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Abstract

Recently two-parameter generalized exponential distribution has been introduced
by the authors. In this paper we consider the Bayes estimators of the unknown param-
eters under the assumptions of gamma priors on both the shape and scale parameters.
The Bayes estimators can not be obtained in explicit forms. Approximate Bayes es-
timators are computed using the idea of Lindley. We also propose Gibbs sampling
procedure to generate samples from the posterior distributions and in turn computing
the Bayes estimators. The approximate Bayes estimators obtained under the assump-
tions of non-informative priors, are compared with the maximum likelihood estimators
using Monte Carlo simulations. One real data set has been analyzed for illustrative
purposes.
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1 Introduction

Recently the authors proposed [4] the two-parameter generalized exponential distribution

(GE) as an alternative to the gamma and Weibull distributions and studied its different

properties. Some of the recent references on GE distribution are Raqab [16], Raqab and

Ahsanullah [17], Zheng [23], Sarhan [20], Gupta and Kundu [6, 8] and the references cited

there.

The two-parameter GE has the following density function

f(x;α, λ) = αλ
(

1− e−λx
)α−1

e−λx; x > 0, (1)

here α, λ > 0 are the shape and scale parameters respectively. The main aim of this paper

is to consider the Bayesian analysis of the GE distribution and compare their performances

with the classical ones. Since both α and λ are non-negative therefore, it is quite natural to

assume the gamma priors on α and λ, although they are not the conjugate priors. In many

practical situations, the information about the shape and scale of the sampling distribution

is available in an independent manner, see Basu, Basu and Mukhopadhyay [2]. Therefore,

here it is assumed that the parameters α and λ are independent a priori.

In this paper we mainly consider the squared error loss function. It is observed that the

Bayes estimators can not be expressed in explicit forms and they can be obtained by two

dimensional numerical integrations only. We use the idea of Lindley to compute the approxi-

mate Bayes estimators of the unknown parameters and it is observed that the approximation

works quite well. We compute the approximate Bayes estimators under the assumption of

non-informative priors and compare them with the maximum likelihood estimators (MLEs)

by Monte Carlo simulations. We also propose Markov Chain Monte Carlo (MCMC) tech-

niques to generate samples from the posterior distributions and in turn computing the Bayes

estimators. The posterior density functions match quite well with the histograms of the
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samples obtained by MCMC methods.

It should be mentioned that Jaheen [7] and Raqab and Madi [18] also considered the

Bayesian inferences of the unknown parameter(s) of the GE distribution. Jaheen [7] con-

sidered the empirical Bayes estimate of the shape parameter when the scale parameter is

known. Raqab and Madi [18] considered the case when both the parameters are unknown,

but their approaches and the emphasis are quite different than the present paper. Moreover,

in this paper we have observed that our method can be extended to a more general class of

distributions, for example proportional reversed hazard models or for exponentiated Weibull

distribution. However, it is not clear how to extend the results of Jaheen [7] and Raqab and

Madi [18] in a more general situation.

The rest of the paper is organized as follows. In section 2, we propose the Bayes estimators

of the unknown parameters. The approximate Bayes estimators are also considered in section

2. One data set has been analyzed in section 3. Numerical results are provided in section

4. In section 5 we briefly mentioned how to extend our results for more general classes of

distributions and finally conclusions appear in section 6.

2 Bayes Estimation of the Unknown Parameter(s)

In this section we consider the Bayes estimation of the unknown parameter(s). When both

are unknown, it is assumed that α and λ have the following gamma prior distributions;

π1(λ) ∝ λb−1e−aλ; λ > 0, (2)

π2(α) ∝ αd−1e−cα; α > 0. (3)

Here all the hyper parameters a, b, c, d are assumed to be known and non-negative.

Suppose {x1, . . . , xn} is a random sample from GE(α, λ), then based on the likelihood
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function of the observed data;

l(data|α, λ) = αnλne−λ
∑n

i=1
xi

n
∏

i=1

(

1− e−λxi
)α−1

, (4)

the joint posterior density function of α and λ can be written as;

l(α, λ|data) =
l(data|α, λ)π1(λ)π2(α)

∫∞
0

∫∞
0 l(data|α, λ)π1(λ)π2(α)dαdλ

. (5)

Therefore, the Bayes estimator of any function of α and λ, say g(α, λ) under the squared

error loss function is

ĝB = Eα,λ|data(g(α, λ)) =

∫∞
0

∫∞
0 g(α, λ)l(data|α, λ)π1(λ)π2(α)dαdλ
∫∞
0

∫∞
0 l(data|α, λ)π1(λ)π2(α)dαdλ

. (6)

It is not possible to compute analytically (6) in this case. Two approaches are used here

namely (a) Lindley’s approximation; (b) Markov Chain Monte Carlo (MCMC) to approxi-

mate (6). Note that when one parameter is known, the Bayes estimator of any function of

the other parameter also can be written similarly as the ratio of two integrals such as (6).

2.1 Lindley’s Approximation

Lindley [11] proposed his procedure to approximate the ratio of the two integrals such as

(6). This has been used by several authors to obtain the approximate Bayes estimators. For

details see Lindley [11] or Press [14]. Based on Lindley’s approximation, the approximate

Bayes estimators of α and λ under the squared errors loss function are

α̂B = α̂ +
1

2







2n

α̂3
τ 2
11 +







2n

λ̂3
+ (α̂− 1)

n
∑

i=1

x3
i e

−λ̂xi(1 + e−λ̂xi)
(

1− e−λ̂xi
)3





 τ21τ22

−







n
∑

i=1

x2
i e

−λ̂xi

(

1− e−λ̂xi
)2







(

τ22τ11 + 2τ
2
21

)





+

(

d− 1

α̂
− c

)

τ11 +

(

b− 1

λ̂
− a

)

τ12, (7)

λ̂B = λ̂+
1

2







2n

α̂3
τ12τ11 +







2n

λ̂3
+ (α̂− 1)

n
∑

i=1

x3
i e

−λ̂xi(1 + e−λ̂xi)
(

1− e−λ̂xi
)3





 τ 2
22
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−







n
∑

i=1

3x2
i e

−λ̂xi

(

1− e−λ̂xi
)2





 (τ22τ21)





+

(

d− 1

α̂
− c

)

τ21 +

(

b− 1

λ̂
− a

)

τ22, (8)

respectively, here

τ11 =
W

UW − V 2
, τ12 = −

V

UW − V 2
= τ21, τ22 =

U

UW − V 2
and

U =
n

α̂2
, V = −

n
∑

i=1

xie
−λ̂xi

(1− e−λ̂xi)
, W =

n

λ̂2
+ (α̂− 1)

n
∑

i=1

x2
i e

−λ̂xi

(1− e−λ̂xi)2
. (9)

For the proof of (7) and (8) see in the appendix.

If α is known, under the same assumption, as given in (2), of prior on λ, the Bayes

estimator of λ, can not be expressed in explicit form. The approximate Bayes estimator of

λ under the squared error loss function is

λ̂B = λ̂+
1

n





((b− 1) ln λ̂− aλ̂)





1

λ̂2
+ (α− 1)

1

n

n
∑

i=1

x2e−λ̂xi

(1− e−λ̂xi)2





−1

+

1

4





1

λ̂2
+ (α− 1)

1

n

n
∑

i=1

x2e−λ̂xi

(1− e−λ̂xi)2





−2

×





2

λ̂3
+ (α− 1)

1

n

n
∑

i=1

x3
i (1 + e−λ̂xi)

(1− e−λ̂xi)3









 .

When λ is known, under the same assumption of prior on α as given in (3), the posterior

density of α is gamma with the shape and scale parameters as d+n and c−
∑n

i=1 ln(1−e−λxi)

respectively. Therefore, under the square error loss function the Bayes estimator of α is

n+ d

c−
∑n

i=1 ln(1− e−λxi)
. (10)

Note that, as expected, for the non-informative prior, i.e. when c = d = 0, the Bayes

estimator and MLE of α are identical.

2.2 MCMC Method

In this subsection, we consider the MCMC method to generate samples from the posterior

distributions and then compute the Bayes estimators of α and λ under the squared errors
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loss function. Note that once we have the MCMC samples, it is possible to compute the

Bayes estimators with respect to any other loss function also.

The joint posterior density function of α and λ can be written as

l(α, λ|data) ∝ αn+d−1λn+b−1e−λ(a+
∑n

i=1
xi)e−cα

n
∏

i=1

(

1− e−λxi
)α−1

, (11)

from (11) it is clear that the posterior density function of α given λ is

l(α|λ, data) ∝ αn+d−1e−α(c−
∑n

i=1
ln(1−e−λxi)). (12)

Therefore, the posterior density function of α given λ is gamma with the shape and scale

parameters as n+ d and
(

c−
∑n

i=1 ln
(

1− e−λxi
))

respectively.

Now let us also compute the posterior density function of λ given α. The posterior density

function of λ given α can be written as

l(λ|α, data) ∝ λn+b−1e−λ(a+
∑n

i=1
xi)

n
∏

i=1

(

1− e−λxi
)α−1

. (13)

From,
∂2 ln l(λ|α, data)

∂λ2
, it is immediate that l(λ|α, data) is log-concave for α ≥ 1. For α ≥ 1,

we use the general method of Devroye [3] to generate random sample from the log-concave

density function l(λ|α, data).

For α < 1, generation from (13) needs special attention. For α < 1, let us rewrite (13) as

l(λ|α, data) ∝
(

1− e−λx(1)

)α−1
e−λx(1)

[

e−λ(a+
∑n

i=2
x(i))λn+b−1

n
∏

i=2

(

1− e−λx(i)

)α−1
]

, (14)

here x(1) < . . . x(n) are the ordered xi’s. Observe that the function within [·] is a continuous

function. It goes to a finite constant as λ approaches 0 and goes to 0 as λ approaches ∞. It

implies that the function has a finite maximum. Therefore with the help of the acceptance

rejection principle (see Devroye [3] for details), the generation from (14) can be performed

using the GE generator.
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Note that when a = b = c = d = 0, then the priors are not proper, but even in that case

the conditional posterior distributions, namely l(α|λ, data) and l(λ|α, data) are proper. We

propose the following MCMC procedure.

MCMC Method:

• Step 1: Take some initial guess of α and λ, say α0 and λ0 respectively.

• Step 2: Suppose at the i− th step, α and λ take the values αi and λi, then we generate

αi+1 and λi+1 from l(α|λi, data) and l(λ|αi, data) respectively.

• Step 3: Repeat Step 2, N times.

• Step 4: Calculate Bayes estimator of g(α, λ) by

1

N −M

N
∑

i=M+1

g(αi, λi),

where M is the burn-in period.

Now note that when λ is known the posterior density function of α can be written as (12)

and similarly, the posterior density function of λ can be written as (13). Therefore, posterior

samples from the corresponding density functions can be drawn as mentioned above and the

corresponding MCMC methods can be easily developed.

3 Data Analysis

In this section we analyze one data set and demonstrate how the proposed methods can be

used in practice. The data (Lawless [9]; page 228) presented here arose in tests on endurance

of deep groove ball bearings. The data presented are the number of million revolution before

failure for each of the 23 ball bearings in the life test and they are; 17.88, 28.92, 33.00, 41.52,
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42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,

105.12, 105.84, 127.92, 128.04 and 173.40.

We analyze the data using the generalized exponential distribution. It is known [4] that

the MLE of α can be written as

α̂(λ) = −
n

∑n
i=1 ln (1− e−λxi)

.

Therefore, the profile log-likelihood function (say h(λ)) of λ becomes

h(λ) = n ln α̂(λ) + n lnλ− λ
n
∑

i=1

xi −
n
∑

i=1

ln
(

1− e−λxi
)

.

We provide the profile log-likelihood function of λ in Figure 1. Using the simple iterative

λ

h( λ )

−113

−112.995

−112.99

−112.985

−112.98

−112.975

 0.0305  0.031  0.0315  0.032  0.0325  0.033  0.0335  0.034

Figure 1: Profile log-likelihood function of λ.

procedure as suggested in Gupta and Kundu [5], the MLEs of α and λ can be obtained as

5.2836 and 0.0323 respectively.

Now we compute the Bayes estimators of α and λ. Since we do not have any prior

information, we assume a = b = c = d = 0. Although it implies improper priors on α and
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λ, but the corresponding posteriors are proper. We compute the exact Bayes estimates of α

and λ under the squared error loss functions using numerical integration and they are 5.3466

and 0.0318 respectively. We compute the approximate Bayes estimates of α and λ using

Lindley’s approximation and they are 5.3482 and 0.0318. It is interesting that Lindley’s

approximation works very well in this case.

We also compute the approximate Bayes estimates of α and λ using MCMC method and

they are 5.1287 and 0.0311 respectively. We plot the histograms of the samples of α and

λ generated by MCMC method along with their exact posterior density functions obtained

numerically, in Figures 2 and 3 respectively.

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10  12  14  16

Figure 2: Posterior density function of α and the histogram of α generated by MCMC
method.

From the Figures 2 and 3 it is clear that the exact posterior density functions match quite

well with the simulated samples obtained using MCMC method. Therefore, MCMC samples

can be used for constructing the approximate credible intervals or for example estimating

any functions of parameters also quite effectively, they are not pursued here.
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λ
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Figure 3: Posterior density function of λ and the histogram of λ generated by MCMC
method.

It appears at least, that the Bayes estimate of α obtained using MCMC method (5.1287)

is significantly different than the exact Bayes estimate of α (5.3466). We plot the density

functions f(x; 5.3466, 0.0318) and f(x; 5.1287, 0.0311) in Figure 4. Although the Bayes es-

timates are different but the estimated density functions obtained using them are almost

indistinguishable.

To check the validity of the model, we compute the Kolmogorov-Smirnov (KS) distance

between the empirical distribution function and the fitted distribution functions when the

parameters are obtained by different methods, namely by MLEs, exact Bayes estimators and

approximate Bayes estimators (MCMC). The results are presented in Table 1. From Table

1 it is clear that the estimated GE distributions provide excellent good fit to the given data.

We plot the empirical survival function and the estimated survival functions obtained using

the MLEs, exact Bayes and approximate Bayes in Figure 5. It shows that all of them fit the

data very well.
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x

Exact

MCMC

 0
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 0.004
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 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200  250  300

Figure 4: The density functions f(x; 5.3466, 0.0318) and f(x; 5.1287, 0.0311) are plotted.

Methods K-S Distance p-value

MLE 0.1058 0.9592
Exact Bayes 0.1218 0.8840

App Bayes (MCMC) 0.1251 0.8641

Table 1: Kolmogorov-Smirnov distances and the corresponding p-values between the empir-
ical distribution function and the fitted distribution functions

4 Numerical Comparisons

We have already observed in the previous section that the approximate Bayes estimators

match quite well with the exact Bayes estimators. In this section our main aim is to com-

pare the Bayes estimators with the classical maximum likelihood estimators. To make the

comparison more meaningful, we assume the non-informative priors on both the shape and

scale parameters. Since it is observed that approximate Bayes estimators work quite well

even for small sample sizes and the exact Bayes estimators are quite difficult to compute
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x

MLEs

Bayes
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 0.8

 1

 0  50  100  150  200

Figure 5: The estimated survival functions and the empirical survival function are plotted.

numerically, we compare the MLEs with the approximate Bayes estimates in terms of biases

and square root of the mean squared errors (RMS) for different sample sizes and for different

parameter values.

All the computations are performed at the Indian Institute of Technology Kanpur using

Pentium IV processor. We use the random deviate generator RAN2 of Press et al. [15].

For each sample size we compute the MLEs of α and λ and also the Bayes estimates using

Lindley’s approximation. We replicate the process 1000 times and compute the average

estimates (AEs) and the RMS. The results are reported in Tables 2 and 3.

Some of the points are quite clear from the numerical results. As expected it is observed

that the performances of all estimators become better when the sample size increases. It

is also observed that both in terms of biases and RMS, for large sample sizes the Bayes

estimates and the MLEs become closer. The Bayes estimates of λ perform marginally better

than the MLEs in terms of biases and RMS for all cases considered. In general the Bayes

estimates of α perform better than the MLEs for α ≤ 1 and for α > 1 it is the other way.
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Table 2: Average relative estimates and the square root of the mean squared errors for the
MLEs and approximate Bayes estimates of α when λ is unknown.∗

n α→ 0.75 1.00 1.50 2.00 2.50 3.00
Methods ↓

15 MLE 1.2257 1.2541 1.2968 1.3642 1.4076 1.3999
(0.5842) (0.6583) (0.7393) (0.8967) (1.1311) (1.0312)

ABAYES 1.1971 1.2315 1.2864 1.3698 1.4323 1.4336
(0.5727) (0.6570) (0.7611) (0.9584) (1.3220) (1.1455)

25 MLE 1.1237 1.1363 1.1584 1.1773 1.1941 1.2094
(0.3527) (0.3817) (0.4331) (0.4782) (0.5191) (0.5567)

ABAYES 1.1064 1.1215 1.1488 1.1733 1.1956 1.2165
(0.3448) (0.3761) (0.4333) (0.4851) (0.5333) (0.5787)

50 MLE 1.0732 1.0801 1.0718 1.0807 1.0850 1.0892
(0.2290) (0.2451) (0.2519) (0.2712) (0.2822) (0.2824)

ABAYES 1.0647 1.0725 1.0664 1.0773 1.0836 1.0897
(0.2255) (0.2422) (0.2507) (0.2717) (0.2840) (0.2855)

75 MLE 1.0465 1.0507 1.0482 1.0512 1.0446 1.0675
(0.1682) (0.1790) (0.1940) (0.1984) (0.2037) (0.2201)

ABAYES 1.0409 1.0457 1.0445 1.0487 1.0433 1.0675
(0.1662) (0.1773) (0.1932) (0.1984) (0.2044) (0.2214)

∗ In each box correspond to a method (MLE or ABAYES) and a α, the first figure represents the

average relative estimate of α and its RMS is reported within bracket immediately below.
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Table 3: Average relative estimates and the square root of the mean squared errors for the
MLEs and approximate Bayes estimates of λ when α is unknown.∗

n α→ 0.75 1.00 1.50 2.00 2.50 3.00
Methods ↓

15 MLE 1.2152 1.1877 1.1511 1.1526 1.1496 1.1417
(0.5561) (0.4900) (0.4027) (0.3784) (0.3800) (0.3601)

ABAYES 1.1735 1.1500 1.1216 1.1213 1.1197 1.1131
(0.5276) (0.4658) (0.3832) (0.3602) (0.3632) (0.3444)

25 MLE 1.1156 1.1018 1.0883 1.0815 1.0774 1.0747
(0.3495) (0.3140) (0.2777) (0.2587) (0.2468) (0.2386)

ABAYES 1.0921 1.0802 1.0687 1.0632 1.0600 1.0579
(0.3368) (0.3031) (0.2685) (0.2504) (0.2392) (0.2314)

50 MLE 1.0693 1.0617 1.0458 1.0447 1.0382 1.0325
(0.2369) (0.2152) (0.1888) (0.1723) (0.1648) (0.1560)

ABAYES 1.0579 1.0511 1.0362 1.0356 1.0295 1.0242
(0.2319) (0.2107) (0.1854) (0.1690) (0.1620) (0.1535)

75 MLE 1.0476 1.0422 1.0319 1.0253 1.0173 1.0314
(0.1846) (0.1681) (0.1484) (0.1340) (0.1301) (0.1238)

ABAYES 1.0402 1.0353 1.0255 1.0193 1.0116 1.0259
(0.1817) (0.1656) (0.1464) (0.1324) (0.1289) (0.1220)

∗ In each box correspond to a method (MLE or ABAYES) and a α, the first figure represents the

average relative estimate of λ and its RMS is reported within bracket immediately below.
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5 Extensions

In this paper although we have discussed the Bayesian inference of the two-parameter gener-

alized exponential distribution, but our method can be extended for many other cases also.

We briefly describe them below.

5.1 Proportional Reversed Hazard Model

When the scale parameter λ is known, the Bayes theory developed here, can be extended

to the entire class of proportional reversed hazard models (see for example Di Crescenzo;

[1]), i.e., the class of distribution functions G(x;α), which can be expressed in the form

G(x;α) = (F (x))α, for α > 0. Here F (x) is a proper distribution function. Consider the

following transformation Y = − ln(G(X)), then Y has an exponential distribution. If we

assume the gamma prior on α as given in (3), then it is the conjugate prior. It can be easily

seen that, based on the random sample {x1, . . . , xn} from G(x;α), the exact Bayes estimator

of α under the squared error loss function is

d+ n

c−
∑n

i=1 lnF (xi)
. (15)

In case of GE, when λ is known it is a proportional reverse hazard class and the result (10)

follows as a special case of (15).

5.2 Exponentiated Weibull Model

The exponentiated Weibull model, which was originally proposed by Mudholkar et al. [12]

has the following probability density function;

f(x;α, λ, β) = αλβ
(

1− e−λx
β
)α−1

e−λx
β

xβ−1; x > 0. (16)
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Here α and λ are same as before, β > 0 is another shape parameter. To compute the Bayes

estimates of the unknown parameters, {α, λ, β}, it is assumed that λ and α have the same

priors as described in (2) and (3) respectively. The other shape parameter β also has the

gamma prior as

π3(β) ∝ βv−1e−uβ; β > 0. (17)

Here the hyper-parameters u and v are known and non-negative. Based on the observed

sample {x1, . . . , xn}, the posterior density function of α given λ, β and data is

l(α|λ, β, data) ∝ αn+d−1e−α(c−
∑n

i=1
ln(1−e

−λx
β

i )), (18)

which is a gamma probability density function with the shape and scale parameters as n+ d

and c−
n
∑

i=1

ln(1− e−λx
β

i ) respectively.

The posterior density function of λ given α, β and data is

l(λ|α, β, data) ∝ λb+n−1e−λ(a+
∑n

i=1
x
β

i
)

n
∏

i=1

(

1− e−λx
β

i

)α−1

. (19)

It has the same form as (13), except xi is replaced by x
β
i . Therefore, the same method as

(13), can be applied here also to generate samples from (19).

The posterior density function of β given α, λ and data is

l(β|α, λ, data) ∝ βn+v−1
n
∏

i=1

(

1− e
−λxβ

(i)

)α−1

e
−λ
∑n

i=1
x
β

(i)

n
∏

i=1

x
β−1
(i) e−uβ

∝
(

1− e
−λxβ

(1)

)α−1

e
−λxβ

(1)

×

[

βn+v−1e−uβ
n
∏

i=1

x
β−1
(i)

n
∏

i=2

(

1− e
−λxβ

(i)

)α−1

e
−λ
∑n

i=2
x
β

(i)

]

(20)

here as before, x(1) < . . . < x(n) are the ordered xi’s. Observe that the function within [·] is a

continuous function in β. It vanishes as β approaches 0 or∞. It implies that the function has

a finite maximum. Therefore with the help of the acceptance rejection principle again, the

generation from (20) can be performed using the GE generator. Now using similar MCMC
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method as described in subsection 2.2, the posterior samples α, λ and β can be generated and

in turn the Bayes estimates and the corresponding credible intervals can be easily obtained.

It should be mentioned that recently, Singh, Gupta and Upadhyay [21], Nassar and Eissa

[13], Soliman, Abd Ellah and Sultan [22], Lee, Kim and Jung [10] and Ren, Sun and Dey

[19] also consider the Bayes estimations of the parameters of some related models, but their

approaches are quite different than ours.

6 Conclusions

In this paper we consider the Bayes estimation of the unknown parameters of the gener-

alized exponential distribution. We assume the gamma priors on the unknown parameters

and provide the Bayes estimators under the assumptions of squared error loss functions.

It is observed that the Bayes estimators can not be obtained in explicit forms and they

can be obtained using the numerical integration. Because of that we have used Lindley’s

approximation and it is observed that the approximation works very well. We have com-

pared using Monte Carlo simulation between the performances of the MLEs and approximate

Bayes estimators under the assumptions of non-informative priors and it is observed that

the performances are quite similar.

We have also used MCMC technique to generate posterior sample and it is observed that

the histograms of the generated posteriors match quite well with the theoretical posterior

density functions. Since we have an effective MCMC technique we can use any other loss

function also, for example, LINEX loss function or absolute error loss function. Moreover,

we have seen that our method can be easily extended for exponentiated Weibull distribution

also. Finally we should mention that, although we have used gamma priors on the shape

parameter, but our method can be used for a more general class of priors also, for exam-

ple priors with log-concave density functions. Choosing the proper priors is a challenging

17



problem. More work is needed in that direction.
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Appendix:

For the two parameter case, using the notation (λ1, λ2) = (α, λ), the Lindley’s approximation

can be written as follows;

ĝ = g(λ̂1, λ̂2) +
1

2
[A+ l30B12 + l03B21 + l21C12 + l12C21] + p1A12 + p2A21, (21)

where

A =
2
∑

i=1

2
∑

j=1

wijτij, lij =
∂i+jL(λ1, λ2)

∂λi1∂λ
j
2

; i, j = 0, 1, 2, 3, i+ j = 3, (22)

pi =
∂p

∂λi
, wi =

∂g

∂λi
, wij =

∂2g

∂λi∂λj
, p = lnπ(λ1, λ2), Aij = wiτii + wjτji, (23)

Bij = (wiτii + wjτij) τii, Cij = 3wiτiiτij + wj

(

τiiτjj + 2τ
2
ij

)

, (24)

here L(., .) is the log-likelihood function of the observed data, π(λ1, λ2) is the joint prior

density function of (λ1, λ2), τij is the (i, j)−th element of the inverse of the Fisher information

matrix. Moreover, λ̂1 and λ̂2 are the MLEs of λ1 and λ2 respectively and all the quantities

are evaluated at (λ̂1, λ̂2).

Now we have

L(α, λ) = n lnα + n lnλ+ (α− 1)
n
∑

i=1

ln
(

1− e−λxi
)

− λ
n
∑

i=1

xi.
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Therefore, we obtain

l30 =
2n

α̂3
, l03 =

2n

λ̂3
+ (α̂− 1)

n
∑

i=1

x3
i e

−λ̂xi
(

1 + e−λ̂xi
)

(

1− e−λ̂xi
)3 , l12 = −

n
∑

i=1

x2
i e

−λ̂xi

(

1− e−λ̂xi
)2 , l21 = 0,

and U , V and W same as defined in (9). Now when g(α, λ) = α, then

w1 = 1, w2 = 0, wij = 0, i, j = 1, 2,

therefore,

A = 0, B12 = τ 2
11, B21 = τ21τ22, C12 = 3τ11τ12, C21 = (τ22τ11+2τ

2
21), A12 = τ11, A21 = τ12.

Now the first part of Lindley’s approximation follows by using

p1 =
d− 1

α
− c and p2 =

b− 1

λ
− a.

For the second part, note that g(α, λ) = λ, then

w1 = 0, w2 = 1, wij = 0, i, j = 1, 2,

and

A = 0, B12 = τ12τ11, B21 = τ 2
22, C12 = τ11τ22+2τ

2
12, C21 = 3τ22τ21, A12 = τ21, A21 = τ22,

therefore the second part follows immediately.
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