that of all PCR and PCovR
methods. This result means that the forecast models do not perform well in
case of low correlation between the predictor x and the forecasted variable y.

Again, if the number of observations is increased from T = 100 to T = 400
then the RMSE of PCovR decreases substantially for larger weights w. The
improvements are largely comparable to those discussed at the end of Section
4.1.

The results are as expected. PCovR is a flexible method to construct factors
that predict well. On the other hand, PCR constructs the factors in a pre-
liminary step, without regarding the forecast objective. The BIC criterion is
based on the (within-sample) fit, so that the forecast objective plays a role
in selecting p, but it requires many principal components in order to have a
reasonable chance to incorporate a significant part of the relevant predictor
Fβ. Stated otherwise, PCR is more suited for DGP’s with common factors
than for regression-type DGP’s as in this simulation.

4.3 Simulation with dyadic factor DGP

In the third simulation experiment, the DGP in a sense lies in between the
‘extremes’ discussed in Section 4.1, with very few factors that load equally
much on large sets of predictors, and Section 4.2, with many factors that each
load only on a single predictor. We consider a factor structure that we call
dyadic, as the factors load on dyadic parts of the predictor set. We describe
the model in detail for k = 10. In this case there are p = 7 factors. The first
factor loads on predictors 1-8, the second factor on predictors 1-4, the third
on 5-8, the fourth on 1-2, the fifth on 3-4, the sixth on 5-6 and the seventh
on 7-8. The remaining two predictors (9 and 10) are white noise, not related
to the factors. Therefore, the 7× 10 loading matrix is as follows, where c is a
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scaling constant.

Λ = c




1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0




.

The dyadic expansion for k = 10 is for levels d = 0, 1, 2, and on level d there
are 2d factors each loading on sets of 23−d predictors. In a similar way, for
k = 40 there are 25 − 1 = 31 factors, with 2d factors loading on sets of 25−d

predictors, for d = 0, 1, 2, 3, 4, and for k = 100 there are 26 − 1 = 63 factors,
with 2d factors loading on sets of 26−d predictors, for d = 0, 1, 2, 3, 4, 5.

For k = 10, the DGP is further specified as follows, with obvious modifications
for k = 40 and k = 100. The 7 × 7 matrix Φ is diagonal with value φ = 0.8
on the diagonal, and the variance of all components of the errors ut is 0.36
so that the factors have covariance matrix var(ft) = I7. The predictors are
normalized to have mean zero and variance one. Let xi, λi and vi denote
respectively the i-th predictor variable, the i-th column of Λ and the i-th
component of v, so that xi,t = ftλi + vi,t. Then var(xi,t) = 1 = ||λi||2 + σ2

vi

and ρ2
xif

= ||λi||2. Therefore, a desired level of correlation ρ2
xf is achieved by

choosing the scaling constant c in the loading matrix Λ such that 3c2 = ρ2
xf ,

that is, c =
√

ρ2
xf/3. Three cases for β are considered. For β = (1, 0, . . . , 0)′

the relevant predictor is the first, highest level dyadic factor that loads on the
largest set of predictors, for β = (0, 0, 0, 1, 0, 0, 0)′ the relevant predictor is
the first lowest level dyadic factor that loads only on the first two predictors,
and for β = (1/

√
3)(1, 1, 0, 1, 0, 0, 0)′ the relevant predictor is the average of all

factors that load on the first two predictors. In all cases, β is normalized to have
norm 1. Finally, the squared correlations ρ2

yf and ρ2
xf are either 0.5 or 0.9. With

three options for k, three options for β and four options for (ρ2
yf , ρ

2
xf ) this gives

in total thirty-six DGP’s. However, as the results for (ρ2
yf , ρ

2
xf ) = (0.5, 0.5) are

quite close to those for (0.5, 0.9), we will not report the results for (0.5, 0.5) to
limit the size of the output table to 27 DGP rows. The considered PCR and
PCovR models are the same as in Section 4.2.

In Table 3, we present the RMSE’s and the mean value of the number of fac-
tors p if BIC is used for PCR, PCR3 and the five PCovR methods with w equal
to 0.0001, 0.01, 0.1, 0.5 or 0.9. We summarize the main results. Overall, PCR
and PCovR with w = 0.0001 perform best. These two methods have compa-
rable RMSE’s, although PCR is on average somewhat better than PCovR, in
particular if ρ2

yf = ρ2
xf = 0.9. One notable exception is the DGP with k = 40

predictors, with β ‘low’, so that the DGP prediction factor is at the lowest
dyadic level, and with ρ2

yf = ρ2
xf = 0.9. For this DGP, PCovR with weight

w equal to 0.1, 0.5 or 0.9 has an RMSE of around 2.75, as compared to 2.91
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for PCR and 3.10 for PCR3. That is, PCovR is better in detecting the rel-
evant (lowest dyadic level) prediction factor that loads only on the first two
predictors out of the observed set of forty predictors. Further, for all DGP’s,
the number of factors is consistently larger for PCR than for PCovR, up to a
factor four for DGP’s with ρ2

yf = ρ2
xf = 0.9. PCR3 has a larger RMSE than

PCR for nearly all DGP’s, and the increase is the largest—up to over 30%—
for k = 10 and k = 40 with ρ2

yf = ρ2
xf = 0.9 and with β of type ’low’ or ’mix’.

For k = 100, PCovR only works well for small weights because larger weights
lead to overfitting, as explained at the end of Section 4.1. If the number of
observations is increased from T = 100 to T = 400 then the RMSE of PCovR
decreases substantially for larger weights w, with improvements comparable
to those discussed at the end of Section 4.1.

5 Conclusion

In this paper, we compared Principal Component Regression (PCR) and Prin-
cipal Covariate Regression (PCovR). In PCovR, the factors are estimated by
minimizing a criterion that consists of a weighted average of the squared errors
for the dependent variable y and those for the predictors X. Simulation ex-
periments show that the PCovR forecasts may outperform the two-step PCR
forecasts if the data are generated by many underlying factors. PCR performs
better for relatively low-dimensional factor models, but comparable forecast
accuracy can be obtained by PCovR models with fewer factors if the weight
factor w is chosen sufficiently small.

We conclude by mentioning some possible extensions that we are currently
working on. The number of factors was chosen by BIC, and it is of inter-
est to consider forecast-based selection methods, for instance, cross-validation
methods. Further, if the number of predictors is large then the PCovR weights
should be small to prevent overfitting, and it is of interest to provide bounds
on the weight w in terms of the data. Another option is to apply some kind of
regularization to prevent overfitting. Finally, it is of practical interest in time
series forecasting to extend PCovR by including lagged factors and variables,
as was done for PCR, for instance, by Stock and Watson (1999).

A Algorithm for PCovR

An algorithm for PCovR in Section 2.3 is described in De Jong and Kiers
(1992). Nonetheless, for clarification we present an explicit SVD based algo-
rithm. We prove that the minimization of (4) can be solved by means of two
SVD’s. We use the notation of Section 2.3, and for simplicity we assume that
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all variables are scaled to have sample mean zero. Then the best estimate of
α is α = 0, so that we can discard this parameter in what follows

Let ỹ =
√

w1y, β̃ =
√

w1β, X̃ =
√

w2X and B̃ =
√

w2B, and let D = [ỹ, X̃] be

the T × (k +1) weighted data matrix and C = [β̃, B̃] the p× (k +1) matrix of
coefficients. Then the PCovR criterion (4) can be written as the minimization
(in the sense of the Frobenius norm) of

f(G) = ||ỹ −XAβ̃||2 + ||X̃ −XAB̃||2 = ||D −XAC||2 = ||D −XG||2.

Here D and X are known data matrices—as the weights w1 and w2 are
known—and G = AC is a k × (k + 1) matrix of reduced rank p that should
be chosen to minimize f(G). This can be solved as follows.

(1) Let m = rank(X) and let X = USV ′ be an SVD of X, with S an m×m
diagonal matrix with the (positive) singular values of X—in decreasing
order—on the diagonal and with U (T × m) and V (k × m) such that
U ′U = V ′V = Im.

(2) The minimization of f(G) is equivalent to minimization of f̃(G) = ||U ′D−
SV ′G||2, which can be seen as follows.

f(G) = trace[(D −XG)′(D −XG)]

= trace(D′D)− 2trace(D′XG) + trace(G′X ′XG)

= trace(D′D)− 2trace(D′USV ′G) + trace(G′V S2V ′G),

f̃(G) = trace[(U ′D − SV ′G)′(U ′D − SV ′G)]

= trace(D′UU ′D)− 2trace(D′USV ′G) + trace(G′V S2V ′G).

The terms trace(D′D) and trace(D′UU ′D) are constant, that is, indepen-
dent of the choice of G), as D is defined in terms of the data (y,X) and
the weights (w1, w2) and U is defined in terms of the data X. The above
result shows that f(G) and f̃(G) attain their minimum for the same G.

(3) The optimal rank p approximation of U ′D is obtained by SVD—using the
first p singular values and vectors—which we write as (U ′D)p = UpSpV

′
p ,

where Up (m×p), Sp (p×p) and Vp (k+1)×p with U ′
pUp = V ′

pVp = Ip. The
optimal choice of G is then given by G = V S−1(U ′D)p = V S−1UpSpV

′
p .

(4) The optimal rank p approximation of D is therefore XG = U(U ′D)p. The
first column of the T × (k + 1) matrix XG is the corresponding approxi-
mation ỹp of ỹ, and the last k columns of XG give the approximation X̃p

of X̃. The corresponding approximation of y is (1/
√

w1)ỹp and that of X

is (1/
√

w2)X̃p, which gives a rank p approximation of the T ×k regressor
matrix X.

(5) Explicit expressions for the optimal parameters (A,B, b) are obtained as
follows. Let A = GVp = V S−1UpSp, b = (1/

√
w1)(V

′
p)1 (the scaled first

column of V ′
p), B = (1/

√
w2)(V

′
p)2−(k+1) (the scaled columns 2 to (k + 1)

of V ′
p) and F = XA. Then XG = XV S−1UpSpV

′
p = XAV ′

p = FV ′
p , so
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that we can write the minimal value of the criterion function as

||D −XG||2 = ||D − FV ′
p ||2 = ||[√w1y

√
w2X]− F [

√
w1b

√
w2B]||2

= w1||y −XAb||2 + w2||X −XAB||2.

So the above expressions define optimal values for A, B and β. The factors
are F = XA, and the optimal approximation of y is ŷ = XAb and that
of X is X̂ = XAB.
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