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Abstrat

Clustering in high-dimensional spaes is a di�ult problem whih is reurrent in many

domains, for example in image analysis. The di�ulty is due to the fat that high-

dimensional data usually live in di�erent low-dimensional subspaes hidden in the orig-

inal spae. This paper presents a family of Gaussian mixture models designed for high-

dimensional data whih ombine the ideas of subspae lustering and parsimonious

modeling. These models give rise to a lustering method based on the Expetation-

Maximization algorithm whih is alled High-Dimensional Data Clustering (HDDC).

In order to orretly �t the data, HDDC estimates the spei� subspae and the intrin-

si dimension of eah group. Our experiments on arti�ial and real datasets show that

HDDC outperforms existing methods for lustering high-dimensional data.

Key words: Model-based lustering, subspae lustering, high-dimensional data, Gaus-

sian mixture models, parsimonious models.

1 Introdution

Clustering in high-dimensional spaes is a reurrent problem in many �elds of

siene, for example in image analysis. Indeed, the data used in image analysis

are often high-dimensional and this penalizes lustering methods. In this paper,

we fous on model based approahes, see [10℄ for a review on this topi. Popular

lustering methods are based on the Gaussian Mixture Model (GMM) [32℄ and

show a disappointing behavior when the size of the dataset is too small ompared

to the number of parameters to estimate. This well-known phenomenon is alled
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urse of dimensionality and was introdued by Bellman [3℄. We refer to [35, 36℄

for a theoretial study of the e�et of dimension in the supervised framework.

To avoid over �tting, it is neessary to �nd a balane between the number of

parameters to estimate and the generality of the model. We propose a Gaus-

sian mixture model whih takes into aount the spei� subspae around whih

eah luster is loated and therefore limits the number of parameters to estimate.

The Expetation-Maximization (EM) algorithm [16℄ is used for parameter esti-

mation and the intrinsi dimension of eah group is determined automatially

thanks to the BIC riterion and the sree-test of Cattell. This allows to derive

a robust lustering method in high-dimensional spaes, alled High Dimensional

Data Clustering (HDDC). In order to further limit the number of parameters, it

is possible to make additional assumptions on the model. For example, it an

be assumed that lasses are spherial in their subspaes or �x some parameters

to be ommon between lasses. The nature of the proposed parametrization al-

lows HDDC to be robust with respet to the ill-onditioning or the singularity

of empirial ovariane matries and to be e�ient in terms of omputing time.

Finally, HDDC is evaluated and ompared to standard lustering methods on

arti�ial and real datasets.

This paper is organized as follows. Setion 2 presents the state of the art on

lustering of high-dimensional data. Setion 3 introdues our parameterization

of the Gaussian mixture model. Setion 4 presents the lustering method HDDC,

i.e. the estimation of the parameters of the models and of the hyper-parameters.

Experimental results on simulated and real datasets are reported in Setion 5.

2 Related work on high-dimensional lustering

Standard methods to overome the urse of dimensionality onsist in redu-

ing the dimension of the data and/or to use a parsimonious Gaussian mixture

model. More reently, methods whih �nd lusters in di�erent subspaes have

been proposed. In this setion, a brief survey of these works in lustering of

high-dimensional data is presented.
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2.1 Dimension redution

Many methods use global dimension redution tehniques to overome problems

due to high dimensionality. A widely used solution is to redue the dimension

of data before using a lassial lustering method. Dimension redution teh-

niques an be divided into tehniques for feature extration and feature seletion.

Feature extration tehniques build new variables arrying a large part of the

global information. Among these tehniques, the most popular one is Prinipal

Component Analysis (PCA) [27℄ whih is often used in data mining and image

analysis. However, PCA is a linear tehnique, i.e. it only takes into aount lin-

ear dependenes between variables. Reently, many non-linear tehniques have

been proposed suh as Kernel PCA [40℄, non-linear PCA [23, 25℄ and neural net-

works based tehniques [15, 28, 39, 44℄. In [41℄, the dimension redution problem

was onsidered in the Quadrati Disriminant Analysis framework. In ontrast,

feature seletion tehniques �nd an appropriate subset of the original variables to

represent the data. A survey on feature seletion an be found in [24℄. A reent

approah [38℄ proposes to ombine global feature seletion and model-based lus-

tering. These global dimension redution tehniques are often advantageous in

terms of performane, but su�er from the drawbak of losing information whih

ould be disriminant. Indeed, the lusters are usually hidden in di�erent sub-

spaes of the original feature spae and a global approah annot apture this.

2.2 Parsimonious models

Another solution is to use models whih require the estimation of fewer parame-

ters. For example, the eigenvalue deomposition of the ovariane matries [2, 13℄

allows to re-parameterize the ovariane matrix of the lasses in their eigenspaes.

By �xing some parameters to be ommon between lasses, this parameteriza-

tion yields parsimonious models whih generate lustering methods based on the

EM algorithm. A review on parsimonious models an be found in [22℄. These

approahes are based on various Gaussian models from the most omplex one

(a full ovariane matrix for eah group) to the simplest one (a spherial o-

variane matrix for all groups) whih yields a method similar to the k-means

approah. However, these methods annot e�iently solve the problem of the

high-dimensionality when lusters live in low-dimensional subspaes.
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2.3 Subspae lustering

Subspae lustering methods involve two kinds of approahes. On the one hand,

projetion pursuit lustering assumes that the lass enters are loated on a same

unknown subspae [9, 14℄. On the other hand, prinipal omponent lustering

assumes that eah lass is loated on a unknown spei� subspae, see [8℄, Chap-

ter 17, and [4℄ for an extension to fuzzy subspaes. For instane, the Analyse fa-

torielle typologique [18℄ is based on an iterative algorithm similar to the k-means

approah. Some subspae lustering methods use heuristi searh tehniques to

�nd the subspaes, see for instane [1℄. A review on this type of methods an

be found in [34℄. Most of them rely on geometri onsiderations and are not

model-based. Regression lustering methods (sometimes alled swithing regres-

sion methods) o�er an alternative based on probabilisti models. Some examples

are [17, 37℄ while the original idea is due to [7℄. However, it has been observed

that disarding some dimensions may yield instabilities in presene of outliers or

on small datasets. For this reason, the method proposed in this paper does not

assume that there exist irrelevant dimensions and therefore does not disard any

dimensions, but it models the smallest varianes by a single parameter. Methods

based on mixtures of fator analyzers [33, 45℄ rely on a latent variables model

and on an EM based proedure to luster high-dimensional data. More reently,

Boi et al. [6℄ proposed a similar approah to luster dissimilarity data. The

model of these methods is a mixture of Gaussian densities where the number of

parameters is ontrolled through the dimension of the latent fator spae. The

advantage of suh a model is to apture orrelations without estimating full o-

variane matries and without dimension trunation. In this paper, we propose

an uni�ed approah for subspae lustering in the Gaussian mixture model frame-

work whih enompasses these approahes and involves additional regularizations

as in parsimonious models. A preise omparison between our approah and the

mixtures of fator analyzers is ahieved in paragraph 3.2.

3 A Gaussian model for high-dimensional data

Clustering divides a given dataset {x1, ..., xn} of n data points in R
p
into k ho-

mogeneous groups (see [26℄ for a review). A popular lustering tehnique uses
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Gaussian mixture models, whih assume that eah lass is represented by a Gaus-

sian probability density. Data are therefore modeled by a density:

f(x, θ) =

k
∑

i=1

πiφ(x, θi), (1)

where φ is a p-variate normal density with parameter θi = {µi, Σi} and πi are the

mixing proportions. This model requires to estimate full ovariane matries and

therefore the number of parameters inreases with the square of the dimension.

However, due to the empty spae phenomenon [43℄ it an be assumed that high-

dimensional data live around subspaes with a dimension lower than the one of the

original spae. We therefore introdue low-dimensional lass-spei� subspaes

in order to limit the number of parameters to estimate.

3.1 The Gaussian model [aijbiQidi]

As in the lassial Gaussian mixture model framework, we assume that lass on-

ditional densities are Gaussian Np(µi, Σi) with means µi and ovariane matries

Σi, for i = 1, ..., k. Let Qi be the orthogonal matrix with the eigenvetors of Σi

as olumns. The lass onditional ovariane matrix ∆i is therefore de�ned in

the eigenspae of Σi by:

∆i = Qt
i Σi Qi. (2)

The matrix ∆i is thus a diagonal matrix whih ontains the eigenvalues of Σi. It

is further assumed that ∆i is divided into two bloks:

∆i =































ai1 0
.

.

.

0 aidi

0

0

bi 0
.

.

.

.

.

.

0 bi









































di























(p − di)

(3)

with aij > bi, j = 1, ..., di, and where di ∈ {1, . . . , p − 1} is unknown. The lass

spei� subspae Ei is de�ned as the a�ne spae spanned by the di eigenvetors

assoiated to the eigenvalues aij and suh that µi ∈ Ei. Similarly, the a�ne
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Figure 1: The subspaes Ei and E
⊥
i of the ith mixture omponent.

subspae E
⊥
i is suh that Ei ⊕ E

⊥
i = R

p
and µi ∈ E

⊥
i . In this subspae E

⊥
i , the

variane is modeled by the single parameter bi. Let Pi(x) = Q̃iQ̃i

t
(x−µi)+µi and

P⊥
i (x) = Q̄iQ̄

t
i(x−µi)+µi be the projetion of x on Ei and E

⊥
i respetively, where

Q̃i is made of the di �rst olumns of Qi supplemented by (p − di) zero olumns

and Q̄i = (Qi − Q̃i). Thus, Ei is alled the spei� subspae of the ith group

sine most of the data live on or near this subspae. In addition, the dimension

di of the subspae Ei an be onsidered as the instrinsi dimension of the ith

group, i.e. the number of dimensions required to desribe the main features of

this group. Figure 1 summarizes these notations. Following the notation system

of [13℄, our mixture model is denoted by [aijbiQidi] in the sequel.

3.2 The sub-models of [aijbiQidi]

By �xing some parameters to be ommon within or between lasses, we obtain

partiular models whih orrespond to di�erent regularizations. In the following,

�free Qi� means that Qi is spei� for eah lass Ci and �ommon Qi� means

that for eah i = 1, ..., k, Qi = Q and onsequently the lass orientations are the

same. The family [aijbiQidi] is divided into three ategories: models with free

orientations, ommon orientations and ommon ovariane matries.
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Models with free orientations They assume that the groups live in subspaes

with di�erent orientations, i.e. the matriesQi are spei� to eah group. Clearly,

the general model [aijbiQidi] belongs to this ategory. Fixing the dimensions di

to be ommon between the lasses yields the model [aijbiQid] whih orresponds

to the model of [45℄. Indeed, the ovariane model given by (2) and (3) an be

rewritten as Σi = BiB
t
i +Di with Di = biIp, Bi = QiTi and where we have de�ned

Ti =





















√
ai1 − bi 0

.

.

.

0
√

aidi
− bi

0































di











(p − di)

.

As a onsequene, our approah enompasses the mixtures of probabilisti prin-

ipal omponent analysis introdued in [45℄ and extended in [33℄ to more general

matries Di. In our model, di, the number of olumns of Ti, depends on the lass.

This permits the modeling of a dependene between the number of fators and the

lass. Moreover, as illustrated in paragraph 3.2, our approah an be ombined

with a �parsimonious models� strategy to further limit the number of parameters

to estimate. Up to our knowledge, this has not been ahieved yet in the mixture

of fator analyzers model. For instane, if we further assume that di = (p − 1)

for all i = 1, ..., k, the model [aijbiQidi] redues to the lassial GMM with full

ovariane matries for eah mixture omponent whih yields in the supervised

framework the well known Quadrati Disriminant Analysis. It is possible to add

onstraints on the di�erent parameters to obtain more regularized models. Fix-

ing the �rst di eigenvalues to be ommon within eah lass, we obtain the more

restrited model [aibiQidi]. The model [aibiQidi] often gives satisfying results,

i.e. the assumption that eah matrix ∆i ontains only two di�erent eigenvalues,

ai and bi, seems to be an e�ient way to regularize the estimation of ∆i. An-

other type of regularization is to �x the parameters bi to be ommon between the

lasses. This yields the model [aibQidi] whih assumes that the variane outside

the lass-spei� subspaes is ommon. This an be viewed as modeling the noise

in E
⊥
i by a single parameter b whih is natural when the data are obtained in a

ommon aquisition proess. This ategory of models ontains also the models

[abiQidi], [abQidi] and all models with free Qi and ommon di.
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Models with ommon orientations It is also possible to assume that the

lass orientations are ommon, i.e. Qi = Q for eah i = 1, ..., k. However, this

assumption does not neessarily imply that the lass-spei� subspaes are the

same. Indeed, if the dimensions di are free, the intersetion of the k lass-spei�

subspaes is the one of the lass with the smallest intrinsi dimension. This

assumption an be interesting to model groups with some ommon properties and

with additional spei� harateristis. Several models of this ategory require a

omplex iterative estimation based on the FG algorithm [20℄ and therefore they

will be not onsidered here. Consequently, only the models [aibiQd], [abiQd] and

[aibQd] will be onsidered in this paper sine their parameters an be estimated

using a simple iterative proedure. Note that a model similar to [aijbQd] was

onsidered by Flury et al. in [21℄ in the supervised framework with an additional

assumption on the means.

Models with ommon ovariane matries This branh of the family only

inludes two models [ajbQd] and [abQd]. Both models indeed assume that the

lasses have the same ovariane matrix Σ = Q∆Qt
. Partiularly, �xing d =

(p − 1), the model [ajbQd] redues to a Gaussian mixture model (denoted by

�Com-GMM� in the following) whih yields in the supervised framework the well

known Linear Disriminant Analysis (LDA). Remark that if d < (p−1), the model

[ajbQd] an be viewed as the a ombination of a dimension redution tehnique

with a GMM with ommon ovariane matries, but without losing information

sine the information arried by the smallest eigenvalues is not disarded.

3.3 Charateristis of the models

Our family of models presented above only requires the estimation of di-dimensional

subspaes and therefore the di�erent models are signi�antly more parsimonious

than the general Gaussian model if di ≪ p. Table 1 summarizes some properties

of the models onsidered here. The seond olumn of this table gives the number

of parameters to estimate. The third olumn provides the asymptoti order of the

number of parameters (i.e. with the assumption that k ≪ d ≪ p). The fourth

olumn gives the number of parameters for the partiular ase k = 4, p = 100 and

∀i, di = 10. The last olumn indiates whether the Maximum Likelihood (ML)
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Model

Number of

parameters

Asymptoti

order

Nb of prms k = 4,
d = 10, p = 100

ML

estimation

[aijbiQidi] ρ + τ̄ + 2k + D kpd 4231 CF

[aijbQidi] ρ + τ̄ + k + D + 1 kpd 4228 CF

[aibiQidi] ρ + τ̄ + 3k kpd 4195 CF

[abiQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF

[aibQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF

[abQidi] ρ + τ̄ + k + 2 kpd 4189 CF

[aijbiQid] ρ + k(τ + d + 1) + 1 kpd 4228 CF

[ajbiQid] ρ + k(τ + 1) + d + 1 kpd 4198 CF

[aijbQid] ρ + k(τ + d) + 2 kpd 4225 CF

[ajbQid] ρ + kτ + d + 2 kpd 4195 CF

[aibiQid] ρ + k(τ + 2) + 1 kpd 4192 CF

[abiQid] ρ + k(τ + 1) + 2 kpd 4189 CF

[aibQid] ρ + k(τ + 1) + 2 kpd 4189 CF

[abQid] ρ + kτ + 3 kpd 4186 CF

[aijbiQdi] ρ + τ + D + 2k pd 1396 FG

[aijbQdi] ρ + τ + D + k + 1 pd 1393 FG

[aibiQdi] ρ + τ + 3k pd 1360 FG

[aibQdi] ρ + τ + 2k + 1 pd 1357 FG

[abiQdi] ρ + τ + 2k + 1 pd 1357 FG

[abQdi] ρ + τ + k + 2 pd 1354 FG

[aijbiQd] ρ + τ + kd + k + 1 pd 1393 FG

[ajbiQd] ρ + τ + k + d + 1 pd 1363 FG

[aijbQd] ρ + τ + kd + 2 pd 1390 FG

[aibiQd] ρ + τ + 2k + 1 pd 1357 IP

[abiQd] ρ + τ + k + 2 pd 1354 IP

[aibQd] ρ + τ + k + 2 pd 1354 IP

[ajbQd] ρ + τ + d + 2 pd 1360 CF

[abQd] ρ + τ + 3 pd 1351 CF

Full-GMM ρ + kp(p + 1)/2 kp2/2 20603 CF

Com-GMM ρ + p(p + 1)/2 p2/2 5453 CF

Diag-GMM ρ + kp 2kp 803 CF

Sphe-GMM ρ + k kp 407 CF

Table 1: Properties of the HDDC models: ρ = kp + k − 1 is the number of

parameters required for the estimation of means and proportions, τ̄ =
∑k

i=1 di[p−
(di + 1)/2] and τ = d[p − (d + 1)/2] are the number of parameters required for

the estimation of Q̃i and Q̃, and D =
∑k

i=1 di. For asymptoti orders, we assume

that k ≪ d ≪ p. CF means that the ML estimates are losed form. IP means

that the ML estimation needs an iterative proedure. FG means that the ML

estimation requires the iterative FG algorithm.
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updates are in losed form or not. These harateristis are also given for �ve

Gaussian mixture models: GMM with full ovariane matries for eah lass

(Full-GMM), with ommon ovariane matries between lasses (Com-GMM),

with diagonal ovariane matries (Diag-GMM), with spherial ovariane ma-

tries (Sphe-GMM). Note that Celeux and Govaert reommend in [13℄ to make

use of the models Diag-GMM and Sphe-GMM in lustering problems. We an

observe that all models of our family require the estimation of fewer parameters

than both Full-GMM and Com-GMM. In the partiular ase of 100-dimensional

data, made of 4 lasses and with ommon intrinsi dimensions di equal to 10, the

model [aijbiQidi] only requires the estimation of 4 231 parameters whereas Full-

GMM and Com-GMM requires respetively the estimation of 20 603 and 5 453

parameters. Remark that the model [aijbiQidi], whih gives rise to quadrati

separation between the groups, requires the estimation of fewer parameters than

Com-GMM, whih gives rise to linear separation between the groups.

4 High-dimensional data lustering

In this setion, we derive the EM-based lustering framework for the model

[aijbiQidi] and its sub-models. The related lustering method is denoted by High-

Dimensional Data Clustering (HDDC). Let us reall that unsupervised lassi�-

ation organizes data in homogeneous groups using only the observed values of

the p explanatory variables. Usually, in model-based lustering, the parameters

θ = {π1, ..., πk, θ1, ..., θk} with θi = {µi, Σi} are estimated by the EM algorithm

whih repeats iteratively E and M steps. The reader ould refer to [31℄ for fur-

ther informations on the EM algorithm and its extensions. In partiular, the

models presented in this paper an be also used in the Classi�ation EM and

Stohasti EM algorithms [12℄. Using our parameterization, the EM algorithm

for estimating θ = {πi, µi, Σi, aij, bi, Qi, di} is detailed in the following.

4.1 The E step

This step omputes, at iteration q and for eah i = 1, ..., k and j = 1, ..., n, the

onditional probability t
(q)
ij = P(xj ∈ C

(q−1)
i |xj) whih an be written from (1)

10



and using the Bayes formula as follows:

t
(q)
ij = π

(q−1)
i φ(xj , θ

(q−1)
i )

/

k
∑

ℓ=1

π
(q−1)
ℓ φ(xj , θ

(q−1)
ℓ ) .

Note that this onditional probability is mainly based on π
(q−1)
i φ(xj, θ

(q−1)
i ). and

thus an be rewritten using the parameters of the model [aijbiQidi]. In order

not to overload the equations, the index of the urrent iteration q is omitted in

the remainder of this paragraph. Writing φ(x, θi) with the new lass onditional

ovariane matrix ∆i, we obtain:

−2 log(φ(x, θi)) = (x − µi)
t(Qi∆iQ

t
i)

−1(x − µi) + log(det ∆i) + p log(2π).

Sine Qt
iQi = Ip and Qi = Q̃i + Q̄i, the above matrix inverse an be expanded as

(Qi∆iQ
t
i)

−1 = Q̃i∆
−1
i Q̃t

i + Q̄i∆
−1
i Q̄t

i and thus:

−2 log(φ(x, θi)) = (x − µi)
tQ̃i∆

−1
i Q̃t

i(x − µi) + (x − µi)
tQ̄i∆

−1
i Q̄t

i(x − µi)

+ log(det ∆i) + p log(2π).

Taking into aount the struture of ∆i and using the relations Q̃i(Q̃
t
iQ̃i) = Q̃i

and Q̄i

(

Q̄t
iQ̄i

)

= Q̄i, it yields:

−2 log(φ(x, θi)) = ‖Q̃iQ̃
t
i(x−µi)‖2

Ai
+

1

bi

‖Q̄iQ̄
t
i(x−µi)‖2 +log(det ∆i)+p log(2π),

where ‖.‖2
Ai

is the norm on Ei suh as ‖x‖2
Ai

= xtAix with Ai = Q̃i∆
−1
i Q̃i

t
. From

the de�nitions of Pi and P⊥
i (Paragraph 3.1) and in view of Figure 1, we have:

−2 log(φ(x, θi)) = ‖µi − Pi(x)‖2
Ai

+
1

bi

‖x − Pi(x)‖2 + log(det ∆i) + p log(2π).

The relation log(det ∆i) =
∑di

j=1 log(aij)+(p−di) log(bi) allows to onlude that:

tij = 1

/

k
∑

ℓ=1

exp

(

1

2
(Ki(xj) − Kℓ(xj))

)

,

11



where Ki(x) = −2 log(πiφ(x, θi)) is alled the ost funtion and is de�ned by:

Ki(x) = ‖µi−Pi(x)‖2
Ai

+
1

bi

‖x−Pi(x)‖2 +

di
∑

j=1

log(aij)+(p−di) log(bi)−2 log(πi).

Let us note that Ki(x) is mainly based on two distanes: the distane between

the projetion of x on Ei and the mean of the lass and the distane between

the observation and the subspae Ei. This ost funtion favors the assignment

of a new observation to the lass for whih it is lose to the subspae and for

whih its projetion on the lass subspae is lose to the mean of the lass. The

variane terms aij and bi balane the importane of both distanes. For example,

if the data are very noisy, i.e. bi is large, it is natural to balane the distane

‖x − Pi(x)‖2
by 1/bi in order to take into aount the large variane in E

⊥
i .

4.2 The M step

This step maximizes at iteration q the onditional likelihood and uses the follow-

ing update formulas. Mixture proportions and means are estimated by:

π̂
(q)
i =

n
(q)
i

n
, µ̂

(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij xj ,

where n
(q)
i =

∑n

j=1 t
(q)
ij . Moreover, the update formula for the empirial ovariane

matrix of the fuzzy lass Ci is:

W
(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij (xj − µ̂

(q)
i )(xj − µ̂

(q)
i )t.

The estimation of the spei� parameters of HDDC is detailed below. Proofs of

the following results are given in the Appendix.

Models with free orientations The ML estimators of model parameters are

losed form for this ategory of models.

� Subspae Ei: the di �rst olumns of Qi are estimated by the eigenvetors

assoiated with the di largest eigenvalues λij of Wi.

12



� Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is the

mean of the (p − di) smallest eigenvalues of Wi and an be written as follows:

b̂i =
1

(p − di)

(

Tr(Wi) −
di
∑

j=1

λij

)

. (4)

� Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p − ξ)

(

Tr(W ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

, (5)

where ξ =
∑k

i=1 π̂idi and W =
∑k

i=1 π̂iWi is the within-ovariane matrix.

� Model [aibiQidi]: the estimator of bi is given by (4) and the estimator of ai is:

âi =
1

di

di
∑

j=1

λij. (6)

� Model [abiQidi]: the estimator of bi is given by (4) and the estimator of a is:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij . (7)

� Model [aibQidi]: estimators of ai and b are respetively given by (6) and (5).

� Model [abQidi]: estimators of a and b are respetively given by (7) and (5).

� Models with ommon dimensions: the estimators of the models with ommon

dimensions di an be obtained from the previous ones by replaing the values di

by d for eah i = 1, ..., k. In this ase, equations (5) and (7) an be simpli�ed as:

â =
1

d

d
∑

j=1

λj, (8)

b̂ =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

λj

)

, (9)

where λj is the jth largest eigenvalue of W .

� Model [ajbiQid]: the estimator of aj is âj = λj and the estimator of bi is (4).

13



� Model [ajbQid]: the estimator of aj is âj = λj and the estimator of b is (9).

Models with ommon orientations Here, we assume in addition that the

dimensions di are ommon between lasses. The following ML estimators require

an iterative proedure.

� Subspae Ei: Given ai and bi, the d �rst olumns of Q are estimated by the

eigenvetors assoiated to the d largest eigenvalues of the matrix M de�ned by:

M(a1, ..., ak, b1, ..., bk) =

k
∑

i=1

ni(
1

bi

− 1

ai

)Wi.

� Model [aibiQd]: given Q, estimators of ai and bi are:

âi(Q) =
1

d

d
∑

j=1

qt
jWiqj , (10)

b̂i(Q) =
1

(p − d)

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

. (11)

� Model [aibQidi]: given Q, the estimator of ai is (10) and the estimator of b is:

b̂(Q) =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

. (12)

� Model [abiQd]: given Q, the estimator of bi is (11) and the estimator of a is:

â(Q) =
1

d

d
∑

j=1

qt
jWqj . (13)

� Model [aibQd]: given Q, estimators of ai and b are respetively (10) and (12).

For example, it is possible to use the following iterative proedure to estimate

the parameters assoiated to the model [aibiQd]:

� Initialization: the d �rst olumns of Q(0)
are the eigenvetors assoiated with

the d largest eigenvalues of W .

� Until onvergene: a
(ℓ)
i = âi(Q

(ℓ−1)), b
(ℓ)
i = b̂i(Q

(ℓ−1)) and the d �rst olumns

of Q(ℓ)
are the eigenvetors assoiated to the d largest eigenvalues of the matrix

14
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Figure 2: Estimation of the intrinsi dimension di using the sree-test of Cat-

tell: plot of ordered eigenvalues of Σi (left) and di�erenes between onseutive

eigenvalues (right).

M(a
(ℓ)
1 , ..., a

(ℓ)
k , b

(ℓ)
1 , ..., b

(ℓ)
k ).

Models with ommon ovariane matries In this ategory of models, the

parameters an be updated in losed form.

� Subspae Ei: the d �rst olumns of the matrix Q are the eigenvetors assoiated

to the d largest eigenvalues of W .

� Model [ajbQd]: the estimator of aj is âj = λj and the estimator of b is (9).

� Model [abQd]: estimators of a and b are respetively given by (8) and (9).

4.3 Hyper-parameters estimation

Within the M step, the intrinsi dimensions of eah sublass have to be estimated.

This is a di�ult problem with no unique tehnique to use. Our approah is based

on the eigenvalues of the lass onditional ovariane matrix Σi of the lass Ci.

The jth eigenvalue of Σi orresponds to the fration of the full variane arried by

the jth eigenvetor of Σi. The lass spei� dimension di, i = 1, ..., k is estimated

through the sree-test of Cattell [11℄ whih looks for a break in the eigenvalues

sree. The seleted dimension is the one for whih the subsequent eigenvalues dif-

ferenes are smaller than a threshold. Figure 2 illustrates this method: the graph

on the right shows that the di�erenes between eigenvalues after the fourth one

are smaller than the threshold (dashed line). Thus, in this ase, four dimensions
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will be hosen and this orresponds indeed to a break in the sree (left graph). In

our experiments, the threshold is hosen using the probabilisti riterion BIC [42℄

whih onsists in minimizing BIC(m) = −2 log(L) + ν(m) log(n), where ν(m) is

the number of parameters of the model m given in Table 1 for HDDC, L is the

likelihood and n is the number of observations. In addition, this approah al-

lows to estimate k parameters by hoosing only the value of the threshold t. In

the ase of ommon intrinsi dimensions between the groups, the dimension d is

diretly determined using BIC. The seond hyper-parameter to estimate in any

lustering method is the number of groups k. This parameter is also seleted

thanks to the BIC riterion, see the experiments presented in Setion 5.

4.4 Numerial onsiderations

First, it is important to remark that the parametrization of the Gaussian model

proposed here provides an expliit expression of Σ−1
i whereas other lassial meth-

ods, like Full-GMM and Com-GMM, need to numerially invert empirial ovari-

ane matries whih usually fails for singularity reasons. Some solutions however

exist to overome this problem for the models Full-GMM and Com-GMM, see for

instane [29℄. In ontrast, this problem does not arise with HDDC sine the ost

funtion Ki does not require to invert Σi. Moreover, it appears in (4.1) that the

ost funtion Ki does not use the projetion on the subspae E
⊥
i and onsequently

does not require the omputation of the (p−di) latest olumns of the orientation

matrix Qi. In Setion 4.2, it is shown that the ML estimators of these olumns

are the eigenvetors assoiated to the (p−di) smallest eigenvalues of the empirial

ovariane matrix Wi. Therefore, HDDC does not depend on these eigenvetors

whose determination is numerially unstable. Thus, HDDC is robust with re-

spet to ill-onditioning and singularity problems. In addition, it is also possible

to use this feature to redue omputing time by using the Arnoldi method [30℄

whih only provides the largest eigenvalues and the assoiated eigenvetors of

an ill-onditioned matrix. During our experiments, we notied a redution by

a fator 60 of the omputing time on a 1024-dimensional dataset ompared to

the lassial approah. Furthermore, in the speial ase where the number of

observations of a group ni is smaller than the dimension p, our parametrization

allows to use a linear algebra trik. Indeed, in this ase, it is better from a nu-
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Simulated HDDC model

data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 357 373 349 359 349 360

[aijbQidi] 403 404 397 396 397 397

[aibiQidi] 389 419 377 391 377 394

[aibQidi] 438 440 419 419 420 420

[abiQidi] 399 433 380 402 384 403

[abQidi] 456 451 428 427 434 433

Table 2: BIC value for the HDDC models on di�erent simulated datasets (the

best ones are in bold).

merial point of view to ompute the eigenvetors of the ni × ni matrix ΥiΥ
t
i

than those of the p × p matrix Υt
iΥi, where Υi is the ni × p matrix ontaining

the mean-entered observations. In the ase of data ontaining 13 observations

in a 1024-dimensional spae, it has been notied a redution by a fator 500 of

the omputing time ompared to the lassial approah.

5 Experimental results

In this setion, we present results for arti�ial and real datasets illustrating the

main features of HDDC. In the following experiments, HDDC will be ompared

to 3 lassial Gaussian mixture models: GMM with full ovariane matries for

eah lass (Full-GMM), with diagonal ovariane matries (Diag-GMM), with

spherial ovariane matries (Sphe-GMM). A numerial regularization was ne-

essary to invert the ovariane matries in the lustering method assoiated to

the model Full-GMM, so that it is able to work with data of dimension larger

than 50.

5.1 Simulation study: model seletion

Given that HDDC is a model-based lustering method, the well-known riterion

BIC an be used for seleting the best adapted model to the data. Here, we used

BIC and the luster reognition rate to ompare the di�erent models of HDDC.

The luster reognition rate an be omputed sine true partitions are known

and is de�ned as the maximum rate over the orret mathings between the true
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Simulated HDDC model

data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 0.967 0.828 0.973 0.919 0.975 0.903

[aijbQidi] 0.730 0.727 0.779 0.782 0.758 0.751

[aibiQidi] 0.979 0.871 0.983 0.929 0.986 0.917

[aibQidi] 0.826 0.800 0.882 0.863 0.875 0.865

[abiQidi] 0.965 0.825 0.980 0.844 0.952 0.822

[abQidi] 0.712 0.752 0.797 0.793 0.711 0.707

Table 3: Cluster reognition rate for the HDDC models on di�erent simulated

datasets (the best ones are in bold).

groups and the found lusters. It is impossible to report in this setion numerial

experiments for all the disussed models. Therefore, we limit ourselves to models

with free orientations sine we believe that these models are able to takle di�erent

situations. We performed extensive simulations (50 repliations for eah of the

6 data models) and then used the 6 di�erent models with free orientations in

HDDC to luster the simulated data. For eah dataset, 3 Gaussian densities are

simulated in R
100

aording to one of the 6 models with free orientations, i.e.

free matries Qi, and with the following parameters: {d1, d2, d3} = {2, 5, 10},
{π1, π2, π3} = {0.4, 0.3, 0.3} and lose means and random matries Qi. Eah one

of the 6 datasets was made of 1000 points. Tables 2 and 3 present respetively

the BIC value and the luster reognition rate on average for the 6 onsidered

HDDC models on the di�erent simulated datasets. First of all, it appears that

BIC and the luster reognition rate selet in general the same models and this

on�rm that BIC is a useful tool in model-based lustering. Unsurprisingly, the

models used to simulate the data obtain small BIC values and satisfying luster

reognition rates. However, it appears that the model [aibiQidi] is usually seleted

by BIC as the best model and its luster reognition rates are very good for eah

type of simulated data. Thus, the model [aibiQidi] seems to have the right number

of degrees of freedom and the assumption that ∆i has only 2 di�erent eigenvalues

is an e�ient way to regularize the estimation. Note that models [aibQidi] and

[abiQidi] are also often seleted by BIC and provide good luster reognition rates.
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Nb of groups k Dimensions di BIC value

2 2,16 414

3 2,5,10 407

4 2,2,5,10 414

5 2,5,5,10,12 416

6 2,5,6,10,10,12 424

Table 4: Seletion of the number of groups using BIC with the model [aibiQidi]
of HDDC: data are made of 3 groups with intrinsi dimensions di = {2, 5, 10}.

5.2 Simulation study: hyper-parameters seletion

Here, we are interested in the seletion of the number of groups and of the

intrinsi dimension of the lusters. In this experiment, 3 Gaussian densities

are simulated in R
100

aording to the model [aibiQidi] with the following pa-

rameters: {d1, d2, d3} = {2, 5, 10}, {π1, π2, π3} = {0.4, 0.3, 0.3}, {a1, a2, a3} =

{150, 100, 75}, {b1, b2, b3} = {15, 15, 15}, lose means and random matries Qi.

The dataset was made of 1000 points. Table 4 presents the hoies of group in-

trinsi dimensions for the di�erent values of k and the orresponding BIC values.

First of all, it appears that the riterion BIC an be suessfully used for hoosing

the number of lusters as in standard Gaussian mixture models. Indeed, the BIC

value assoiated to the model [aibiQidi] are omputed for di�erent values of k, the

number of groups, and BIC indiates that the most likely value is k = 3 whih is

orret. In addition, the intrinsi dimensions di, estimated by HDDC for k = 3,

are indeed the ones of the simulated data. It is also interesting to observe the

evolution of the estimation of dimensions di aording to the number of lusters.

For instane, if we onsider the ase of a mixture of 2 Gaussian densities, HDDC

seems to orretly �t the �rst 2-dimensional luster and reate a seond luster

made of the two other real groups. In addition, the estimated dimension of this

seond luster is approximately the sum of the intrinsi dimensions of the two

real groups. Similarly, for k = 4, HDDC divides the �rst real group into two new

lusters with intrinsi dimensions equal to 2. As a onlusion, our approah for

dimension estimation allows to orretly identify the luster subspaes.
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Figure 3: In�uene of the dimensionality on the BIC value for di�erent Gaussian

mixture models.
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Gaussian mixture models.
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5.3 Simulation study: in�uene of the dimensionality

In this paragraph, we highlight the dimensionality e�et on the di�erent lus-

tering methods. Three Gaussian densities are simulated in R
p
, p = 20, ..., 100,

aording to the model [aibiQidi] with the same parameters as in the previous

experiment. The performane of methods is measured by the average luster

reognition rate omputed on 50 repliations. The studied lustering methods

were initialized using the same random partition. Figures 3 and 4 respetively

show the in�uene of the dimensionality on the BIC value and the luster reog-

nition rate for di�erent Gaussian mixture models: model [aibiQidi] of HDDC,

Full-GMM, Diag-GMM and Sphe-GMM. It is not surprising to observe on Fig-

ure 3 that BIC selets the model [aibiQidi] as the best model sine the data are

simulated aording to this model. However, it interesting to remark that, the

more the dimension inreases, the larger the di�erene between the BIC values

of the di�erent models is, and that in favor of the model [aibiQidi]. Figure 4

shows that data dimension does not in�uene the performane of HDDC whih

is very lose to the performane of the Bayes deision rule (omputed with the

true densities). In addition, HDDC provides a luster reognition rate similar to

Full-GMM in low dimensions. Full-GMM is known to be very sensitive to the

data dimension and, indeed, gives bad results as soon as the dimension inreases.

The models Diag-GMM and Sphe-GMM annot orretly �t the data sine they

are too parsimonious for this omplex dataset. However, one an observe that

Sphe-GMM is not sensitive to the data dimension whereas Diag-GMM is. To

summarize, HDDC is not sensitive to the dimension and works very well both

in low and in high-dimensional spaes. In addition, the model [aibiQidi] outper-

forms models requiring a higher number of parameters (Full-GMM) and models

requiring a smaller number of parameters (Diag-GMM and Sphe-GMM).

5.4 Simulation study: full rank Gaussian model

In this last simulation study, the apaity of HDDC models to deal with full rank

Gaussian data is investigated. Three Gaussian densities in R
p
, p = 50, are simu-

lated with full rank ovariane matries, i.e. aording to the model Full-GMM.

The ovariane matries of the groups were di�erent (di�erent orientations and

eigenvalues) but with the same ondition number �xed to 100. Reall that the

21



200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

450

500

Dataset size

C
on

di
tio

n 
nu

m
be

r

 

 

HDDC

Full−GMM

True value

Figure 5: In�uene of the dataset size on the ondition number for the full rank

data.

200 400 600 800 1000 1200 1400 1600 1800 2000

0.4

0.5

0.6

0.7

0.8

0.9

Dataset size

C
lu

st
er

 r
ec

og
ni

tio
n 

ra
te

HDDC
Full−GMM
Diag−GMM
Sphe−GMM

Figure 6: In�uene of the dataset size on the luster reognition rate for the full
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ondition number of a matrix is the ratio of its largest and smallest eigenvalues.

For this experiment, we used HDDC with the model [aijbiQidi] and the lustering

methods assoiated to the lassial Gaussian models Full-GMM, Diag-GMM and

Sphe-GMM. In order to observe the behavior of the studied lustering methods

with respet to the urse of the dimensionality, the luster reognition rate is

omputed for di�erent dataset sizes n sine this phenomenon ours when the

size of the dataset beomes too small ompared to the dimension. As an illus-

tration, Figure 5 presents a omparison between the ondition number of the

estimated ovariane matrix assoiated to the �rst group used by the Full-GMM

method and the ratio â11/b̂1, whih is the orresponding ondition number of the

ovariane matrix estimated by HDDC, for di�erent sizes of the full rank dataset

n = 150, ..., 2000. It appears that, for small datasets (i.e. n smaller than 1000),

the ondition number of the empirial ovariane matrix (assoiated to the model

Full-GMM) explodes, whereas the ondition number assoiated to the estimated

ovariane matrix in the model [aijbiQidi] remains stable. Figure 6 shows the

onsequene on the behavior of the studied lustering methods. First, observe

that both Diag-GMM and Sphe-GMM models do not obtain satisfying results

for any dataset size. This is due to the fat that the assumptions made by those

models are wrong for the simulated data and they are thus not able to orretly

�t these data. Seond, HDDC obtains a similar luster reognition rate to the

model Full-GMM, whih is the model used to simulate the data, when the dataset

size is large (i.e. n larger than 1500). Furthermore, HDDC appears to be more

e�ient to luster these data than the model Full-GMM when the dataset size

beomes small. Indeed, the luster reognition rate of HDDC is almost onstant

for dataset sizes between 1500 and 500. However, when the dataset size is smaller

than 500, the HDDC performane dereases to the results obtained by the par-

simonious models Diag-GMM and Sphe-GMM. These experiments demonstrate

that, even with data whih are not favorable to our model, HDDC is more e�ient

than both omplex and parsimonious models on small datasets.

5.5 Real data study: omparison with variable seletion

In this experiment, HDDC is ompared with the variable seletion method for

model-based lustering introdued in [38℄, and denoted by VS-GMM in the follow-
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Model Variables Cluster reognition rate

Sphe-GMM Original 0.605

VS-GMM Original 0.925

Sphe-GMM Prin. omp. 0.605

VS-GMM Prin. omp. 0.935

HDDC [aibiQidi] Original 0.950

Table 5: Classi�ation results for the Crabs data: omparison of di�erent model-

based lustering methods.
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Figure 7: Clustering results using HDDC: on the left panel, rabs data projeted

on the two �rst prinipal axes and, on the right panel, lustering result obtained

with the model [aibiQidi] of HDDC and the estimated spei� subspaes of the

mixture omponents (blue lines).
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ing. The authors onsidered the variable seletion problem as a model seletion

problem. Seletion is made using approximate Bayes fators and ombined with

a greedy searh algorithm. In addition, it is possible to perform this variable

seletion on the original variables, but also on the prinipal omponents using

PCA as a pre-proessing step. In order to ompare HDDC to this variable se-

letion tehnique, we used the same dataset as in [38℄. The Leptograpsus rabs

dataset onsists of 200 subjets equally distributed into 4 lasses: Orange Male,

Orange Female, Blue Male and Blue Female. There are 5 variables for eah sub-

jet: width of frontal lip (FL), rear width (RW), length along the mid-line of the

arapae (CL), maximum of the width of the arapae (CW) and body depth

(BD) in mm. The left panel of Figure 7 shows the Crabs data projeted on the

two �rst prinipal axes and the big irles represent the luster means.

Table 5 gives the lassi�ation error rate for the lassial model Sphe-GMM,

the VS-GMM method and HDDC. The seond olumn of this table indiates on

whih variables is performed the lustering. HDDC obtains a luster reognition

rate equal to 95% and the variable seletion method of Raftery et al. obtains

93.5% whereas the lassial model Sphe-GMM obtains a luster reognition rate

equal to 60.5%. HDDC found that eah luster lives in a 1-dimensional subspae

embedded into the original 5-dimensional spae. The right panel of Figure 7

shows the spei� subspaes (blue lines) of the 4 mixture omponents obtained

with the model [aibiQidi] of HDDC. For this illustration, the data is projeted on

the two �rst prinipal omponents sine results obtained with VS-GMM on these

variables are better than on the original ones. It an be observed that the spei�

axes of the di�erent lusters are very orrelated and this explains that HDDC

provides a better lustering result than the variable seletion method VS-GMM.

5.6 Real data study: Martian surfae haraterization

Here, we propose to use HDDC to analyze and segment images of the Martian

surfae. Visible and near infrared imaging spetrosopy is a key remote sensing

tehnique to study and monitor the system of the planets. Imaging spetrometers,

whih are inboard of an inreasing number of satellites, provide high-dimensional

hyper-spetral images. In Marh 2004, the OMEGA instrument (Mars Express,

ESA) [5℄ has olleted 310 Gbytes of raw images. The OMEGA imaging spe-
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Figure 8: Charaterization of the Martian surfae omposition using HDDC: on

the left, image of the studied zone and, on the right, segmentation using HDDC

on the 256-dimensional spetral data assoiated to the image.
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Figure 9: Spetral means of the 5 mineralogial lasses found using HDDC.
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trometer has mapped the Martian surfae with a spatial resolution varying be-

tween 300 to 3000 meters depending on spaeraft altitude. It aquires for eah

resolved pixel the spetrum from 0.36 to 5.2 µm in 256 ontiguous spetral han-

nels. OMEGA is designed to haraterize the omposition of surfae materials,

disriminating between various lasses of siliates, hydrated minerals, oxides and

arbonates, organi frosts and ies. For this experiment, a 300 × 128 image of

the Martian surfae is onsidered and a 256-dimensional spetral observation is

assoiated to eah of the 38 400 pixels. The image of the studied zone is pre-

sented on the left panel of Figure 8. Aording to the experts, there are k = 5

mineralogial lasses to identify.

The right image of Figure 8 shows the segmentation obtained with the model

[aibiQidi] of HDDC. First of all, observe that the segmentation of HDDC is very

preise on the main part of the image. The poor results of the top right part of the

image are due to the planet urvature and ould be orreted. In partiular, the

experts of the domain appreiated that our method is able to detet a mixture of

ie and arbonate around the ie zones (lear zones of the image). Figure 9 shows

the spetral means of the 5 lasses and this allows the experts to determine the

mineralogial and moleular omposition of eah lass. Remind that this study

is done without taking into aount the spatial relations between the pixels of

a image. A natural extension of this work is therefore to ombine HDDC with

the modeling of the spatial relations using, for example, hidden Markov random

�elds. This experiment demonstrates that HDDC an be e�iently used on real

high-dimensional data and with large datasets. In addition, a main interest of

HDDC for this appliation is to provide posterior probabilities that eah pixel

belongs to the lasses.

6 Conlusion

In this paper, new Gaussian mixture models designed for high-dimensional data

are introdued. It is assumed that the intrinsi dimension of eah mixture ompo-

nent is muh smaller than the one of the original spae. In addition, outside the

spei� subspae of eah group, the noise variane is modeled by a single parame-

ter. Additional onstraints an be imposed on the parameters within or between
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the groups in order to obtain further regularized models. This parameterization

in the eigenspaes of the mixture omponents gives rise to an EM-based luster-

ing method, alled High-Dimensional Data Clustering (HDDC). Experiments on

arti�ial and real datasets demonstrated the e�etiveness of the di�erent mod-

els of HDDC ompared to lassial Gaussian mixture models. In partiular, the

model [aibiQidi] provides very satisfying results for many types of data.
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A Appendix: parameters estimation

First of all, we introdue the following useful formulation of the log-likelihood:

− 2 log(L) =

k
∑

i=1

ni

p
∑

j=1

(

log(δij) +
1

δij

qt
ijWiqij

)

+ cst, (14)

where δij is the jth diagonal oe�ient of ∆i and qij is the jth olumn of Qi. We

refer to [19℄ for a demonstration of this result.

A.1 Models with free orientations

Subspae Ei: The log-likelihood is to be maximized under the onstraint qt
ijqij =

1, whih is equivalent to �nding a saddle point of the Lagrange funtion:

L = −2 log(L) −
p
∑

j=1

θij(q
t
ijqij − 1),

where θij are the Lagrange multipliers. Using the expression (14) of the log-

likelihood, the gradient of L with respet to qij is:

∇qij
L = 2

ni

δij

Wiqij − 2θijqij ,
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and by multiplying this quantity on the left by qt
ij , we obtain:

qt
ij∇qij

L = 0 ⇔ θij =
ni

δij

qt
ijWiqij .

Consequently, Wiqij =
θijδij

ni
qij and thus qij is the eigenvetor of Wi assoiated

with the eigenvalue λij =
θijδij

ni
= qt

ijWiqij . As the vetors qij are eigenvetors of

the symmetri matrix Wi, this implies that qt
ijqiℓ = 0 if j 6= ℓ. The log-likelihood

an therefore be re-written as follows:

−2 log(L) =

k
∑

i=1

ni

(

di
∑

j=1

(

log(aij) +
λij

aij

)

+

p
∑

j=di+1

(

log(bi) +
λij

bi

)

)

+ cst,

and, using the relation

∑p

j=di+1 λij = Tr(Wi) −
∑di

j=1 λij, we obtain:

−2 log(L) =
k
∑

i=1

ni

(

di
∑

j=1

log(aij) + (p − di) log(bi) +
Tr(Wi)

bi

+

di
∑

j=1

(

1

aij

− 1

bi

)

λij

)

+cst.

(15)

Thus, minimizing −2 log(L) with respet to λij is equivalent to minimizing the

quantity

∑k

i=1 ni

∑di

j=1(
1

aij
− 1

bi
)λij . Sine ( 1

aij
− 1

bi
) < 0, ∀j = 1, ..., di, λij must

therefore be as larger as possible. Thus, the olumn vetor qij , ∀j = 1, ..., di, is

estimated by the eigenvetor assoiated to the jth largest eigenvalue of Wi.

Model [aijbiQidi]: starting from equation (15), the partial derivative of−2 log(L)

with respet to aij and bi are:

−2
∂ log(L)

∂aij

= ni

(

1

aij

− λij

a2
ij

)

and −2
∂ log(L)

∂bi

=
ni(p − di)

bi

− ni

b2
i

(

Tr(Wi) −
di
∑

j=1

λij

)

.

The ondition

∂ log(L)
∂aij

= 0 implies that âij = λij and the ondition

∂ log(L)
∂bi

= 0

implies that:

b̂i =
1

(p − di)

(

Tr(Wi) −
di
∑

j=1

λij

)

.
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Model [aijbQidi]: the partial derivative of −2 log(L) with respet to b is:

−2
∂ log(L)

∂b
=

n(p − ξ)

b
− 1

b2

k
∑

i=1

ni

(

Tr(Wi) −
di
∑

j=1

λij

)

,

and the ondition

∂ log(L)
∂b

= 0 proves that:

b̂ =
1

(p − ξ)

(

Tr(W ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

.

Model [aibiQidi]: from (15), the partial derivative of −2 log(L) with respet to

ai is:

−2
∂ log(L)

∂ai

=
nidi

ai

− ni

a2
i

di
∑

j=1

λij,

and the ondition

∂ log(L)
∂ai

= 0 implies that:

âi =
1

di

di
∑

j=1

λij.

Model [abiQidi]: the partial derivative of −2 log(L) with respet to a is:

−2
∂ log(L)

∂a
=

nξ

a
− 1

a2

k
∑

i=1

ni

di
∑

j=1

λij,

and the ondition

∂ log(L)
∂a

= 0 gives:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij .

Model [ajbiQid]: the partial derivative of −2 log(L) with respet to aj is:

−2
∂ log(L)

∂aj

=
n

aj

− 1

a2
j

k
∑

i=1

niλij .

The ondition

∂ log(L)
∂aj

= 0 and the relation

∑k

i=1 niλij = nλj imply that âj = λj .
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A.2 Models with ommon orientations

Subspae Ei: Starting from the likelihood expression (14), we an write:

−2 log(L) =

k
∑

i=1

ni

d
∑

j=1

(

log(ai) +
1

ai

qt
jWiqj

)

+

k
∑

i=1

ni

p
∑

j=d+1

(

log(bi) +
1

bi

qt
jWiqj

)

+ cst,

=

k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) +

d
∑

j=1

qt
jAqj +

p
∑

j=d+1

qt
jBqj + cst,

where A =
∑k

i=1
ni

ai
Wi and B =

∑k

i=1
ni

bi
Wi. Note that

∑p

j=d+1 qt
jBqj an be

written using the trae of B:

∑p

j=d+1 qt
jBqj = Tr(B) −∑d

j=1 qt
jBqj . This yields:

− 2 log(L) =

k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) −
d
∑

j=1

qt
j(B − A)qj + Tr(B) + cst.(16)

Consequently, the gradient of L = −2 log(L) −∑p

j=1 θj(q
t
jqj − 1) with respet to

qj is:

∇qj
L = −2(B − A)qj − 2θjqj ,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 is equivalent to

(B −A)qj = −θjqj whih means that qj is eigenvetor of the matrix (B −A). In

order to minimize the quantity −2 log(L), the d �rst olumns of Q must be the

eigenvetors assoiated with the d largest eigenvalues of (B − A).

Model [aibiQd]: Starting from equation (16), the partial derivatives of−2 log(L)

with respet to ai and bi are:

−2
∂ log(L)

∂ai

=
nid

ai

−ni

a2
i

d
∑

j=1

qt
jWiqj and−2

∂ log(L)

∂bi

=
ni(p − d)

bi

−ni

b2
i

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

.

The ondition

∂ log(L)
∂ai

= 0 and

∂ log(L)
∂bi

= 0 give respetively:

âi(Q) =
1

d

d
∑

j=1

qt
jWiqj and b̂i(Q) =

1

(p − d)

(

Tr(Wi) −
d
∑

j=1

qt
jWiqj

)

.
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Model [aibQd]: The partial derivative of −2 log(L) with respet to b is:

−2
∂ log(L)

∂b
=

n(p − d)

b
− n

b2

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

,

and the ondition

∂ log(L)
∂b

= 0 implies that:

b̂(Q) =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

qt
jWqj

)

.

Model [abiQd]: The partial derivative of −2 log(L) with respet to a is:

−2
∂ log(L)

∂a
=

nd

a
− n

a2

d
∑

j=1

qt
jWqj ,

and the ondition

∂ log(L)
∂a

= 0 proves that:

â(Q) =
1

d

d
∑

j=1

qt
jWqj .

A.3 Models with ommon ovariane matries

Subspae Ei: The log-likelihood an be written as follows:

−2 log(L) = n

(

d
∑

j=1

log(aj) + (p − d) log(b) +
Tr(W )

b
+

d
∑

j=1

(

1

aj

− 1

b

)

qt
jWqj

)

+cst.

The gradient of L = −2 log(L) −∑p

j=1 θj(q
t
jqj − 1) with respet to qj is:

∇qj
L = 2n(

1

aj

− 1

b
)Wqj − 2θjqj,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 implies that qjis

eigenvetor of W . In order to minimize −2 log(L), the �rst olumns of Q must

be the eigenvetors assoiated to the d largest eigenvalues of W .

32



Model [ajbQd]: The partial derivatives of −2 log(L) with respet to aj and b

are:

−2
∂ log(L)

∂aj

=
n

aj

− n

a2
j

qt
jWqj and −2

∂ log(L)

∂b
=

n(p − d)

b
− n

b2

p
∑

j=d+1

qt
jWqj .

The ondition

∂ log(L)
∂ai

= 0 implies that âj = λj. The ombination of the ondition

∂ log(L)
∂b

= 0 with the relation

∑p

j=d+1 λj = Tr(W ) −∑d

j=1 λj gives the estimator

of b:

b̂ =
1

(p − d)

(

Tr(W ) −
d
∑

j=1

λj

)

.

Model [abQd]: The partial derivatives of −2 log(L) with respet to a is:

−2
∂ log(L)

∂a
=

nd

a
− n

a2

d
∑

j=1

qt
jWqj ,

and the ondition

∂ log(L)
∂a

= 0 implies that:

â =
1

d

d
∑

j=1

λj.
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