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Abstract: Abrupt shifts in the level of a time series represent important infor-
mation and should be preserved in statistical signal extraction. We investigate
rules for detecting level shifts that are resistant to outliers and which work with
only a short time delay. The properties of robustified versions of the t-test for
two independent samples and its non-parametric alternatives are elaborated
under different types of noise. Trimmed t-tests, median comparisons, robusti-
fied rank and ANOVA tests based on robust scale estimators are compared.
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1 Introduction

An important task in statistical signal extraction is the detection of abrupt
shifts (also called step changes, edges or jumps). This task is complicated by the
presence of outliers, since these can easily be confused with shifts, particularly
in an online analysis, when only a short time delay is permitted. An abundance
of rules for level-shift detection has been suggested in the literature, but many
rules are unable to distinguish between outliers and shifts. This distinction is
the goal here.

We use a components model for the observed time series (y;):
Ye = e +ur + 04, t € Z. (1)

The level u; of the time series (the underlying signal) is assumed to vary
smoothly over time with a few abrupt shifts. The noise is assumed to con-
sist of an ordinary random disturbance u;, which is distributed symmetrically
with a zero mean and a variance o7 (which may be time-varying), together
with an intermittent outlier component v;, which is of an impulsive (spiky)
nature. The spiky noise is zero most of the time, but, occasionally, it takes

large absolute values.



We investigate rules for shift detection which are straightforward when using
a moving-window approach for signal extraction. Moving averages approximate
1, efficiently in case where u; is a Gaussian noise, but they are sensitive to
impulsive noise and they blur level shifts. Standard median filters (also called
running medians) perform better in these respects (Tukey, 1977, Nieminem,
Neuvo and Mitra, 1989). They approximate the signal y; in the centre of a time
window (Yi—k, - - -, Yrr) of width n = 2k 4 1 by the median of the observations,

StM(yt) = lat = med(yt—ka s 7?Jt+k)7 t € Z.

As a compromise between the mean and the median, we can calculate an a-
trimmed mean, which is the mean of the remaining observations after deleting
the largest and the smallest [an| values in the window, where |an| denotes
the integer part of an. In general, every location estimator is a candidate for
an approximation of the level at the centre of the window. Rules for level-shift
detection arise from the many filtering procedures based on moving windows.

In this paper, we compare new and existing rules for automatic level-shift
detection, which are based on moving-window operations and which do not
need a global parametric model of the data. Robustified exponentially-weighted
moving average (EWMA, Cypra, 1992) or CUSUM charts (Zeileis, 2005) are not
considered here, since they are more difficult to handle than moving-window
techniques if we require the procedure to resist a predetermined number of
outliers (Imhoff et al., 2002). Also, they react to other changes such as drifts,
whereas we aim at a procedure that indicates only level shifts.

The paper is organised as follows. Section 2 presents rules for robust shift
detection in time series. Section 3 compares the rules analytically and via
simulations. Section 4 presents an application, after which we summarise the

results.

2 Shift detection

We assume that an ideal shift of height o € R occurs between time points ¢

and t + 1, and that it may be accompanied by a simultaneous change of the



variance of the ordinary noise component u;:
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To detect a positive (negative) shift immediately after time ¢, we test Hy : 6 = 0
versus H," : 0 >0 (H; : 0 < 0). The variance of the noise may be unaffected,
with kK = 1, or it may change, with x > 0 taking some arbitrary positive value.
In what follows, some detection schemes are presented for testing H, versus
H{ and / or H; . These schemes assume that the noise constitutes a serially
independent sequence, but the simulations reported below show that moderate

autocorrelations do not have large effects.

2.1 Gradient detection schemes

Gradient schemes for detecting whether a level shift has occurred immediately
after time ¢t compare two level estimates ¢, and 7, calculated from windows
(Ye—nsts---5y) and (Yea1, ..., Yrrr) of widths h and k, which may differ. In
general, a shift is detected if
|91+ A—?Jt—| —
T

where 7; is a standardisation specified below and ¢ is an appropriate threshold.

The ordinary two-sample ¢-test is obtained by setting 7, and ¢, equal to
the averages 7, and 7,_ of the data in the two windows (Stein and Fowlow,
1985) and by assuming that the variance o7, ; is constant within {t —h +1,...,t + k}.
Thus
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where n = h+ k is the total number of observations in the two windows. If the
noise is assumed to be Gaussian, then the threshold value ¢ is a quantile of the

t-distribution with n — 2 degrees of freedom.



As alternatives to the ordinary means, we can use the a-trimmed means
Ui = @gi) and g, = @1@
small loss of efficiency in the case of Gaussian noise (Yuen, 1974, Bovik and
Munson, 1986, Hou and Koh, 2003, Fried, 2007). A trimmed t-test can be

constructed by standardising |y§i’ — 7\%| using the a-winsorised variance of
the residuals y;—p41 — ?Ei)a ca Y= ?Ei)a Y1 — @Ei)a s Yk — @gi) This is the

empirical variance of a modified set of residuals obtained by replacing the |an |

. This enhances the robustness at the cost of a

largest residuals by the next largest residual and by replacing the |an| smallest
residuals by the next smallest one. A winsorised variance is a robust estimator
in the presence of outliers.

The median, which is the 50%-trimmed mean, has been suggested for edge
detection in images with heavy-tailed noise (Bovik and Munson, 1986, Hwang
and Haddad, 1994). In image analysis, the noise variance is often regarded
as globally constant, in which case very good estimates of it are available.
However, we are concerned with time series and we wish to make minimal
assumptions. If the noise distribution possesses a density f with a zero median,
then the median of k£ independent observations is approximated, with increasing
accuracy as k — 0o, by a normal distribution with variance 1/(4kf2(0)) (e.g.

2 and

Stigler, 1973). Assuming that the noise is Gaussian with variances of o
ko? in the left and the right-hand windows, respectively, then the difference
of the corresponding medians ¢, and ¢;, has a zero mean and an asymptotic
variance of 0.5m(0?/h + rko?/k) under the null hypothesis of no shift. The

following test statistics are asymptotically standard normal under the null:

gtJr B gtf
(4)

JOsme2(1/h+ 1/k))

where we assume that x = 1, i.e. identical variances in both windows, and

gt-ﬁ- - gt— (5)
\05m(67 b+ 67, /k)

where we assume that x # 1 and where 67, 67 and 67, are consistent robust

variance estimators obtained from the whole window, and from the left and the
right windows, respectively.
The a-winsorised variance can be applied for standardising a-trimmed means

only if « is substantially less than 50%, but it is not appropriate for the median.

4



Instead, we can use a highly robust scale estimator such as the median absolute
deviation about the median (MAD). Assuming a constant noise variance o2,

we can combine the differences obtained in both windows to form

~ (M ~ ~ ~ ~
M = D med(|ysppr =G|, - [y = Tee | [Yesr — G| - - [grsk — Ges])- (6)
(M)

Here, ¢,/ is a finite-sample correction factor, which becomes 1.4826 for very
large n. Otherwise, if the noise variances differ, we can use two MADs calcu-

lated from the left and the right windows,

(M M - -
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Some alternatives to the MAD have been introduced. Scale estimators mea-
suring the variability via the differences between the observations do not need
an estimator of central location. This can be an advantage, since location esti-
mators become biased in the vicinity of a level shift. The estimators described
in the remainder of this section possess an asymptotic explosion breakdown
point of 50% like the MAD, meaning that the increase of the estimate caused
by replacing less than half of the data in a given sample by arbitrary values is
always bounded.

The LSH (length of the shortest half) estimator of variability (Griibel, 1988,

Rousseeuw and Leroy, 1988) is represented, in our notation, by

~(L .

U,g ) = cﬁLL)mm(z(n) — Z(n,m), Cey Z(erl) — 2(1)) . (8)
Here, m = |(n + 1)/2], and the z(; are the differences y;—p41 — G\, Y —
Uiy Yta1 — Yty - -, Ysrk — Ypo ordered according to their size. Again, AP is a

correction factor, designed to achieve unbiasedness in a Gaussian sample of size
n.
The Sn statistic of Rousseeuw and Croux (1993) is another means of estimating

the variability, which is represented, in our notation, by

S) _ (8

&! Dmedimed,z| 2 — 2] . (9)

Finally, we can use the Yn statistic, also suggested by Rousseeuw and Croux

(1993). On the assumption of a constant variance, it is calculated from the full



correction factor
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Figure 1: Finite-sample correction factors (left) and efficiencies (right) of the
MAD (solid line), LSH (dashed), Sn (dash-dot) and Qn (dotted) for different

sample sizes.

window via the formula

617 = 9|z — 2. 1 <0 <G < n)(uzy) (10)
2

using the (L"/ ;Hl)—th smallest of the (%) absolute pairwise differences |z; — 2],
i.e. approximately the first quartile of all pairwise differences. Of course, we
can also estimate the variability in the two windows separately. For more
information on these estimators see Gather and Fried (2003).

Fig. 1 shows the finite-sample correction factors for the different scale
estimators as a function of the underlying sample size as well as the finite-
sample efficiencies relatively to the empirical standard deviation as measured

by the percentage of the mean square error (MSE) under Gaussian noise.

2.2 Tests based on estimates of the local variability

Comparison of the levels of two time windows can be treated within the frame-
work of analysis of variance (ANOVA). The ANOVA F-test compares the vari-
ability between the groups to that within the groups. In the case of two groups,

6



it is just the square of the ordinary two-sample t-test presented in Section 2.1,

F— (n —2)["(7,_ — yt>2 + k@ﬁ - yt>2] _ (n— 2)(”@? - h‘A7t27 - k&tQJr)
ho} + koy, ho; + koy,

(11)
where 67, 67 and 67, are the empirical variances calculated from the whole
window and from the left and the right-hand windows, respectively, with de-
nominators n, h and k.

The empirical variance in the previous formulae can be replaced by any of
the robust scale estimators MAD, LSH, Sn and Qn introduced in Section 2.1.
By these means, we expect to achieve more robust ANOVA-type rules, for shift
detection, in particular, and for the comparison of several groups in general.
Appropriate critical values for any sample size can be derived by simulation,

assuming the noise to possess a known distribution, such as the Gaussian.

2.3 Robustified rank tests

Another approach to shift detection is via tests based on linear rank statistics.
Prominent amongst these are the Wilcoxon test and the median test (Bovik,
Huang and Munson, 1986). Let Yi1) < ... < Yyn) denote the ordered observa-
tions in the full window located at time ¢ and let 7, 1_p, ..., 7. be the resulting
ranks of ys_py1,..., Yrsk, Which are the positions of these elements in the or-

dered sequence. For shift detection, a linear rank statistic of the most recent k&

observations,
k
Lt = Z&(Tt’j) s (12)
j=1
can be used, where a(1),...,a(n) are given scores. Under Hy the distribution

of L; is the same for all symmetric noise distributions, i.e. it is distribution-free.
In case of bindings, we assign the average rank to identical measurements.

The Wilcoxon test uses the scores a(i) = i, i« = 1,...,n, so that L, =
ij:l ;. For the median test, we set a(i) = 1,7 = |n/2]+1,...,n, and a(i) =
0 otherwise, so that L; corresponds to the number of values in yii1, ..., Yk
larger than the overall median g, from both windows; and it takes values be-
tween zero and k.

Fried and Gather (2007) exploit the suggestion of Bovik et al. (1986) to

apply a linear rank test after subtraction of a threshold 4 from Yl - - -5 Ytk

7



to detect only large shifts. Since the chosen ¢ should be large compared to the
noise standard deviation oy, Fried and Gather choose § = 0, as a fixed multiple
do,_ of a robust estimate of g;, thereby allowing for a time-varying variability.
To prevent a few outliers from unduly influencing the test decision, the critical
values for L; are chosen as large as possible under the restriction that we require
a shift to be detected if the largest or smallest | (k + 1)/2] observations are in
the right-hand window. This makes it possible to identify a level shift even
in the presence of |(k — 1)/2] large outliers. Choosing h = k = 5 e.g. allows
to distinguish pairs of outliers from level shifts when using the critical values
1424849410 = 30 and 3 for the Wilcoxon and the median test, respectively,
obtained by summing the |(k + 1)/2] largest and the k — [(k + 1)/2] smallest
scores. A small false detection rate of e.g. 0.1% in case of Gaussian noise
and a constant level can be achieved by preliminary subtraction or addition of
a sufficiently large multiple o6 = déy_ from Y1, - - - Yerr When testing for an
upward or downward shift, respectively. Suitable values of d are determined in
simulations.

Fried and Gather (2006) find that, in the presence of outliers the ordinary
linear rank tests are outperformed by the robustified versions. They also find
that Wilcoxon scores have higher power than median scores. From the robust
scale estimators introduced in Section 2.1, the Sn and the Qn statistics yield
the highest powers in case of small and large window widths, respectively. The
tests employing the Qn are better at distinguishing between outlier patches

and shifts than tests employing one of the other robust scale estimators.

3 Comparisons

In the following section, we compare the basic attributes of the detection rules
described above. After employing analytic means to investigate the resistances
to outliers, a simulation study is performed for comparing the performance of
the statistics in small samples. The appropriate choice of the widths h and k,
and therefore of n = h + k, depends on the circumstances in which a filtering
procedure is applied. To mitigate the misleading effects of patches of outliers
and of outliers that occur in the vicinity of a level shift, we should choose large

values for h and k. However, upper limits are imposed on the length of the



windows by the limitation of periods in which the level u; can be regarded as
virtually constant. Also, the effect of increasing the value of k is to increase
delay between the occurrence of a level shift and its detection. We concentrate
on circumstances where the windows are small and of equal lengths, h = k.
This corresponds to the assumption that pu, is virtually constant only in short
windows. In the simulations, the perpetual noise u; is Gaussian N(0, 1) if not

stated otherwise.

3.1 Test resistances

Median filters are popular on account of their robustness in circumstances
where a large proportion of the sample is affected by outliers. Breakdown
points are analytic measures of the robustness of an estimator. The finite-
sample replacement breakdown point of the median is 0.5 asymptotically, which
means that modifying less than half of the data cannot drive the estimate
beyond all limits.

Resistances are a related concept for measuring the robustness of tests
(Ylvisaker, 1977). Let y = (y1,...,yn) be the vector of all observations in-
cluded in the test, and let ¢ be the decision function of the test with ¢(y) = 1
and ¢(y) = 0 meaning rejection and non-rejection of the null hypothesis, re-
spectively. The idea of the resistance to rejection eg is to measure the minimal
fraction of contaminated observations which can force the test to reject the null
hypothesis regardless of the other, 'clean’ data. Denote by U,,(y) a neighbour-
hood of the (clean) data vector y consisting of all contaminated data vectors
z = (21,...,2,) With z; # y; for at most 0 < m < n positions. The resistances
to rejection and to acceptance can be defined to be, respectively,

1
eg = —min{m >0: inf sup o¢(z) =1},
po= mindm 202 nt s () = 1)

1
€4 = —min{m >0: sup inf ¢(z)=0}.
n yeRn ZEUm(Y)
The interpretation of the resistance to acceptance €, is analogous to that of
€r: irrespective of what the clean data y are, we can always find a way to
avoid rejection of the null hypothesis by replacing €g - n of the elements of y.

Note that we differ from Ylvisaker in allowing changes to occur at arbitrary



positions, since this is more appropriate to the structured data considered here,
whereas it makes no difference for unstructured data.

It is appropriate to consider resistances, since outliers should neither prevent
detection nor cause false detection of level shifts. The resistance to acceptance
of the ordinary two-sample t-test is 1/n. Irrespective of the data, changing one
observation can always reduce the difference of the averages to zero; that is
to say, within the context of a t-test, a single outlier can mask a shift of any
size. The resistance to rejection of the two-sample t-test is more difficult to
calculate. To increase the squared test statistic by an arbitrary amount, so that
the p-value goes to zero and thus becomes smaller than any significance level,
requires the modification of at least min{h, k} out of the total of n observations.
However, the effect of fewer modifications can be large enough to make the test
statistic exceed certain significance levels.

We assume k& < h from now on. Two-sample t-tests based on a-trimmed
means and a-winsorized variances resist outliers better than ordinary two-
sample t-tests. The resistance to acceptance becomes (£41)/n with ¢ = k|ak].
If the observations in each window are close to each other in value and differ
largely from those in the other window, then at least ¢ observations in the
right-hand window need to be moved to change the value of the test statistic,
which can be reduced to zero. Trimming can reduce the resistance to rejection,
since modifying k — ¢ observations in the right-hand window can always drive
the p-value to zero.

The resistance to acceptance of the robustified rank tests is at least min{| (k+
1)/2], he* }/n if we tune the tests in the manner described above (Fried and
Gather, 2006). Here, € is the explosion breakdown point of the scale estimator
o_ derived from the left-hand window, with explosion meaning breakdown to
infinity. The resistance to rejection is at least |(k+1)/2]/n.

The resistance to acceptance of a median comparison is at least min{| (k +
1)/2]/n, e}, where €* is the explosion breakdown point of the scale estimator.
The explanation is the same as for the two-sample t-tests based on a-trimmed
means, taking into account that a second possible cause of acceptance is that
the scale estimate used for standardization becomes very large. To drive the
p-value to zero, we need to modify at least min{|(k+1)/2], ne,} of the values in

both windows. Here, ¢, is the implosion breakdown point of the scale estimator

10



for data with all values being different. Whereas explosion means breakdown to
infinity, implosion means breakdown to zero. This occurs if the scale estimate
for a sample can be made arbitrarily small (i.e. close to zero) by replacing some
of the observations. If none of the observations is repeated, then we need to
modify at least [(k+1)/2]/n values in the right-hand window to make the test
statistic arbitrarily large, or to reduce the scale estimate to zero. For the median
comparisons based on a joint scale estimate obtained from both windows, both
resistances equal |(k+1)/2|/n if we use a highly robust scale estimator. When
estimating the variability in the windows separately, however, the resistance to
acceptance can be determined by the explosion breakdown point of the scale
estimator as it is ke* /n (only one of the two estimates needs to become too
large).

Driving the p-value of ANOVA tests to unity needs a fraction of min{ke? /n, €.}
modifications. For the p-value to go to zero the fraction is at least min{(he._ +
ke.y)/n, e}, where e, and €, is the implosion breakdown point of the scale
estimator from the left and the right-hand windows, respectively.

The number of outliers which a test for shift detection can resist without
becoming unreliable depends not only on the window widths A and k, but
also on the significance level. Here, we tune all tests to obtain a significance
level of 0.1% under Gaussian noise, so that we expect to detect a level shift
incorrectly only once in 1000 observations. We set both window widths to the
same value h = k for simplicity. This also provides some protection against

unequal variances in the two windows (see Staudte and Sheather, 1990).

3.2 Power under different types of noise

Now we compare the power of the tests for different heights of the shift 4. 10000
windows were generated, in each case, for 6 = 0,0.5,1,...,10, and the power
is derived as the percentage of cases in which a shift is detected. We present
the results for the ordinary and for the 30%-trimmed two-sample t-test, the
median comparison with joint scale estimation by the MAD or Qn according
to (4), the median comparison with separate scale estimation by Sn or Qn (5),
the ANOVA test employing Sn or Qn (11), and the robustified Wilcoxon tests
(12).

11



Fig. 2 shows the results for h = £ = 9 and for a standard Gaussian
white noise. As was expected, the ordinary two-sample t-test is the most
powerful method of shift detection followed by the median comparisons with
joint scale estimators and then by those with separate scales. All of these
tests are more powerful than the 30%-trimmed t-test. The ANOVA and the
robustified Wilcoxon tests are less powerful. The ANOVA based on Qn misses
even huge shifts, because Qn is not sensitive to shifts.

Identical measurements due to rounding, for example, pose a problem for
robust scale estimators. A simple remedy is ‘wobbling’ by a preliminary ad-
dition of random noise with the same magnitude as the rounding error. To
analyse such effects, we generated shifts of different heights within unit Gaus-
sian noise, as before, and we rounded all observations to the nearest 0.5. In
the absence of a shift, more than 95% of the probability is concentrated on the
nine values —2,—1.5,...,1.5,2 then. We added uniform U(—0.25,0.25) noise
to all values to recover the full range. The results were almost identical to those
presented above.

Fig. 2 compares the power of the rules under noise generated from a t-
distribution with three degrees of freedom, which possesses heavier tails than
the Gaussian distribution. All procedures loose some power compared to the
Gaussian case. The ordering of the rules remains almost the same except for
the ordinary t-test, which looses its superiority and is outperformed by the
median comparison with joint MAD. The median tests with separate Sn and
with joint Qn are very close to each other and, again, they outperform the
30%-trimmed t-test.

We performed the same experiments as before for other window widths. As
expected, the power of all the methods increases with increasing windows, while
the differences between the robust approaches are less that they would be with
shorter windows. Generally, the orderings of the methods with respect to their
power were very similar to those reported before both for Gaussian and for t3
noise. Therefore, we report only the differences. For h = k = 7, the power of
the 30%-trimmed t-test dropped down below that of the robustified Wilcoxon
test with Sn. For widths larger than h = k = 9, the robustified Wilcoxon tests

gained power relatively to the other methods.
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Figure 2: Power for different shift heights, Gaussian (left) and t3-noise (right):
t-test (dotted), 30%-trimmed t-test (bold dotted), median comparison with
joint MAD (solid) or Qn (bold solid), with separate Sn (dashed) or Qn (bold
dashed), ANOVA on Sn (dash-dot) or Qn (bold dash-dot), Wilcoxon with Sn
(wide-dashed) or Qn (bold wide-dashed).

3.3 The case of a single outlier

Next we check the sensitivity of the methods in respect of an outlier of various
sizes s = 1,2,...,20 added to one of the observations.

Fig. 3 shows the error probability of a Type I error caused by an outlier
in the right-hand window for h = k£ = 9, estimated from the fraction of cases
in which a shift was detected within 50000 simulation runs. The size of the
ordinary t-test decays to zero since the test statistic tends to 1 as the outlier
size goes to infinity. The median comparisons with separate scale estimates
or with joint Qn show a slightly decreasing size, while the ANOVA tests, the
30%-trimmed t-test and the median comparison with joint MAD are almost
unaffected. In case of the robustified Wilcoxon tests, we observe a small increase
of the error rate, while their size seems to be slightly reduced when the outlier is
in the left-hand window (not shown here; note the asymmetry of the robustified
Wilcoxon tests due to estimating the scale from the left-hand window and

subtracting a multiple of it from the right-hand observations).
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test size [%)]

We also investigated the power in case of a positive shift of height § = 8¢
and a single positive outlier of size s = 1,...,20 in the left-hand window,
or a negative outlier in the right-hand window. Fig. 3 shows the powers
obtained from 10000 simulations runs each. The power of the two-sample t-
test approaches zero as the outlier size increases, while the 30%-trimmed t-test
and the median comparisons are not affected at all. ANOVA tests are affected
if the outlier is of the same size as the shift. Robustified Wilcoxon tests are
unaffected if the outlier is in the right-hand window, and slightly affected if it
is in the left-hand window, with the effect remaining constant as the outlier
size exceeds 40.

The same results were obtained for windows of width six or seven, while,
for h = k = 15, only the ordinary two-sample t-test was affected, with both its

size and its power going to zero with increasing outlier size.
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Figure 3: Test size (left) and power for a shift of size 8¢ (right) in case of
a single outlier of increasing size in the right window: t-test (dotted), 30%-
trimmed t-test (bold dotted), median comparison with joint MAD (solid) or
Qn (bold solid), with separate Sn (dashed) or Qn (bold dashed), ANOVA with
Sn (dash-dot) or Qn (bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn
(bold wide-dashed).
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3.4 The case of multiple outliers

For an examination of the rules in case of multiple outliers, we replaced an
increasing number of observations in one window by outliers of the same size s.
Fig. 4 shows the percentage cases in which a shift was detected within 10000
simulations runs each in case of s = 8 and h = k£ = 9. We found analogous
results for the widths h =k =7 and h = k = 15.

The t-tests only detect a shift with high probability if at least seven out
of nine observations are shifted. This is not desirable since a shift is likely to
be missed, even when two thirds of the observations deviate from the previous
level, a situation pointing more at a shift in combination with a few outliers
than at a constant signal overlaid by many outliers. Similar remarks apply to
ANOVA tests. Median comparisons with joint scale estimation show a consis-
tent behaviour, since they indicate a shift if more than half of the observations
in one window deviate from those in the other window. The median comparison
with separate Qn also performs consistently, while six deviating observations
are needed when using a separate Sn. All robustified Wilcoxon tests are con-
sistent if the outliers are in the right-hand window, but only the one with Qn
performs rather consistently if the outliers are in the left-hand window. We
obtained similar findings for the size s = 12, with the robustified Wilcoxon
test based on Qn giving much better results. Note that the problems of the
t-tests and the median comparisons with separate scales were expected given

the resistances reported in Section 3.1.

3.5 The case of increasing variance

A phenomenon which should not be confused with a level shift is an increase of
the variability. Therefore, we analyse the test sizes when the standard deviation
01+; in the right hand window becomes 100%, 120%, . ..,400% of that in the
left hand window. A decrease of 0,1 ; is less interesting, since it reduces the
test size.

Fig. 5 depicts the results for h = k = 9. All methods indicate a shift more

often than in the homoskedastic case. The size of the median comparison with
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Figure 4: Detection rate in case of an increasing number of outliers of size
80 in the left or the right window: t-test (dotted), 30%-trimmed t-test (bold
dotted), median comparison with joint MAD (solid) or Qu (bold solid), with
separate Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot) or Qn
(bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-dashed).
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Figure 5: Test size (left) and power for a shift of size 60 (right) in case of an
increase of o to % in the right window: t-test (dotted), 30%-trimmed t-test
(bold dotted), median comparison with joint MAD (solid) or Qn (bold solid),
with separate Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot)
or Qn (bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-
dashed).

joint MAD goes up to 10%, while for Qn it stays below 2%. As expected,
separate scale estimation protects against different variabilities: the increase is
only up to about 0.4%, as it is in the case of the ordinary t-test. For ANOVA
tests it is even smaller. For robustified Wilcoxon tests we observe an increase to
over 2%, which is the larger the more powerful the rule is according to Section
3.2.

We have also investigated the power in case of a shift of size 60 and a simul-
taneous increase of o, ; to 100%, 120%, 140%, . .., 400%, see also Fig. 5. Those
methods which almost keep their size loose a lot of power, namely the ordinary
two-sample t-test, the median comparisons with separate scale estimates and
particularly the ANOVA tests. Median comparisons with joint scales and ro-
bustified Wilcoxon tests keep their power but not their size, as we have seen

before. Almost identical results were obtained for other window widths.
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3.6 The case of autocorrelations

In many applications measurements are autocorrelated. Fried and Gather
(2005) find it better not to modify median filters in the presence of positive
autocorrelations, so we continue to use the standard filtering procedures. To
investigate the performance of the detection rules in these circumstances, the
observational noise was generated from an AR(1) model, u; = ¢u;_1 +€;, where
the innovations ¢; constitute a Gaussian white-noise sequence with mean zero
and variance o = 1. In that case, the noise variance is 02 = /(1 — ¢?) where
¢ =—0.9,...,0.9 is the lag-one correlation.

Fig. 6 shows the results for h = k = 9. Generally, the increase of the test
size seems to be directly related to the power under Gaussian noise, which is
reported in Section 3.2. More powerful methods show a larger increase of the
size in the case of positive correlations, particularly the t-tests and the median
comparisons, while robustified Wilcoxon tests are least affected. The test sizes
of the robustified Wilcoxon and the median comparisons using a separate scale
remain small as ¢ increases until ¢ = 0.5 is reached.

An investigation of the power in the case of a shift of height 60, and
for different values of ¢ shows that there is a substantial loss of power under
negative correlations, whereas the loss is small for positive ¢. The ordering of
the methods differs little from the ordering in the case of independent errors,
¢ = 0. Amongst the median comparisons with separate scales, Qn has the
highest power for negative ¢, and the power of the Wilcoxon test with Qn
increases in case of large negative ¢. When investigating the powers in case
of a shift of increasing height for fixed positive ¢ = 0.6, we found the same
ordering of the methods as in the case of independent disturbances. Again, we

obtained very similar results for other window widths.

4 Application

Finally, we have analysed a time series of length N = 500, see Fig. 7. The
underlying signal p; resembles the blocks function (Donoho and Johnstone,

1994), which is a benchmark example for edge-preserving smoothing. The
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Figure 6: Test size (left) and power for a shift of size 60, in case of autocor-
relations of different size: t-test (dotted), 30%-trimmed t-test (bold dotted),
median comparison with joint MAD (solid) or Qn (bold solid), with separate
Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot) or Qn (bold
dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-dashed).

signal was overlaid by independent Gaussian noise with a time-varying, signal-
dependent standard deviation of o, = 1+ |u;|/20. We replaced 40 observations
by outliers, adding the same constant s = 12 to the observations. Of these, ten
were isolated outliers. Another ten outliers came in five pairs, a further twelve
came in four triplets, and the remaining eight came in two clusters of four.

A running median with window width n = 19 was used for filtering. For
detection of a shift at a time point ¢ € N with a small delay and for the
avoidance of unnecessary alarms we compared the subwindows ;_g,...,y;_1
and Y41, ...,Yr9. The insertion of a gap between the windows improves the
detection of shifts consisting of subsequent steps. Note that we need windows
of widths of at least nine points to resist patches of four outliers.

Detection of a shift allows us to take an appropriate action. We apply the
method of Fried and Gather (2007) for estimating the time of the level shift: if
a shift is detected at time point ¢ but not at ¢ — 1, the likely time of the shift is
immediately before the first ¢ + j, j > 0, for which ¥, ; is closer to the median
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[y Of Ypy1, ..., Y9 than to the median f;— of y;o,...,y;—1. Instead of the
median of the full window, we then use the median of the observations in the
left window as filter output until time point ¢t + 5 — 1. From ¢t 4+ j on, we use
the median of the right window, and return to the median of the full window
at time t 4+ j + 5.

Fig. 7 also shows various filter outputs. The ordinary running median
smoothes the signal edges to some extent. The filter applying the trimmed t-
test shows some additional spikes e.g. at time t=112, and it also smoothes the
shifts, since these are often detected quite late. Wilcoxon and most ANOVA
tests (not shown here) perform better, but they do not overcome the problems
completely. Only the median comparison with joint MAD detects the shift at
t = 380 in a timely fashion. Overall, the median comparisons with joint scale

estimate perform best, with the MAD-based version confirming its good power.

5 Conclusions

We have investigated rules for detecting shifts in the presence of outliers. From
the results of our experiments we have derived some recommendations on how
to proceed when choosing windows as short as those treated here: We have
shown that the new ANOVA-type procedures are outperformed by suitably
designed median comparisons. In case of homoskedastic noise, the median
comparison with a joint MAD scale is recommended if high robustness and
detection power are crucial. If the variability varies over time, then joint Qn
or separate Sn estimation might be preferred. Unless the windows are very
short, we prefer Qn over Sn since its increasing efficiency leads to higher power.
Further experiments show that the powers of robustified Wilcoxon tests increase
strongly with the width of the window used for the scale estimation, becoming
comparable to those of the median comparisons.

These results have been derived for white noise. They remain valid in case
of small to moderate autocorrelations. High positive autocorrelations lead to
monotonic patterns, which can be confused with level shifts. The corresponding
increase of the size of the detection rules can be reduced by estimating the

autocorrelations robustly and adapting the thresholds for detection.
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Figure 7: Time series generated from the blocks function (top left) and different
time periods with extracted signals: running median (bold dotted) and running
median with trimmed t-test (dotted), median comparison with joint Qn (bold
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We also tried other rules that have been suggested in the literature. t-tests
based on ranks (Conover and Iman, 1981) turned out to be almost as powerful
as ordinary t-tests, whereas the 20%-trimmed t-test was only slightly worse
in this respect. However, the 20%-trimmed t-test protects at most against
a single outlier in case of the window widths considered here, and t-test on
ranks had little robustness against outliers at all. Among tests based on local
variabilities such as those based on quasi-ranges (Restrepo and Bovik, 1988,
Sun and Venetsanopoulos, 1988, Kundu and Wu, 1989, Lee and Tantaratana,
1990, Sun, Gabbouj and Neuvo, 1994), only the empirical variance gave good
power, but for the price of a strong increase of the test size already in case of a
single outlier or a change of the variance. Similar problems were observed with
linear hybrid edge detectors (Neuvo, Heinonen and Defee, 1987).

The tests investigated here can be combined with robust regression meth-
ods applied recursively to the incoming data. This allows to robustify recursive
least-squares techniques for studying the stability of regression relationships
over time (Brown, Durbin and Evans, 1975). First experiments show the suit-

ability of Wilcoxon-type tests for the detection of abrupt shifts within trends.
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