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Abstract

In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-
normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale
regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an
alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and
a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring
percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII
regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used
to check the assumptions in the model. Finally, we analyze a real data set under log-Burr XII regression models.
c© 2008 Published by Elsevier B.V.

1. Introduction

In this paper, we consider a data set provided by Instituto de Saúde Coletiva — Universidade Federal da Bahia.
This data set was designed to evaluate the effect of vitamin A supplementation on recurrent diarrheal episodes in small
children (see Barreto et al. (1994)). Censoring times are random, and we aimed at modeling the treatment effect in
time until the first occurrence of diarrheal episodes, this can be done by means of an appropriate regression model with
censored data. By analyzing the total-time-on-test (TTT) curve (Aarset, 1987) of the survival times for the previously
described data, it was observed that the failure rate function had a unimodal shape. It is known that the log-normal
distribution is a popular model for survival time when the failure rate function is unimodal (see, for example, Nelson
(1982)), and the log-logistic distribution is often used as an alternative to the former. Another possibility would be the
use of the Burr XII distribution (see, for example, Zimmer et al. (1998) instead of usual distributions, since one of its
advantages is that its survival function can be written in closed form. Additionally, the log-logistic distribution is a
special case of the Burr XII distribution.
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Regression models can be proposed in different forms in survival analysis. Among them, the location-scale
regression model (Lawless, 2003) is distinguished and it is frequently used in clinical trials. In this paper, we propose
a location-scale regression model using the Burr XII distribution, denoted by a log-Burr XII regression model,
for survival times analysis as a feasible alternative to the log-logistic regression model. Considering that the log-
logistic and log-Burr regression models are embedded models, the likelihood-ratio test, for instance, can be used to
discriminate such models.

We considered a classic analysis for the log-Burr regression model. The inferential part was carried out using the
asymptotic distribution of the maximum likelihood estimators, which, in situations when the sample is small, may
present difficult results to be justified. As an alternative to classic analysis we explored the use of Markov Chain
Monte Carlo (MCMC) techniques to develop a Bayesian inference and the jackknife estimator for the log-Burr XII
regression model. In both cases, Bayesian and jackknife, it is not necessary to use the asymptotic distribution of the
maximum likelihood estimators.

Studies were conducted via Monte Carlo simulation in order to evaluate the performance of the log-Burr XII and
log-logistic regression models by means of variance, mean squared error and the size and power of the likelihood-ratio
test for both models.

After modeling, it is important to check assumptions in the model as well as to conduct a robustness study in
order to detect influential or extreme observations that can cause distortions in the results of the analysis. Numerous
approaches have been proposed in the literature to detect influential or outlying observations. An efficient way to
detect influential observations was proposed by Cook (1986). He suggested that more confidence can be put in a
model which is relatively stable under small modifications. The best known perturbation schemes are based on case-
deletion introduced by Cook (1977), in which the effect of completely removing cases from the analysis is studied.
This reasoning will form the basis for our global influence introduced in Section 4.1, and in doing so, it will be possible
to determine which subjects might be influential for the analysis (see, for example, Cook and Weisberg (1982) and
Xie and Wei (2007)).

On the other hand, when using case deletion, all information from a single subject is deleted at once and, therefore,
it is hard to tell whether that subject has any influence on a specific aspect of the model. A solution for the earlier
problem can be found in a quite different paradigm, being a local influence approach where one again investigates
how the results of an analysis are changed under small perturbations in the model, and where these perturbations can
be specific interpretations. Also, some authors have investigated the assessment of local influence in survival analysis
models: for instance, Pettit and Bin Daud (1989) investigated local influence in proportional hazard regression models;
Escobar and Meeker (1992) adapted local influence methods to regression analysis with censoring; Ortega et al.
(2003) considered the problem of assessing local influence in generalized log-gamma regression models with censored
observations; Ortega et al. (2006) derived curvature calculations under various perturbation schemes in exponentiated-
Weibull regression models with censored data, and more recently, Leiva-Sanchez et al. (2006) investigated local
influence in log-Birnbaum–Saunders regression models with censored data. We developed a similar methodology to
detect influential subjects in log-Burr XII regression models with censored data. Finally, the generalized leverage
methodology developed by Wei et al. (1998) was applied. Additionally, the examination of residuals was used to
check assumptions in the model.

In Section 2, this article considers a brief study on the Burr XII distribution besides the inferential part of this
model. In Section 3, we suggest a log-Burr XII regression model of location-scale form, in addition to the maximum
likelihood estimators, Bayesian inference, the jackknife estimator and the results from various simulation studies
are displayed and commented. In the Section 4, we use several diagnostics measures considering three perturbation
schemes, case-deletion and the generalized leverage in log-Burr XII regression models with censored observations.
We present residuals from a fitted model using the Martingale residual proposed by Barlow and Prentice (1988) in the
Section 5. Finally, in Section 6, the real data set is analyzed and the conclusion appears in Section 7.

2. The Burr XII distribution

The Burr XII distribution used in Zimmer et al. (1998) with parameters s, c and k considers that life time T has a
density function given by

f (t; s, k, c) = ck

(
1 +

(
t

s

)c)(−k−1) tc−1

sc , t > 0, (1)



3822 G.O. Silva et al. / Computational Statistics and Data Analysis 52 (2008) 3820–3842

where k > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. The survival function corresponding to
random variable T with Burr XII density is given by

S(t; s, k, c) = P(T ≥ t) =

(
1 +

(
t

s

)c)−k

.

The corresponding failure rate function has the following form

h(t; s, k, c) =
ck
( t

s

)c−1

s
(
1 +

( t
s

)c) .
2.1. Characterizing the failure rate function

According to Zimmer et al. (1998), the failure rate function of the Burr XII distribution can be decreased when
c ≤ 1 and when c > 2 the failure rate function reaches a maximum and the decreases, where the range of values
in which the failure rate function is increasing can be manipulated using s. When c values are between 1 and 2, the
failure rate function can be made to be essentially constant over much of the range of the distribution, which depends
on s values. To study the shape of the failure rate function, we have found its derivative, which can be written as

h′(t; c, k, s) =
cktc−2

sc
(
1 +

( t
s

)c)2
[

c − 1 −

(
t

s

)c]
.

In order to better study this function, one can note that two situations can be considered:

• c ≤ 1
For any t > 0, h′(t) < 0 and, therefore, h(t) is a decreasing function.

• c > 1
When h′(t∗) = 0, we have c − 1 −

(
t∗
s

)c
= 0, hence the critic point is given by t∗ = s(c − 1)

1
c . When t < t∗,

h′(t) > 0, the failure rate function is increasing and when t > t∗, h′(t) < 0, the failure rate function is decreasing.
Hence, t∗ is an inflexion point and the failure rate function has a unimodal shape property. Besides, h(t) → 0 for
t → 0 or t → ∞.

Fig. 1 shows the plots of the failure rate function for some different parameter combinations.
From Fig. 1, it can be seen that the failure rate function is a decreasing function when c ≤ 1 and h(t) is a unimodal-

shaped function and when c > 1.

2.2. Moments for the failure time

The qth moment for the failure time is given by:

E(T q) = sqk B
[q

c
+ 1, k −

q

c

]
, if ck > q,

where B(a, b) is the complete beta function (see Lawless (2003)).

2.3. Relation to other distributions

The log-logistic distribution is a special case of the Burr XII distribution. When 1
s = m and k = 1, the

Burr XII distribution is reduced to the log-logistic distribution, where the survival function can be written as
S(t; m, c) =

1
1+(tm)c .

Besides, Rodriguez (1977) shows that the Burr coverage area on a specific plane is occupied by various well-known
and useful distributions, including the normal, log-normal, gamma, logistic and extreme-value type-I distributions.
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Fig. 1. Plots of the failure rate function for Burr XII distribution.

2.4. Maximum likelihood estimation

We assume that the lifetimes are independently distributed and also independent from the censoring mechanism.
Considering right-censored lifetime data, we observe ti = min(Ti ,Ci ), where Ti is the lifetime and Ci is the censoring
time, both for the ith individual i = 1, . . . , n. Assuming that T1, T2, . . . , Tn is a random sample of the random variable
T with Burr XII distribution (1). The likelihood function of c, k and s corresponding to the observed sample is given by

L(c, k, s) = (kc)r
∏
i∈F

[(
1 +

(
ti
s

)c)−(k+1) tc−1
i

sc

]∏
i∈C

[(
1 +

(
ti
s

)c)−k
]
, (2)

where r is the observed number of failures, F denotes the set of uncensored observations and C denotes the set of
censored observations. The log-likelihood function is given by:

l(c, k, s) = r log(k)+ r log(c)− (k + 1)
∑
i∈F

log
(

1 +

(
ti
s

)c)
+

∑
i∈F

log

(
tc−1
i

sc

)
− k

∑
i∈C

log
(

1 +

(
ti
s

)c)
.

The maximum likelihood estimators ĉ, k̂ and ŝ of c, k and s are obtained by maximizing the log-likelihood, which
results in solving equations

∂l(c, k, s)

∂c
=

r

c
− (k + 1)

∑
i∈F

( ti
s

)c
log

( ti
s

)(
1 +

( ti
s

)c) +

∑
i∈F

log
(

ti
s

)
− k

∑
i∈C

( ti
s

)c (
log ti

s

)(
1 +

( ti
s

)c)
∂l(c, k, s)

∂k
=

r

k
−

∑
i∈F

log
(

1 +

(
ti
s

)c)
−

∑
i∈C

log
(

1 +

(
ti
s

)c)
∂l(c, k, s)

∂s
= c(k + 1)

∑
i∈F

tc
i s−(c+1)(
1 +

( ti
s

)c) −
rc

s
+ c

∑
i∈C

tc
i s−(c+1)(
1 +

( ti
s

)c) .
These equations cannot be solved analytically, so statistical software such as Ox or R can be used to solve them. In

this paper, software Ox (Doornik, 2001) through MaxBFGS subroutine is used to compute the maximum likelihood
estimator (ML estimator), but reparametrization is necessary, for example, c =

1
σ

and s = exp(µ) can be used.
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3. Log-Burr XII regression models

3.1. Log-location-scale regression model

In many practical applications, lifetimes are affected by variables, which are referred to as explanatory variables or
covariates, such as the cholesterol level, blood pressure and many others. So, it is important to explore the relationship
between the lifetime and explanatory variables. An approach based on a regression model can be used. This paper
considers the class of location-scale models.

The covariates vector is denoted by x = (x1, x2, . . . , x p)
T, which is related to responses Y = log(T ) through a

regression model.
Considering reparametrization, c =

1
σ

and s = exp(µ). Hence, it follows that the density function of Y can be
written as

f (y; k, σ, µ) =
k

σ

(
1 + exp

(
y − µ

σ

))−(k+1)

exp
(

y − µ

σ

)
, −∞ < y < ∞, (3)

where k > 0, σ > 0, and −∞ < µ < ∞. This new distribution will be referred to as the log-Burr XII. The survival
function is given by

S(y) =

[
1 + exp

(
y − µ

σ

)]−k

.

Besides, we have the following important theorem.

Theorem 1. For variable Y , the moment-generating function (mgf) is given by

MY (t) = kst B

[
t

c
+ 1, k −

t

c

]
, if kc > t,

where B[a, b] is the complete beta function (proof given in Appendix B).

Hence, the mean of Y is given by

E(Y ) = s + σ [ψ(1)− ψ(k)], if kc > t,

where ψ(a) is the digamma function (see Lawless (2003)).
We can write the above model as a log-linear model

Y = µ+ σ Z , (4)

where variable Z follows the density

f (z) = k(1 + exp(z))−(k+1) exp(z), −∞ < z < ∞ and k > 0. (5)

Now, it is also considered that the scale parameterµ of the log-Burr XII model depends on the matrix of explanatory
variables X , this is, µi = xT

i β. We also consider the regression model based on the log-Burr XII given in (3) relating
response Y and covariates vector x, so that distribution Y |x can be represented as

yi = xT
i β + σ zi , i = 1, . . . , n, (6)

where β = (β1, . . . , βp)
T, σ > 0 and k > 0 are unknown parameters, xT

i = (xi1, xi2, . . . , xi p) is the explanatory
vector and Z follows the distribution in (5).

In this case, the survival function of Y |x is given by

S(y|x) =

[
1 + exp

(
y − xTβ

σ

)]−k

.

It is observed that when k = 1 the log-logistic regression models is obtained.
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3.2. Estimation by maximum likelihood

For the corresponding values to the sample (y1, x1), (y2, x2), . . . , (yn, xn) of n observations, where yi represents
the logarithm of the survival time that has distribution (3) and xi the covariate vector associated with the i th individual,
the log-likelihood function can be written as

l(θ) = r log(k)− r log(σ )+

∑
i∈F

zi − (k + 1)
∑
i∈F

log(1 + exp(zi ))− k
∑
i∈C

log(1 + exp(zi )), (7)

where r is the number of uncensored observations (failures) and zi =
yi −xT

i β

σ
. Maximum likelihood estimates for

parameter vector θ = (k, σ,βT)T can be obtained by maximizing the likelihood function. In this paper, software
Ox (see, Doornik (2001)) through MAXBFGS subroutine was used to compute maximum likelihood estimates.
Covariance matrix estimates for maximum likelihood estimators θ̂ can be obtained using the Hessian matrix.
Confidence intervals and hypothesis testing can be conducted using the large sample distribution of the ML estimators,
which is a normal distribution with the covariance matrix as the inverse of the Fisher information as long as regularity
conditions are satisfied. More specifically, the asymptotic covariance matrix is given by I−1(θ) with I(θ) = E[L̈(θ)]

such that L̈(θ) = −

{
∂2l(θ)
∂θ∂θT

}
.

It is difficult to compute the Fisher information matrix I(θ) due to the censored observations (censoring is random
and noninformative), but it is possible to use the matrix of second derivatives of the log-likelihood, −L̈(θ), evaluated
at the ML estimator θ = θ̂ , which is consistent. The asymptotic normal approximation for θ̂ may be expressed as

θ̂
T

∼ N(p+2){θ
T
; L̈(θ)−1

}, where L̈(θ) is the (p + 2)(p + 2) observed information matrix, obtained from:

−L̈(θ) =

Lkk Lkσ Lkβ j

· Lσσ Lσβ j

· · Lβ jβs


with the submatrices given in Appendix A.

As to the interpretation of the estimated coefficients, a possible proposal is based on the ratio of median times (see
Hosmer and Lemeshow (1999)). Hence, when the covariable is binary (1 or 0), and considering the ratio of median
times with x = 1 in the numerator, if β̂ is negative, it implies that individuals with x = 1 present reduced median
survival time (increased) in [exp{β̂} × 100%] as compared to that of individuals in the group with x = 0 by fixing the
other covariables. This interpretation can be extended to continuous or categorical covariables.

Another interest is to investigate the use of the log-logistic regression model, which is a simpler model than the
proposed one. Since the log-Burr and log-logistic regression models are embedded, the likelihood-ratio test can be
used to discriminate such models. In this case, the hypotheses are given by H0 : k = 1 versus H1 : k 6= 1. The test

statistic is given by λ = −2 × log
(

L (̂θ0)

L (̂θ)

)
, where θ̂0 is the maximum likelihood estimator for θ under H0, and the

null hypothesis is rejected when λ > χ2
1−α(1), which is the quantile of the chi-square distribution with one degree of

freedom.

3.3. A Bayesian analysis

Besides being an alternative analysis, the use of the Bayesian method allows for the incorporation of previous
knowledge of the parameters through informative prior densities. When this information is not available, one considers
noninformative prior. In the Bayesian approach, the information referring to the model parameters is obtained through
posterior marginal distribution. In this way, two difficulties arise. The first refers to attaining marginal posterior
distribution, and the second to the calculation of the interest moments. Both cases require integral resolutions that,
many times, do not present an analytical solution. In this paper, we have used the simulation method of Markov Chain
Monte Carlo, such as the Gibbs sampler and Metropolis–Hasting algorithm.

Consider the Burr XII distribution (1), censored data and the likelihood function (2) for k, c and s. For a Bayesian
analysis, we assume the following prior densities for k, s and c
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• k ∼ 0(a1, b1), a1 and b1 known;
• s ∼ 0(a2, b2), a2 and b2 known;
• c ∼ 0(a3, b3), a3 and b3 known;

where 0(ai , bi ) denotes a gamma distribution with mean ai
bi

, variance ai
b2

i
and density function given by

f (v; ai , bi ) =
bai

i v
ai −1 exp{−vbi }

0(ai )
,

where v > 0, ai > 0 and bi > 0.
In the special case where a1 = b1 = a2 = b2 = a3 = b3 = 0, the noninformative case follows, and it assumes

independence among the parameters, and the prior densities for k, s and c are written as

π(k, s, c) ∝
1

ksc
.

We further assume independence among parameters k, s and c. The joint posteriori distributions for k, s and c is
given by

π(k, s, c|D) ∝ ka1−1 exp{−kb1}s
a2−1 exp{−sb2}c

a3−1 exp{−cb3}

×

(
kc

sc

)r ∏
i∈F

[(
1 +

(
ti
s

)c)−(k+1)
]∏

i∈F

tc−1
i

∏
i∈C

[(
1 +

(
ti
s

c
))−k

]
,

where D denotes the data sets.
It can be shown that the conditional posteriori densities are given by

π(k|s, c, D) ∝ ka1+r−1 exp{−kb1}
∏
i∈F

[(
1 +

(
ti
s

)c)−(k+1)
]∏

i∈C

[(
1 +

(
ti
s

c
))−k

]

π(s|k, c, D) ∝ sa2−cr−1 exp{−sb2}
∏
i∈F

[(
1 +

(
ti
s

)c)−(k+1)
]∏

i∈C

[(
1 +

(
ti
s

c
))−k

]

π(c|k, s, D) ∝ ca3−1 exp{−cb3}c
r s−cr

(
kc

sc

)r ∏
i∈F

[(
1 +

(
ti
s

)c)−(k+1)
]∏

i∈F

tc−1
i

∏
i∈C

[(
1 +

(
ti
s

c
))−k

]
.

Observe that we need to use the Metropolis–Hastings algorithm to generate variables k, s and c from the respective
conditional posteriori densities since their forms are somewhat complex.

For Bayesian inference, considering model (6), assume the following prior densities for σ , k and βT:

• k ∼ 0(c1, d1), c1 and d1 known;
• σ ∼ Inverse 0(c2, d2), c2 and d2 known;
• β j ∼ N (µ0 j , σ

2
0 j ), µ0 j and σ 2

0 j known, j = 0, . . . , p.

The noninformative case follows, and it assumes independence among the parameters, by considering c1 = c2 =

d1 = d2 = 0 and σ 2
0 j large.

We again assume independence among the parameters. The joint posteriori distribution for σ , k and β is given by:

π(σ, k,βT
|D) ∝ kc1−1 exp{−kd1}σ

−(c2+1) exp
{
−

d2

σ

}
exp

{
−

1
2

p∑
j=0

(
β j − µ0 j

σ0 j

)2
}

×

(
k

σ

)r

exp

{∑
i∈F

zi

}∏
i∈F

[(1 + exp{zi })
−(k+1)

]

∏
i∈c

[(1 + exp{zi })
−k

],

where zi =
yi −xT

i β

σ
.
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It can be shown that the conditional marginal distributions are given by:

π(k|σ,βT, D) ∝ kc1+r−1 exp{−kd1} exp
∏
i∈F

[(1 + exp{zi })
−(k+1)

]

∏
i∈c

[(1 + exp{zi })
−k

]

π(σ |k,βT, D) ∝ σ−c2−r−1 exp
{
−

d2

σ

}
exp

{∑
i∈F

zi

}∏
i∈F

[(1 + exp{zi })
−(k+1)

]

∏
i∈c

[(1 + exp{zi })
−k

]

π(β j |k, σ,β− j , D) ∝ exp

{
−

1
2

p∑
j=0

(
β j − µ0 j

σ0 j

)2
}

exp

{∑
i∈F

zi

}
×

∏
i∈F

[(1 + exp{zi })
−(k+1)

]

∏
i∈c

[(1 + exp{zi })
−k

].

Observe that we need to use the Metropolis–Hastings algorithm to generate from the posteriori conditional
distributions of k, σ and β j ( j = 0, . . . , p).

3.4. The jackknife estimator for the model

The idea of jackknifing is to transform the problem of estimating any population parameter into the problem of
estimating a population mean. So, the procedure used to estimate a mean value is performed in this method, but from
an unusual point of view. In this paper, we used this method as an alternative method to estimate the population
parameter.

Suppose that T1, T2, . . . , Tn is a random sample of n values and the sample mean is given by

T̄ =

n∑
i=1

Ti

n

and is used to estimate the population mean.
Now, the sample mean is calculated with the lth observation missed out,

T̄−l =

n∑
i=1

Ti − Tl

n − 1
.

Then from the two expressions above the following is obtained

Tl = nT̄ − (n − 1)T̄−l . (8)

In a general situation, consider that θ is a parameter estimated by Ê(T1, T2, . . . , Tn), and for ease of notation, drop
(T1, T2, . . . , Tn). Finally, Ê−l is calculated, which is obtained with the Tl observation missed out. It follows, by Eq.
(8), that pseudo-values can be calculated, which is obtained by

Ê∗

l = nÊ − (n − 1)Ê−l , l = 1, . . . , n.

The mean of the pseudo-values is given by

Ê∗
=

n∑
l=1

Ê∗

l

n

which is the jackknife estimate of θ .
Manly (1997) suggests that an approximate 100(1 −α)% confidence interval for θ is given by Ê∗

± tα/2,n−1s/
√

n,
where tα/2,n−1 is the value that is exceeded with probability α/2 for the t distribution with (n − 1) degrees of freedom
and the jackknife estimator had the effect of removing bias of order 1/n.

By following the theory described, it was possible to obtain the estimates and their respective confidence intervals
for the parameter vector θ of the log-Burr XII regression model using the jackknife method. The Ox matrix
programming language was used.
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3.5. Simulations study

In order to investigate the performance of the log-Burr XII regression model, we performed various simulation
studies for different settings of n and censoring percentages. The lifetimes denoted by T1, . . . , Tn were generated from
the Burr XII distribution given in (1), again considering the following reparametrization c =

1
σ

and s = exp{µ}, for
values σ = 0.36 and 0.8 (failure rate function is unimodal), k = 0.15, 0.27 and 1.00 and by assuming µi = β0 +β1xi ,
with xi being generated from a uniform distribution on the range [0, 1], β0 and β1 fixed. The censoring times
denoted by C1, . . . ,Cn were generated from a uniform distribution [0, θ], where θ was adjusted until the censoring
percentages, 0 or 0.10 or 0.30, were reached. The lifetimes considered in each fit were calculated as min{Ci , Ti }. For
each setting of n, k, σ and censoring percentages, 1000 samples were generated each one being fitted under the log-
Burr XII regression model (4) with µi = β0 + β1xi . For each fit the likelihood-ratio test for hypotheses H0 : k = 1
versus H1 : k 6= 1 was performed. Then the proportion of times which rejected the null hypothesis was just the
simulated value power. Here, all the statistics were compared with the χ2

1 critical value at an α = 0.05 level. The
simulations were performed for different n = 50 and 100 and different values of k to obtain the simulated sizes and
powers for testing. From the results of simulations, given in Table 1, the results for testing k = 1 indicated that the
actual sizes of the test were close to 0.05, and the powers of tests were increased as k and % censuring decreased
and/or n was increased. Besides, the σ values did not influence the results of simulations.

Additionally, the variance and the mean squared error (MSE) (Cox and Hinkley, 1974) of the maximum likelihood
estimators were also calculated for simulated samples in the same conditions as those in previous simulations. Again,
for each situation, 1000 samples were generated and the log-logistic and log-Burr XII regression models were fitted to
the generated samples. From the simulation results, the data of which are shown in Table 2, it was observed that when
k = 1, variance and MSE showed similar values for both models. However, when k 6= 1, variance and MSE were
smaller for the log-Burr regression model and they decreased when n increased and were larger when σ approached 1.
In general, for the log-Burr regression model, variance and MSE increased when the censoring percentage increased.

4. Sensitivity analysis

4.1. Global influence

A first tool to perform sensitivity analysis, as stated before, is by means of global influence starting from case-
deletion. Case-deletion is a common approach to study the effect of dropping the i th case from the data set. The
case-deletion model for model (6) is given by

Yl = xT
l β + σ Zl , l = 1, 2, . . . , n, l 6= i. (9)

In the following, a quantity with subscript “(i)” means the original quantity with the ith case deleted. For model (9),

the log-likelihood function of θ is denoted by l(i)(θ). Let θ̂ (i) = (k̂(i), σ̂(i), β̂
T
(i))

T be the ML estimator of θ from

l(i)(θ). To assess the influence of the ith case on the ML estimator θ̂ = (k̂, σ̂ , β̂)T, the basic idea is to compare the
difference between θ̂ (i) and θ̂ . If deletion of a case seriously influences the estimates, more attention should be paid
to that case. Hence, if θ̂ (i) is far from θ̂ , then the ith case is regarded as an influential observation. A first measure of
the global influence is defined as the standardized norm of θ̂ (i) − θ̂ (generalized Cook distance)

GDi (θ) = (θ̂ (i) − θ̂)T
[
L̈(θ)

]−1
(θ̂ (i) − θ̂).

Another alternative is to assess values GDi (β) and GDi (k, σ ). Such values reveal the impact of the ith case on the
estimates of β and (k, σ ), respectively. Another popular measure of the difference between θ̂ (i) and θ̂ is the likelihood
distance

LDi (θ) = 2
{

l(θ̂)− l(θ̂ (i))
}
.

Besides, we can also compute β j −β j (i) ( j = 1, 2, . . . , p) to see the difference between β̂ and β̂(i). Alternative global
influence measures are possible. One could think of the behavior of a test statistics, such as the Wald test for covariate
or censoring effect, under a case-deletion scheme.
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Table 1
Simulated sizes and powers of the likelihood-ratio test for hypotheses H0 : k = 1 versus H1 : k 6= 1

k value σ value n % censoring % of significant test results at the 5% level

0.15 0.36 50 0 96.6
10 95.4
30 89.2

100 0 99.9
10 99.9
30 99.3

0.80 50 0 95.0
10 95.2
30 89.7

100 0 99.9
10 99.9
30 99.3

0.27 0.36 50 0 79.8
10 75.5
30 65.5

100 0 97.5
10 96.1
30 92.6

0.80 50 0 79.9
10 76.0
30 67.8

100 0 97.5
10 96.3
30 93.5

1.00 0.36 50 0 5.30
10 4.30
30 3.30

100 0 6.50
10 5.90
30 5.40

0.80 50 0 5.20
10 4.60
30 3.90

100 0 6.50
10 5.70
30 5.30

4.2. Local influence

As a second tool for sensitivity analysis the local influence method will now be described for the log-Burr XII
regression model with censored data. Local influence calculation can be carried out in model (6). If likelihood
displacement L D(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where θ̂ω denotes the ML estimator under the perturbed model,
the normal curvature for θ at direction d, ‖d‖ = 1, is given by Cd(θ) = 2|dT1TL̈(θ)−11d|, where 1 is a
(p+2)×n matrix that depends on the perturbation scheme and whose elements are given by ∆ j i = ∂2l(θ |ω)/∂θ j∂ωi ,
i = 1, 2, . . . , n and j = 1, 2, . . . , p + 2 evaluated at θ̂ and ω0, where ω0 is the no perturbation vector (see Cook
(1986)). For the log-Burr XII regression model the elements of −L̈(θ̂) are given in Appendix A. We can calculate
normal curvatures Cd(θ), Cd(k), Cd(σ ) and Cd(β) to perform various index plots, for instance, the index plot of dmax,
the eigenvector corresponding to Cdmax , the largest eigenvalue of the matrix B = 1TL̈(θ)−11 and the index plots of
Cdi (θ), Cdi (k), Cdi (σ ) and Cdi (β) named total local influence (see, for example, Lesaffre and Verbeke (1998)),
where di denotes an n × 1 vector of zeros with one at the i th position. Thus, the curvature at direction di assumes
form Ci = 2|1T

i L̈(θ)−11i | where 1T
i denotes the i th row of 1. It is usual to point out those cases such that
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Table 2
Variance and mean squared error of β1 for the log-logistic and log-Burr regression models

k value σ value n % censoring Variance MSE
Log-logistic Log-Burr Log-logistic Log-Burr

0.15 0.36 50 0 1.14 0.50 2.25 1.04
10 1.06 0.52 2.16 1.14
30 1.15 0.56 2.34 1.21

100 0 0.56 0.23 1.09 0.48
10 0.53 0.23 1.01 0.50
30 0.50 0.24 0.99 0.49

0.80 50 0 5.69 2.50 11.24 5.39
10 5.13 2.52 10.23 5.54
30 5.08 2.61 10.39 5.70

100 0 2.79 1.16 5.37 2.38
10 2.53 1.15 4.86 2.40
30 2.51 1.16 4.98 2.35

0.27 0.36 50 0 0.43 0.27 0.84 0.57
50 10 0.41 0.28 0.83 0.60

30 0.47 0.33 0.98 0.72
100 0 0.21 0.13 0.40 0.28

10 0.20 0.14 0.39 0.28
30 0.22 0.15 0.44 0.31

0.80 50 0 2.10 1.33 4.14 2.82
10 1.97 1.36 3.98 2.92
30 2.18 1.48 4.48 3.15

100 0 1.02 0.65 1.99 1.38
10 0.96 0.66 1.85 1.35
30 0.95 0.68 1.89 1.39

1.00 0.36 50 0 0.09 0.09 0.19 0.20
10 0.10 0.10 0.21 0.22
30 0.13 0.13 0.27 0.29

100 0 0.05 0.05 0.09 0.10
10 0.05 0.05 0.00 0.10
30 0.07 0.07 0.13 0.13

0.80 50 0 0.47 0.47 0.95 0.97
10 0.49 0.50 1.01 1.05
30 0.59 0.60 1.25 1.32

100 0 0.23 0.23 0.47 0.48
10 0.24 0.24 0.47 0.48
30 0.29 0.29 0.56 0.58

Ci ≥ 2C̄, C̄ =
1
n

n∑
i=1

Ci .

4.3. Curvature calculations

Next, we calculate, for three perturbation schemes, the matrix

1 = (1 j i )(p+2)×n =

(
∂2l(θ |ω)

∂θiω j

)
(p+2)×n

, j = 1, 2, . . . , p + 2 and i = 1, 2, . . . , n,

considering the model defined in (6) and its log-likelihood function given by (7). Consider the vector of weights
ω = (ω1, ω2, . . . , ωn)

T.

4.3.1. Case-weight perturbation
In this case, the log-likelihood function takes the form
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l(θ |ω) =
[
log(k)− log(σ )

]∑
i∈F

ωi +

∑
i∈F

ωi zi + (k + 1)
∑
i∈F

ωi log
[
1 + exp{zi }

]
−

∑
i∈C

, ωi log
[
1 + exp{zi }

]
,

where 0 ≤ ωi ≤ 1 and ω = (1, . . . , 1)T. Let us denote 1 = (11, . . . ,1p+2)
T.

Then the elements of vector 11 take the form

∆1i =

{
k̂−1

+ log
[
1 + exp{ẑi }

]
if i ∈ F

log
[
1 + exp{ẑi }

]
if i ∈ C.

On the other hand, the elements of vector 12 can be shown to be given by

∆2i =

{
−σ̂−1

{
1 + ẑi + (k̂ + 1)ẑi exp{ẑi }

[
1 + exp{zi }

]−1
}

if i ∈ F

k̂σ̂−1 ẑi exp{ẑi }
[
1 + exp{zi }

]−1 if i ∈ C.

The elements of vector 1 j , for j = 3, . . . , p + 2, can be expressed as

∆ j i =

{
−xi j σ̂

−1
{

1 + (k̂ + 1) exp{ẑi }
[
1 + exp{ẑi }

]−1
}

if i ∈ F

xi j k̂σ̂
−1 exp{zi }

[
1 + exp{zi }

]−1 if i ∈ C.

4.3.2. Response perturbation
We will consider here that each yi is perturbed as yiw = yi + ωi Sy , where Sy is a scale factor that may be the

estimated standard deviation of Y and ωi ∈ R.
Here the perturbed log-likelihood function becomes expressed as

l(θ |ω) = r
[
log(k)− log(σ )

]
+

∑
i∈F

z∗

i − (k + 1)
∑
i∈F

log
[
1 + exp{z∗

i }
]
− k

∑
i∈C

log
[
1 + exp{z∗

i }
]
,

where z∗

i =
(yi +ωi Sy)−xT

i β

σ
. In addition, the elements of vector 11 take the form

∆1i =

{
−Sy σ̂

−1 ẑi
[
1 + exp{zi }

]−1 if i ∈ F

−Sy σ̂
−1 ẑi

[
1 + exp{zi }

]−1 if i ∈ C.

On the other hand, the elements of vector 12 can be shown to be given by

∆2i =

−Syσ
−2
{

1 − (k̂ + 1) exp{ẑi }
[
1 + exp{ẑi }

]−1
(

ẑi
[
1 + exp{ẑi }

]−1
+ 1

)}
if i ∈ F

Sy k̂σ̂−2 exp{ẑi }
[
1 + exp{ẑi }

]−1
{

ẑi
[
1 + exp{ẑi }

]−1
+ 1

}
if i ∈ C.

The elements of vector 1 j , for j = 3, . . . , p + 2, can be expressed as

∆ j i =

{
xi j Sy(k̂ + 1)σ̂−2 exp{ẑi }

[
1 + exp{ẑi }

]−2 if i ∈ F

xi j Sy k̂σ̂−2 exp{ẑi }
[
1 + exp{ẑi }

]−2 if i ∈ C.

4.3.3. Explanatory variable perturbation
Consider now an additive perturbation on a particular continuous explanatory variable, namely X t , by making

xi tω = xi t + ωi St , where St is a scaled factor, ωi ∈ R. This perturbation scheme leads to the following expressions
for the log-likelihood function and for the elements of matrix 1.

In this case the log-likelihood function takes the form

l(θ |ω) = r
[
log(k)− log(σ )

]
+

∑
i∈F

z∗

i − (k + 1)
∑
i∈F

log
[
1 + exp{z∗

i }
]
− k

∑
i∈C

log
[
1 + exp{z∗

i }
]
,

where z∗

i =
yi −x∗T

i β

σ
and x∗T

i = β1 + β2xi2 + · · · + βt (xi t + ωi St )+ · · · + βpxi p.
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In addition, the elements of vector 11 are expressed as

∆1i =

{
Sx β̂t σ̂

−1 exp{ẑi }
[
1 + exp{ẑi }

]−1 if i ∈ F

Sx β̂t σ̂
−1 exp{ẑi }

[
1 + exp{ẑi }

]−1 if i ∈ C,

the elements of vector 12 are expressed as

∆2i =

β̂t Sx σ̂
−2
{

1 − (k + 1) exp{ẑi }
[
1 + exp{ẑi }

]−1
(

1 + zi
[
1 + exp{ẑi }

]−1
)}

if i ∈ F

−β̂t k̂ Sx σ̂
−2 exp{ẑi }

[
1 + exp{ẑi }

]−1
(

1 + ẑi
[
1 + exp{ẑi }

]−1
)

if i ∈ C,

the elements of vector 1 j , for j = 3, . . . , p + 2 and j 6= t , take the forms

∆ j i =

{
−xi j Sxβt (k̂ + 1)σ̂−2 exp{ẑi }

[
1 + exp{ẑi }

]−2 if i ∈ F

−xi j Sxβt k̂σ̂
−2 exp{ẑi }

[
1 + exp{ẑi }

]−2 if i ∈ C,

and the elements of vector 1t are given by

∆ti =

Sx σ̂
−1

+ (k̂ + 1)Sx σ̂
−1 exp{zi }

[
1 + exp{ẑi }

]−1
[
xi t β̂t − 1

]
if i ∈ F

k̂Sx σ̂
−1 exp{ẑi }

[
1 + exp{ẑi }

]−1
[
xi t β̂t − 1

]
if i ∈ C.

4.4. Generalized leverage

Let l(θ) denote the log-likelihood function from the postulated model in Eq. (6), θ̂ the ML estimator of θ and µ

the expectation of Y = (Y1, Y2, . . . , Yn)
T, then, ŷ = µ(̂θ) will be the predicted response vector.

The main idea behind the concept of leverage (see, for instance, Cook and Weisberg (1982) and Wei et al. (1998))
is that of evaluating the influence of yi on its own predicted value. This influence may well be represented by the
derivative ∂ ŷi

∂yi that, when equal to hi i , is the i th principal diagonal element of projection matrix H = X(XTX)−1XT

and X is the model matrix. Extensions to more general regression models have been given, for instance, by St. Laurent
and Cook (1992) and Paula (1999), when θ is restricted with inequalities. Hence, it follows from Wei et al. (1998) that
the n × n matrix ( ∂ ŷ

∂y ) of generalized leverage can be expressed as:

GL(̂θ) =

{
Dθ

[
L̈(θ)

]−1
L̈θy

}
evaluated at θ = θ̂ and where Dθ =

(
∂[E(Yi )]
∂k ,

∂[E(Yi )]
∂σ

, xi j

)
and

L̈θy =
∂2l(θ)

∂θ∂yT =
(
L̈kyi , L̈σ yi , L̈β j yi

)T
with

L̈k̂ yi
=

{
−σ̂−1ĥi if i ∈ F
−σ̂−1 exp{ĥi } if i ∈ C,

L̈σ̂ yi =

{
σ̂−2

{
−1 + (k̂ + 1)ĥi

[
1 + ẑi + exp{ẑi }

] [
1 + exp{ẑi }

]−1
}

if i ∈ F

σ̂−2k̂ĥi
[
1 + ẑi + exp{ẑi }

] [
1 + exp{ẑi }

]−1 if i ∈ C,

L̈
β̂ yi

=

{
xi j σ̂

−2(k̂ + 1)ĥi
[
1 + exp{ẑi }

]−1 if i ∈ F

xi j σ̂
−2k̂ĥi

[
1 + exp{ẑi }

]−1 if i ∈ C,

where ĥi = exp{ẑi }
[
1 + exp{ẑi }

]−1.
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5. Residual analysis

In order to study departures from the error assumption as well as presence of outliers we will consider the
martingale residual proposed by Barlow and Prentice (1988) and transformations in this residual.

5.1. Martingale residual

This residual was introduced in the counting process (see Fleming and Harrington (1991)) and can be written in
log-Burr XII regression models as

rMi =

{
1 − k̂ log(1 + exp{ẑi }) if i ∈ F
−k̂ log(1 + exp{ẑi }) if i ∈ C,

where ẑi =
yi −µ̂

σ̂
. The distributional form of rMi is skewness, and it has maximum value +1 and minimum value −∞.

Transformations to achieve a more normal shaped form would be more appropriate for residual analysis.

5.2. Martingale-type residual

Another possibility is to use a transformation of the martingale residual based on the deviance residuals for the
Cox model with no time-dependent covariates introduced by Therneau et al. (1990). We will use this transformation
of the martingale residual in order to have a new residual symmetrically distributed around zero (see Ortega et al. (in
press)). Thus, a martingale-type residual for the log-Burr XII regression model can be expressed as:

rDi =


sign

[
1 − k̂ log(1 + exp{ẑi })

]
×

[
−2

[
1 − k̂ log(1 + exp{ẑi })+ log(1 − k̂ log(1 + exp{ẑi }))

]] 1
2

if i ∈ F

sign
[
−k̂ log(1 + exp{ẑi })

] [
2k̂ log(1 + exp{ẑi })

] 1
2

if i ∈ C.

5.3. Modified martingale-type residual

We have proposed a change in the martingale-type residual, and it can be written as

rM Di = (1 − δi )+ rDi ,

where δi = 0 denotes censored observation and δi = 1 uncensored and rDi is the martingale-type residual that is
defined in Section 5.2. In the log-Burr XII regression models, the modified martingale-type residual is given by

rM Mi =


sign

[
1 − k̂ log(1 + exp{ẑi })

]
×

[
−2

[
1 − k̂ log(1 + exp{ẑi })+ log(1 − k̂ log(1 + exp{ẑi }))

]] 1
2

if i ∈ F

1 + sign
[
−k̂ log(1 + exp{ẑi })

] [
2k̂ log(1 + exp{ẑi })

] 1
2

if i ∈ C.

5.4. Impact of the detected influential observations

To reveal the impact of the detected influential observations, we estimated the parameters again without the

influential observations. Let θ̂ and θ̂
0

be the maximum likelihood estimator of the parameters models that are obtained
from the data sets with and without the influential observations, respectively. Lee et al. (2006) define the following

two quantities to measure the difference between θ̂ and θ̂
0
:

TRC =

n p∑
i=1

∣∣∣∣∣ θ̂i − θ̂0
i

θ̂i

∣∣∣∣∣ and MRC = max
i

∣∣∣∣∣ θ̂i − θ̂0
i

θ̂i

∣∣∣∣∣ ,
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where TRC is total relative changes, MRC maximum relative changes and n p is the number of parameters, and
likelihood displacement: LDI (θ) = 2{l(θ̂) − l(θ̂ (I ))}, where θ̂ (I ) denotes the ML estimator of θ after the set (I ) of
influential observations has been removed (see Cook et al. (1988)).

Now, the same number of the influential observations are randomly selected from the non influential observations
and TRC, MRC and LDI are again calculated. After this, the results can be compared, and if there is difference
between them, the observations are influential.

6. Application

We provide an application of the results derived in the previous sections using real data. The required numerical
evaluations were implemented using program Ox (see, Doornik (2001)).

6.1. Application of vitamin A data

We illustrate the proposed model using data from a randomized community trial that was designed to evaluated
the effect of vitamin A supplementation on diarrheal episodes in 1207 pre-school children, aged 6–48 months at the
baseline, who were assigned to receive either placebo or vitamin A in a small city in the Northeast of Brazil from
December 1990 to December 1991.

The vitamin A dosage was 100,000 IU for children younger than 12 months and 200,000 IU for older children,
which is the highest dosage guideline established by the World Health Organization (WHO) for the prevention of
vitamin A deficiency.

The total time was defined as the time from the first dose of vitamin A until the occurrence of an episode of diarrhea.
An episode of diarrhea was defined as a sequence of days with diarrhea and a day with diarrhea was defined when 3
or more liquid or semi-liquid motions were reported in a 24 h period. The information on the occurrence of diarrhea
collected at each visit corresponds to a recall period of 48–72 h. The number of liquid and semi-liquid motions per 24
hours was recorded.

The covariates considered in the models are:

• xi1: age at baseline (in months);
• xi2: treatment (0 = placebo, 1 = vitamin A);
• xi3: gender (0 = girl, 1 = boy).

In many applications, there is qualitative information about the failure rate function shape, which can help with
selecting a particular model. In this context, a device called the total time on test (TTT) plot (Aarset, 1987) is useful.
The TTT plot is obtained by plotting G(r/n) = [(

∑r
i=1 Ti :n) + (n − r)Tr :n]/(

∑n
i=1 Ti :n), where r = 1, . . . , , n and

Ti :n , i = 1, . . . , , n, are the order statistics of the sample, against r/n (Mudholkar et al., 1996). The TTT plot for these
data is in Fig. 2 and indicates a unimodal-shaped failure rate function.

We now present results on fitting the model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + σ zi

where variable Yi follows the log-Burr XII distribution given in (3), i = 1, 2, . . . , 1207.

6.1.1. Maximum likelihood estimation
To obtain the maximum likelihood estimates for the parameters in the model, we used subroutine MAXBFGS in

Ox, whose results are given in the Table 3. We can observe that variable x1 is significant for the model.

6.1.2. Bayesian analysis
The following independent priors were considered to perform the Gibbs sampler. β j ∼ (0, 1000) j = 0, 1, 2,

3, σ ∼ IG(0.01, 0.01) and k ∼ G(0.01, 0.01), so that we have a vague prior distribution. Considering these prior
densities, we generated two parallel independent runs of the Metropolis–Hasting algorithm chain with size 35,000 for
each parameter, disregarding the first 5000 iterations to eliminate the effect of the initial values, and in order to avoid
correlation problems, we considered spacing of size 10, obtaining a sample of size 3000 from each chain. To monitor
the convergence of the Gibbs samples, we used the between and within sequence information, following the approach
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Fig. 2. TTT-plot on Vitamin A data.

Table 3
Maximum likelihood estimates for the parameters from the log-Burr XII regression model on the complete Vitamin A data set

Parameter Estimate SE p-value

k 0.2764 0.0387 –
σ 0.3567 0.0305 –
β0 2.2522 0.0926 0
β1 0.0221 0.0029 <0.01
β2 0.0898 0.0600 0.1346
β3 0.0441 0.0598 0.4601

Table 4
Posterior summaries for the parameters from the log-Burr XII regression model in the complete Vitamin A data set

Parameter Mean Median S.D. 2.5% 97.5% R̂

k 0.2853 0.2817 0.04085 0.2171 0.3763 1.001
σ 0.3628 0.3617 0.0308 0.3064 0.4271 1.009
β0 2.2551 2.2534 0.0948 2.0693 2.4451 1.000
β1 0.0224 0.0223 0.0028 0.0169 0.0281 1.002
β2 0.0905 0.0904 0.0602 −0.0267 0.2098 1.006
β3 0.0461 0.0458 0.0605 −0.0743 0.16428 1.004

developed in Gelman and Rubin (1992) to obtain the potential scale reduction, R̂. In all cases, these values were close
to one, indicating the convergence of the chain. The histograms with the approximate posterior marginal density of
the parameters are presented in Fig. 3.

In Table 4, we report posterior summaries for the parameters of the log-Burr regression model. We can observe
that variable x1 is significant for the model.

6.1.3. Jackknife estimator
In Table 5, we report the jackknife estimates for the parameters of the log-Burr XII regression model. From Table 5,

we can observe that variable x1 is significant for the model when the jackknife estimator is used.

6.2. Global influence analysis

In this sub-section, we use Ox to compute case-deletion measures GDi (θ) and LDi (θ), presented in Sub-
Section 4.1. The results of such influence measures index plots are displayed in Fig. 4.

From the figure, we can see that cases 825 and 1192 are possible influential observations.
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Fig. 3. Approximate posterior marginal densities for the parameters from the log-Burr XII regression model on the complete Vitamin A data set.

Table 5
Jackknife estimates for the parameters from the log-Burr XII regression model in the complete Vitamin A data set

Parameter Estimate SE 95% confidence interval

k 0.26641 0.0477 (0.1728; 0.3600)
σ 0.3599 0.0364 (0.2885; 0.4313)
β0 2.2464 0.0879 (2.0739; 2.4189)
β1 0.0255 0.0035 (0,0186; 0.0324)
β2 0.0921 0.0622 (−0.0299; 0.2141)
β3 0.0482 0.0616 (−0.0727; 0.1691)

6.3. Local and total influence analysis

In this section, we will make an analysis of local influence for the data set using log-Burr XII regression models.

6.3.1. Case-weight perturbation
By applying the local influence theory developed in Section 4, where case-weight perturbation is used, value

Cdmax = 2.0230 was obtained as maximum curvature. In Fig. 5(a), the graph of eigenvector corresponding to Cdmax is
presented, and total influence Ci is shown in Fig. 5(b). Observation 1, 192 is the most distinguished in relation to the
others.

6.3.2. Response variable perturbation
Next, the influence of perturbations in the observed survival times will be analyzed. The value for the maximum

curvature calculated was Cdmax = 5.875. Fig. 6(a) containing the graph for |dmax| versus the observation index shows
that no point is salient in relation to the others. The same applies to Fig. 6(b), which corresponds to total local influence
(Ci ).
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Fig. 4. Index plot for θ : (a) GDi (θ) (Generalized Cook’s distance) and (b) LDi (θ) (Likelihood distance).

Fig. 5. Index plot for θ (case-weight perturbation): (a) dmax and (b) Total local influence.

6.3.3. Explanatory variable perturbation

The perturbation of the vector for covariable age (x1) is investigated here. For perturbation of covariable age, value
Cdmax = 0.0086 was obtained as maximum curvature. The respective graphs of |dmax| as well as total local influence
Ci against the observation index are shown in Fig. 7(a) and 7(b), respectively. In these two graphs, we can see no
influential observation.

6.3.4. Generalized leverage analysis

Fig. 8 exhibits the index plot of GL(θ), using the model given in Eq. (6). The generalized leverage graph presented
in Fig. 8 shows no points as possible leverage points. We can notice that all the observations have been well shaped.
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Fig. 6. Index plot for θ (response perturbation): (a) dmax and (b) Total local influence.

Fig. 7. Index plot for θ (age explanatory variable perturbation): (a) dmax and (b) Total local influence.

6.4. Residual analysis

In order to detect possible outlying observations as well as departures from the assumptions of log-Burr XII
regression model, we present, in Fig. 9, the graphs of rMi and rM Mi against the order observations. By analyzing
these graphs, asymmetry is observed; however, the modified martingale-type residual graph presents a reasonably
random pattern and case 1192 exhibits an atypical residual value.

6.5. Impact of the detected influential observations

In concluding previous sections, we can consider case 1192 as a possible influence point or outlier observation.
Case 1192 has the lowest time.

We found that TRC = 0.2246, MRC = 0.1226 and LD(I ) = −5.58. In order to compare the impact of the
influential observations, we repeated the analysis by removing the same number (1 observation) randomly selected
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Fig. 8. Index plot of generalized leverage on fitting the log-Burr XII regression model for Vitamin A data.

Fig. 9. Index plot of residuals on fitting the log-Burr XII regression model for Vitamin A data: (a) martingale residual (rMi ) and (b) modified
martingale-type residual (rM Di ).

from the non influential observations. In this case, we found that TRC = 0.1681, MRC = 0.1037 and LD(I ) = −2.53.
Hence, the results showed that case 1192 did not cause a strong impact on the parameters estimation.

Therefore, the final model becomes given by

yi = β0 + β1xi1 + σ zi , i = 1, 2, . . . , 1207. (10)

The maximum likelihood estimates for the parameters in the final model are given in Table 6. We can interpret the
estimated coefficients of the final model as the following: The median survival time should increase approximately
2.18% (e0.02152

× 100%) as age increases one unit.

6.6. Goodness of fitting

In order to assess if the model is appropriate, the plot comparing the empirical distribution for the survival function
and survival function estimated by the log-Burr XII and log-logistic models were introduced in Fig. 10. From this
figure, it is noted that both models show satisfactory fitting; however, the log-Burr XII model presents better fitting
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Table 6
Maximum likelihood estimates for the parameters from the log-Burr XII regression model on the complete Vitamin A data set — final model

Parameter Estimate SE p-value

k 0.2698 0.0014 –
σ 0.3521 0.0009 –
β0 2.3191 0.0065 0
β1 0.02152 0.0000 <0.01

Fig. 10. Estimated survival function on fitting the log-Burr XII and log-logistic regression models with empirical survival for Vitamin A data.

to the data under analysis. Additionally, the likelihood-ratio test was performed for hypotheses H0 : k = 1 or the
log-logistic regression model is adequate versus H1 : k 6= 1 or the log-Burr regression model is adequate. The test
statistic resulted in λ = 2 × (1, 639.17 − 1, 611.67) = 54.99 (p-value < 0.01), and this result provides favorable
indications to the log-Burr XII regression model.

7. Concluding remarks

In this paper, a log-Burr XII regression model with the presence of censored data is proposed as an alternative
to model lifetime when the failure rate function presents unimodal shape. We used three estimation methods for the
parameters of the proposed model: maximum likelihood, Bayesian inference and jackknife estimator. Asymptotic
tests were performed for the parameters based on the asymptotic distribution of the maximum likelihood estimators.
In the applications within a real data, we observed that all estimation methods presented similar results. Furthermore,
this article compared the performance of the proposed model and the log-logistic regression model based on variance,
mean squared error and the likelihood-ratio test through a simulation study. These simulations suggest that log-Burr
XII regression model can be used for modeling data with a unimodal failure rate function. We have also discussed
applications of influence diagnostics in log-Burr XII regression models with censored data. So, we perform a general
model checking analysis which makes this model a very attractive option for modeling censored and uncensored
lifetime data that has a unimodal failure rate function. The approach was applied to real data sets, which indicates the
usefulness of the approach.

Appendix A. Matrix of second derivatives L̈(θ)

Here we derive the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function.
After some algebraic manipulations, we obtain

Lkk = −
r

k2
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where que j, s = 1, 2, . . . , p, hi =
exp(zi )

1+exp(zi )
and zi =

yi −xT
i β

σ

Appendix B. Proof of Theorem 1

For log-Burr XII distribution (3), the moment-generating function (mgf) is given by the result from solving equation

MY (T ) = E(exp{t y}) =

∫
−∞

∞

exp{t y}kc

(
1 +

(
exp{y}

s

)c)−k−1 (exp{y}

s

)c

dt.

Let u =

(
exp{y}

s

)c
then du = c

(
exp{y}

s

)c
dy. Hence

MY (T ) =

∫
−∞

∞

exp{t y}k(1 + u)−k−1du.

Now make the univariate change of variable v =
1

1+u so that dv = −(1 + u)−2du to obtain

MY (T ) =

∫ 0

1
−st k(1 − v)

t
c v−

t
c +k−1dvkst B

[
t

c
+ 1, k −

t

c

]
, if kc > t

where B(a, b) is the complete beta function (see Lawless (2003)). To obtain the second identity, we recognized the
integrand as the kernel of the beta pdf.
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