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Abstract
The following two-stage approach to learning from dissimilarity data is described: (1) embed both
labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled
objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical
multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean
space in (1) is a model selection problem; too few or too many dimensions can degrade classifier
performance. The question of how the inclusion of unlabeled objects in (1) affects classifier
performance is investigated. In the case of spherical covariances, including unlabeled objects in
(1) is demonstrably superior. Several examples are presented.

1. Introduction
Let (Ω, ℱ, ) denote a probability space, i.e., Ω is a sample space, ℱ is a sigma-field, and

 is a probability measure. Suppose that  is a mixture, i.e.,

(1)

where αi ≥ 0 and . When ω ∈ Ω is drawn from , it is drawn from one of the i.
If ω ~ i, then we say that ω belongs to class i. If we know the class to which ω belongs,
then we say that ω is labeled; otherwise, ω is unlabeled. Our goal is to construct a classifier,
i.e., a function that assigns a label i ∈ {1, …, k} to an unlabeled ω ∈ Ω.

Without supposing that (Ω, ℱ) is a Euclidean space, we intend to construct a labeling
function by Euclidean methods, e.g., linear discriminant analysis (LDA). Accordingly, we
are concerned with classifiers of the form L ◦ M, where M : Ω → X and L : X → {1, …, k}.
The representation space X is a measurable metric space, typically (ℜd, ℬ) where ℬ is the
Borel sigma-field, with a metric induced by the Euclidean inner product. The map M is the
embedding function, and the map L is the labeling function. Only labeled outcomes are used
to construct the labeling function, while both labeled and unlabeled outcomes are used to
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construct the embedding function. This paradigm exemplifies semisupervised learning, in
which one has access to both labeled and unlabeled outcomes.

We further suppose that we are unable to observe ω ∈ Ω directly, but that we have access to
a function δ: Ω × Ω → ℜ that behaves in such a way that we have agreed to interpret δ (ω1,
ω2) as the “dissimilarity” of outcomes ω1 and ω2. We assume that δ (ω1, ω2) ≥ 0, that δ (ω,
ω) = 0, and that δ (ω1, ω2) = δ (ω2, ω1) If we draw ω1, …, ωn ~ , then the data available
for semisupervised learning comprise the dissimilarity matrix, Δ = [δ (ωi, ωj)], plus
whatever labels of the ωi may be known. The challenge is to construct a classifer from these
data.

There is an extensive literature on semisupervised learning, although most researchers have
studied experiments in which ω ∈ Ω is observed directly. The importance of semisupervised
learning derives from the fact that it is often much easier to observe the features of objects
(or the dissimilarities between objects) than it is to acquire class labels for objects. When
this is the case, as it often is in image recognition and classification, natural language
processing, hypertext categorization, remote sensing, etc., a data set may comprise many
unlabeled outcomes and relatively few labeled outcomes. Rather than discard the unlabeled
outcomes during training, semisupervised learning methods attempt to extract information
from the entire data set.

Comprehensive surveys of semisupervised learning include technical reports by Seeger
(2000) and Zhu (2006), and a forthcoming book by Chapelle et al. (2006). Popular
approaches to semisupervised learning include imputation and co-training. The former
approach uses the EM algorithm (Dempster et al., 1977) to impute missing labels during
training, as in McCallum et al. (2000). The latter approach, proposed by Blum and Mitchell
(1998), assumes that two distinct “views” of an object can be distinguished, e.g., words
occurring on a web page and words occurring in hyperlinks that point to that page. Separate
classifiers are trained on each view, then used to enlarge the training set of the other.
Perhaps unsurprisingly, semisupervised learning methods tend to outperform traditional
supervised learning methods that ignore unlabeled observations.

2. Embedding
Suppose that the representation space is ℜd. Embedding an n × n dissimilarity matrix Δ =
[δij] in ℜd means constructing a configuration of points, x1, …, xn ∈ ℜd, in such a way that
the interpoint distances, ||xi − xj||, approximate the dissimilarities, δij. In psychometrics and
statistics, techniques for embedding are called multidimensional scaling (MDS). The vast
literature on MDS includes monographs, e.g., Cox and Cox (1994), Borg and Groenen
(1997) and Everitt and Rabe-Hesketh (1997); expositions in multivariate statistics texts, e.g.,
Mardia et al. (1979, Chapter 14), Seber (1984, Section 5.5), Everitt and Dunn (1991,
Chapter 5), and Krzanowski and Marriott (1994, Chapter 5); and surveys, e.g., Kruskal
(1977), Carroll and Arabie (1980), de Leeuw and Heiser (1982), Trosset (1997), and Carroll
and Arabie (1998).

Standard MDS methods produce finite configurations of points, not maps between spaces.
However, the case for semisupervised learning is clarified by imagining an embedding
methodology that does produce a map from Ω to ℜd. Let ℳ = {Mθ : θ ∈ Θ} denote a
parametric family of possible embedding maps. (The question of how to choose an
appropriate and tractable family is crucial, but does not concern us here.) Let
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an error criterion inspired by the raw stress criterion. The optimal embedding map chooses
θ*(P) to minimize T (θ; P). If we could observe ω1, …, ωn ~ P, then we could form the
empirical distribution, P̂n, and estimate θ*(P) by minimizing T (θ; P ̂n). Then, under suitable
regularity conditions, it should be the case that θ*(P̂n) → θ*(P) as n → ∞.

The parametric embedding techniques described above are currently under development and
are not yet available for analyzing dissimilarity data. Nevertheless, the case for
semisupervised learning is the argument that one can construct a better representation space
by using all of the dissimilarities instead of only the dissimilarities between labeled subjects.
One must exercise considerable caution in making this case. To whatever extent an
embedding is optimal, it is optimal only in the sense of how faithfully x1, …, xn ∈ ℜd

approximate ω1, …, ωn ∈ Ω—there is no guarantee that the best representation of Ω is the
representation that is most useful for classification. This is precisely the distinction, to which
we now turn, between principal components and discriminant coordinates: the first d
principal components are optimal for summarizing the data, but they may be very different
from the first d discriminant coordinates, which are optimal for classifying the data.

For simplicity – and for other reasons that will become apparent – we will rely on classical
multidimensional scaling (CMDS) to embed Δ in ℜd. CMDS was introduced by Torgerson
(1952) and subsequently analyzed by Gower (1966), who noted its intimate relation to
principal component analysis (PCA).

2.1. Principal component analysis
We briefly review PCA. Let Y denote an n × q data matrix, in which each row corresponds
to a subject and each column corresponds to a measurement variable. The subject profiles,
i.e., the n rows of Y, are n points in ℜq; the variable profiles, i.e., the q columns of Y, are q
points in ℜn. To center the data, i.e., to translate the subject profiles so that their mean lies at
the origin of ℜq, let e = (1, …, 1)t ∈ ℜn, let I denote the n × n identity matrix, and let P = I
− eet / n. Then P is a projection matrix and the centered data matrix is Ỹ = PY. The column
sums of Ỹ; vanish; hence, after centering, the variable profiles lie in the (n − 1)-dimensional
subspace e⊥ ⊂ ℜn.

Consider two matrices of inner products:

1. Ỹ t Ỹ is the variable inner product matrix, i.e., the q × q matrix of inner products
between columns of Ỹ. This matrix is sometimes called the total sum-of-squares
matrix. Upon dividing it by n − 1 or (depending on the author) n, one obtains the
sample covariance matrix.

2. Ỹ Ỹt is the subject inner product matrix, i.e., the n × n matrix of inner products
between rows of Ỹ.

It is well-known but, perhaps, insufficiently emphasized that the principal component
representation of Y can be extracted from the subject inner product matrix.

Let
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denote the singular value decomposition of the centered data matrix, where Σ = diag(σ1, …,
σr) and σ1 ≥ ··· ≥ σr > 0 are the singular values of Ỹ. Let Σd = diag(σ1, …, σd) and let U =
[Ud |·]. Then

is the spectral decomposition of the subject inner product matrix and the inner product
matrix

is the best (in the sense of Frobenius norm, i.e., squared error) rank-d approximation of B.
The rows of the n × d data matrix Ud Σd are the d-dimensional principal component scores;
thus, the d-dimensional principal component representation of the data can be extracted from
the pairwise inner products between the subjects.

2.2. Classical multidimensional scaling
Having noted that the principal component representation of Y can be extracted from the
subject inner product matrix ỸỸt, CMDS is easily described. Let D(Y) denote the n × n
matrix of pairwise Euclidean distances between the rows of Y, let D2(Y) denote the
corresponding matrix of squared Euclidean distances, and define a linear transformation τ by
τ (A) = − PAP /2. It is easily checked that τ (D2(Y)) = ỸỸt, i.e., τ converts squared Euclidean
distances to Euclidean inner products.

Now let Δ denote the n × n matrix of pairwise dissimilarities and let Δ2 denote the
corresponding matrix of squared dissimilarities. If the dissimilarities are Euclidean
distances, then τ (Δ2) is an inner product matrix B. Regarding B as the subject inner product
matrix, CMDS extracts the principal component representation. More generally, when τ (Δ2)
is not an inner product matrix, CMDS approximates τ (Δ2) with the nearest inner product
matrix of rank d, say B̄, treats B̄ as the subject inner product matrix, and extracts the
principal component representation from B̄.

3. Learning
Our concern is with supervised learning from dissimilarity data. Presumably, therefore, we
prefer discriminant coordinates to principal components. Following Trosset (2004), we
consider how to compute inner products of points represented in discriminant coordinates. If
these inner products can be derived from the pairwise Euclidean distances between the
subject profiles, then we can extend the construction of discriminant coordinates to the case
of dissimilarity data.
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3.1. Discriminant coordinates
Let Xi denote an ni × d data matrix for class i and write

Let x̄ ∈ ℜd denote the grand mean of all subject profiles, let x̄i ∈ ℜd denote the group mean
for class i, and let X̃i denote Xi centered at x̄i. Then two d × d matrices are crucial for LDA:

the pooled within-group sum-of-squares matrix, and

the between-group sum-of-squares matrix.

LDA attempts to identify directions in which between-group variation is large relative to
within-group variation. Assuming that W is invertible, we form W−1B and compute its
spectral decomposition,

For p ≤ rank (W−1B) ≤ k − 1, let q1, …, qp denote the first p eigenvectors of W−1B. These
eigenvectors are the desired directions of maximal class separation. Some authors refer to
them as canonical variates, but this terminology is not specific to discrimination. Following
Gnanadesikan (1977) and Seber (1984), we prefer the more descriptive phrase discriminant
coordinates.

Let Qp = [q1 ··· qp]. The representation of X in discriminant coordinates is

with inner products

Because , the d × d matrix  is a low-rank approximation of W−1, so the
Euclidean inner product in discriminant coordinates approximates the Mahalanobis inner
product in the original coordinates. We would like to estimate these inner products directly
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from dissimilarity data, then extract the corresponding principal component representation to
obtain Z.

To construct Z from Δ, we see no alternative to estimating X and Qp separately. But
estimating X from Δ is MDS. Furthermore, estimating Qp from Δ necessarily entails CMDS.
To understand why, consider that τ(Δ2) ≈ X̃ X̃t. We need covariance information to compute
the Mahalanobis inner product, i.e., we need X̃t X̃. The only way to pass from X̃ X̃t to X̃t X̃ is
to factor the former matrix, explicitly identify X, then reverse the order of multiplication—
and factoring an inner product matrix is CMDS.

The preceding arguments led Trosset (2004) to endorse a two-stage methodology: first
embed (M) by CMDS, then label (L) by LDA. Previously, Anderson and Robinson (2003)
studied the same two-stage methodology, describing multi-response permutation test
statistics (for testing differences between groups) and deriving their asymptotic permutation
distributions. The authors of both papers considered this methodology in the case of
completely labeled objects, i.e., as a fully supervised procedure. However, training M is
unsupervised and training L is supervised; hence, training L ◦ M is in fact semisupervised.
This insight creates additional possibilities: unlabeled objects that cannot be used when
training L can be exploited when training M.

3.2. Model selection
Decoupling the activities of embedding and classifying permits a semisupervised approach
to learning from dissimilarity data, but it also poses a critical model selection problem.
Given Δ, the embedding stage constructs x1,…, xn ∈ ℜd, which are then subjected to LDA.
How should one choose the number of dimensions, d, in which to embed?

When MDS is used to display dissimilarity data in ℜd, d is inevitably chosen to facilitate
easy visualization, e.g., d = 2 or d = 3. More dimensions permit more faithful representation;
however, in the case of what Torgerson (1952) called “fallible data,” this may result in the
faithful representation of noise. For example, if the dissimilarities are fallible measurements
of a molecule’s interatomic distances, then we would prefer d = 3 to d > 3 because the
structure that we are attempting to reconstruct is 3-dimensional.

When embedding precedes classification, the demands of visualization might dictate p = 2
or p = 3 discriminant coordinates, but there is no a priori reason to restrict the intermediate
step of embedding Δ in ℜd to d = p. Indeed, if the crucial directions for discriminating the
classes are not directions of large variation, then it may be necessary to choose a large value
of d in order to capture crucial information. But simply choosing d large is fraught with
peril, as illustrated by the following example.

Pseudorandom samples of ni = 10 subject profiles were drawn from each of k = 3
distributions, resulting in an n × n dissimilarity matrix, Δ, of n = 30 labeled subjects. We
defer explaining precisely how Δ was obtained, instead proceeding directly to the question
of how to embed Δ in p = 2 discriminant coordinates.

The first step is a spectral analysis of the 30 × 30 matrix τ (Δ2). We found 17 positive
eigenvalues, displayed in the second column of Table 1. Because negative eigenvalues
correspond to non-Euclidean structure in Δ, the best (in the sense defined by CMDS)
Euclidean representation of Δ is obtained in ℜ17. We must choose ℜd with d ∈ {1, …, 17}.
Of course, d ≥ 2 is necessary if we are to compute p = 2 discriminant coordinates.

It is not clear how to proceed. If we only desired a faithful representation of Δ, then we
might choose d large enough to account for a comfortable proportion of the total variation
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that can be represented in Euclidean space. For example, d = 3 allows us to represent
78.69% of the total Euclidean variation, while d = 6 allows us to represent 90.81% and d = 9
allows 97.24%. However, by not representing all of the variation, one risks suppressing
crucial information needed to discriminate the classes.

To measure the degree of class separation, we computed univariate F ratios with respect to
each discriminant coordinate, obtaining the quantities in the last two columns of Table 1.
(To facilitate interpretation, note that the 0.95 quantile of an F distribution with 2 and 27
degrees of freedom is 3.354.) These results suggest that d = 3 is too small for effective
discrimination.

Both F1 and F2 increase with d. What does this mean? On the one hand, it might mean that
information that is essential for discrimination is not captured by the directions of greatest
variation. Note the substantial increase in F2 as one passes from d = 9 to d = 10, as well as
the substantial increase in F1 as one passes d = 11 to d = 12. On the other hand, one should
consider that nominal discrimination becomes intrinsically easier as d increases. If d ≥ n −
1, then LDA will discriminate perfectly, regardless of class structure, which is why LDA
with large numbers of variables is discouraged.

Indeed, for the present example, the 30 subject profiles were drawn from one bivariate
normal distribution with covariance matrix I2. Euclidean interpoint distances dij were
computed, then contaminated by drawing from the error model

where εij ~ Normal(0, 0.1). The population structure that underlies these fallible
dissimilarities is 2-dimensional; choosing d > 2 only succeeds in representing noise with
greater fidelity. Separate classes do not exist. Our apparent ability to better separate the
designated classes by embedding Δ in more dimensions is an illusion.

When constructing discriminant coordinates from dissimilarity data, the dimension, d, in
which Δ is initially embedded should be regarded as a smoothing parameter for the
subsequent LDA. As with any smoothing parameter, the choice of d involves a tradeoff
between underfitting and overfitting. The antidote is the same: cross-validation, or some
other procedure for balancing model fit and model complexity. Anderson and Robinson
(2003, Section 2.4) proposed three ways to choose d, including leave-one-out cross-
validation.

3.3. Out-of-sample classification
Inherent in cross-validation are the concepts of training data, from which a classifier is
constructed, and test data, to which the classifier is applied. In traditional methods for
supervised learning, the distinction between training and test data is unambiguous. Only
labeled subjects can be used to construct the classifier. The labels of the test subjects are
withheld, to be compared to the predictions made by the classifier. Because the test subjects
thus assume a temporary identity as unlabeled subjects, it is not possible to use the test
subjects to augment the training subjects in constructing the classifier that will then be used
to classify the test subjects. In contrast, the semisupervised methods that we have described
admit the possibility of using unlabeled subjects to facilitate construction of the Euclidean
representation in which classification is then performed. In this setting, when a set of
subjects (including possibly some unlabeled subjects) is augmented with additional
unlabeled subjects that require classification, there are two ways to proceed:
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1. The exclusive approach to out-of-sample classification:

Use the additional dissimilarities to embed (e.g., by CMDS) the out-of-sample
subjects in the Euclidean representation of the original subjects. Use the classifier
that was trained on the original subjects (e.g., LDA) to label the out-of-sample
subjects.

The exclusive approach maintains a fixed representation of the original subjects.
Thus, the nominal classification of the original subjects is not affected by the
introduction of additional subjects. However, this approach does not exploit
whatever additional information the out-of-sample subjects might provide about
how to construct a Euclidean representation of the data.

The exclusive approach also entails a technical difficulty, viz., how to embed out-
of-sample subjects in a previously constructed configuration. For CMDS, this out-
of-sample embedding problem is nontrivial. In an accompanying paper (Trosset and
Priebe, 2008), we demonstrate how to solve the out-of-sample problem for CMDS
by solving an unconstrained nonlinear least-squares problem. The objective
function is a fourth-order polynomial, easily minimized by standard gradient-based
methods for numerical optimization. In our experience to date, nonglobal
minimizers have not been a problem.

2. The inclusive approach to out-of-sample classification:

Use the entire set of dissimilarities to re-embed (e.g., by CMDS) all of the subjects
in a new Euclidean representation. Using the new representation, train a new
classifier (e.g., LDA) on the original subjects, then use it to label the out-of-sample
subjects.

The inclusive approach exploits additional information provided by the out-of-
sample subjects to construct a new Euclidean representation. As a result, the
original subjects are re-configured and the classifier changes, as may the nominal
classification of the original points.

The inclusive approach repeats the entire semisupervised analysis each time that
additional data is collected. Whether or not such repetition is more expensive than
inserting additional subjects into an existing configuration will depend on the
numbers of subjects involved.

3.4. Sphericity
We have worried about the possibility that the principal component directions of the entire
data set may be very different from the directions that most effectively discriminate classes.
There is one situation in which these two sets of directions are necessarily aligned, hence in
which the semisupervised approach is guaranteed to be asymptotically superior to the fully
supervised approach.

Theorem 1—Suppose that Ω = ℜq and that P is given by (1), with class means μi and
spherical class covariance matrices . Then population discriminant coordinate i coincides
with population principal component i.

Proof—Let E denote expectation with respect to P and let Ei denote expectation with
respect to Pi. Then
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and

The population principal components are the eigenvectors of W + B, which are also the
eigenvectors of B because W = t2I, and the population discriminant coordinates are the
eigenvectors of W−1B = B/t2.

Despite not observing y1, …, yn ~ P, the assumption of spherical covariances can be tested
using δij = || yi − yj ||. Let Δ(i) denote the within-class dissimilarity matrices for the labeled
subjects. The likelihood ratio statistic for testing the sphericity of a covariance matrix is a
function of the eigenvalues of the sample covariance matrix Seber (1984, Section 3.5.4), and
these eigenvalues are also the eigenvalues of τ (Δ2(i)). Unfortunately, this procedure does
extend transparently to the case of fallible dissimilarities. In the example discussed in
Section 3.2, the population covariance matrix was spherical, but the noise that contaminated
the dissimilarities introduced spurious dimensions with apparently smaller variation. To test
sphericity in this case, one must first discard spurious dimensions.

For the data displayed in Table 1, it was not clear which dimensions were spurious. These
data were generated by drawing n = 30 subject profiles from a single bivariate population
with spherical covariance, then contaminating the Euclidean interpoint distances. If we
instead draw n = 300 subject profiles, then it becomes considerably easier to distinguish the
spurious dimensions. For example, we performed this experiment and observed that τ(Δ2)
had 151 positive eigenvalues, the largest 20 of which were as follows:

299.80 286.33 26.00 24.11 23.89 23.64 22.87 21.3 20.97 20.53

19.37 18.95 18.38 17.76 17.23 16.97 16.74 16.6 16.34 15.97

With these data, it does not require much imagination to guess that the underlying
population is 2-dimensional with spherical covariance.

4. Example 1: Simulated dissimilarity data
To illustrate the concepts described in the preceding sections, we performed a simple
simulation experiment. We began by drawing 200 objects from a bivariate normal
distribution with population mean vector μ0 = (0, 0)t and another 200 objects from a
bivariate normal distribution with population mean vector μ0 = (1, 0)t. Both distributions had
population covariance matrix
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From these 400 objects, we computed pairwise Euclidean distances, then multiplied each
distance by exp(εij), where each εij ~ Normal(0, 0.005), to obtain a 400×400 dissimilarity
matrix, Δ. The challenge was to discriminate between the populations using Δ, together with
labels for a small subset of the 400 objects. Notice that the populations were chosen so that
the second principal component is the direction that best discriminates the populations.

For each of 100 replications of the experiment, we chose simple random samples of 10
objects from each sample of 200 objects. These 20 objects were labeled. We then performed
four analyses:

1. Supervised Learning in ℜ2. Using only the pairwise dissimilarities between the 20
labeled objects, we used CMDS to construct a configuration of 20 labeled points in
ℜ2. LDA was applied to these points and the number of nominal (resubstitution)
misclassification errors was recorded.

2. Semisupervised Learning in ℜ2. Using the pairwise dissimilarities between all 400
objects, we used CMDS to construct a configuration of 400 points in ℜ2. LDA was
applied to the 20 labelled points in this configuration and the number of nominal
misclassification errors was recorded.

3. Supervised Learning in ℜ1. Using only the pairwise dissimilarities between the 20
labeled objects, we used CMDS to construct a configuration of 20 labeled points in
ℜ1. LDA was applied to these points and the number of nominal misclassification
errors was recorded.

4. Semisupervised Learning in ℜ1. Using the pairwise dissimilarities between all 400
objects, we used CMDS to construct a configuration of 400 points in ℜ1. LDA was
applied to the 20 labelled points in this configuration and the number of nominal
misclassification errors was recorded.

Because d = 2 dimensions suffice to discriminate the populations, we would expect
semisupervised learning to outperform supervised learning in the 2-dimensional case.
Indeed, the semisupervised approach resulted in fewer nominal errors than the supervised
approach in 75 of 100 replications. (The supervised approach had fewer errors in 17
replications; the approaches tied in the remaining 8 replications.) On average, the
semisupervised approach resulted in 2.08 fewer nominal errors per replication than did the
supervised approach.

Because the first principal component is orthogonal to the discriminant coordinate, we
would not expect semisupervised learning to outperform supervised learning in the 1-
dimensional case. In this example, the two approaches performed almost identically, the
semisupervised approach resulting in an average of 0.10 more nominal errors per replication
than the supervised approach.

5. Example 2: Hippocampal dissimilarity data
Finally, we apply our methods to the problem of distinguishing patients with Alzheimer’s
disease (AD) from normal elderly subjects on the basis of how the shapes of their
hippocampi differ. Here, dissimilarities are obtained by (1) scanning individual whole brain
structure using high-resolution T1-weighted structural MRI (magnetic resonance imaging),
(2) segmenting the scans using FreeSurfer (see http://surfer.nmr.mgh.harvard.edu/fswiki for
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documentation and citations), and (3) measuring asymmetric pairwise dissimilarity by large
deformation diffeomorphic metric mapping (LDDMM), as described by Beg et al. (2005).
After symmetrizing, the methods described herein apply. Because of the extensive
preprocessing necessary to obtain the dissimilarities, learning strategies that operate directly
on feature vectors are not appropriate.

To illustrate our methods, we analyze data obtained from the left and right hippocampi of 38
Alzheimer’s patients and 57 normal elderly control subjects through the Biomedical
Informatics Research Network (http://www.rbirn.net). This is a subset of the data analyzed
by Miller et al. (submitted for publication), in which 6 patients with semantic dementia were
also considered. Step (1) was performed at Washington University, step (2) at the Martinos
Center at Massachusetts General Hospital, and step (3) at the Center for Imaging Science at
Johns Hopkins University. Step (2) was performed at two different times, first for a training
set of n = 39 subjects (18 AD patients and 21 normal elderly control subjects) and
subsequently for 56 additional test subjects. Complicating the task of classifying the test
subjects, the segmentation methodology used in step (2) had been modified in the interim.
Such a change in methodology could result in test data for which the training data are not
representative, thereby complicating the task of classifier construction. We do not pursue
that possibility here, as our present concern is with illustrating the semisupervised
methodology described in the preceding sections.

Each set (left and right) of asymmetric dissimilarities computed by LDDMM was
symmetrized by averaging, resulting in two 95 × 95 dissimilarity matrices, L and R. It is not
clear how to combine the information contained in L and R. Various approaches are
possible. Here, we embed L and R separately, then apply LDA to the product of these
representations. Because there are only two classes, LDA reduces to Fisher’s best linear
discriminator.

First, suppose that we had decided a priori to construct a 2-dimensional representation by
forming the product of the first principal components of the left and right embeddings. We
treat the training subjects as labeled, the test subjects as unlabeled, and compare three
procedures for classifying the test subjects:

1. Fully supervised classification with individual out-of-sample embedding.

Let L(train) and R(train) denote the 39 × 39 dissimilarity matrices for the training
subjects. Let Xl(train) denote the 39 × 1 configuration matrix that results from
applying CMDS to L(train) and let Xr(train) denote the 39 × 1 configuration matrix
that results from applying CMDS to R(train). Train a classifier by applying LDA to
the 39 × 2 configuration matrix X(train) = [Xl(train)|Xr(train)].

To apply the classifier so constructed, individually embed each of the 56 test
subjects in X(train). This is accomplished by applying the technique described in
Section 3 (the case of k = 1 out-of-sample point) of Trosset and Priebe (2008).
After embedding, use the classifier constructed from the training subjects to
classify the test subjects.

2. Fully supervised classification with simultaneous out-of-sample embedding.

Construct the same configuration and classifier as in the preceding procedure, then
simultaneously embed all 56 test subjects in X(train). This is accomplished by
applying the technique described in Section 5 (the case of k > 1 out-of-sample
points) of Trosset and Priebe (2008). After embedding, use the classifier
constructed from the training subjects to classify the test subjects.
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Note that this procedure exploits information about the relations between unlabeled
subjects, not in its fully supervised construction of a classifier, but in its
determination of the points to which that classifier will be applied. Depending on
one’s perspective, one might reasonably argue that this procedure is also a form of
semisupervised learning.

3. Semisupervised classification.

Let Xl denote the 95 × 1 configuration matrix that results from applying CMDS to L
and let Xr denote the 95 × 1 configuration matrix that results from applying CMDS
to R. Train a classifier by applying LDA to the 39 training subjects in the 95 × 2
configuration matrix X = [Xl|Xr], then apply that classifier to the 56 test subjects in
X.

The 2-dimensional configurations of 95 points constructed by each of the three preceding
procedures are displayed in Figs. 1 and 3. The first two procedures begin by using CMDS to
embed the 39 training subjects; hence, the coordinates of these subjects in Figs. 1 and 2 are
identical and the same decision boundary is obtained by LDA. The nominal
misclassification error rate of this classifier is 13/39 ≐ 0.33 (6 AD patients in the training
sample lie below the decision boundary, in the region identified with normal elderly
subjects; 7 normal elderly subjects in the training lie above the decision boundary, in the
region identified with AD patients), but this resubstitution estimate of the true probability of
misclassification is too optimistic because it is computed from the same subjects whose
labels were used to construct the classifier. Better estimates can be obtained by examining
the 56 test subjects.

To classify the test subjects, one must first embed them in the configuration of training
subjects. Figs. 1 and 2 display two different out-of-sample embeddings. In Fig. 1, each
training subject was embedded individually, without trying to approximate dissimilarities
between pairs of test subjects. The misclassification error rate for the test sample is 18/56 ≐
0.32.

In Fig. 2, the k = 56 test subjects were embedded simultaneously. In simultaneous out-of-
sample embedding, the error criterion includes test–test dissimilarities as well as test–train
dissimilarities. As a result, the positioning of the test subjects in Fig. 2 is different than in
Fig. 1. The estimated misclassification error rate is 17/56 ≐ 0.30.

The third procedure begins by using CMDS to embed all 95 subjects. As a result, the
configuration of 39 training subjects in Fig. 3 differs from the configuration of training
subjects in Figs. 1 and 2. This difference, in turn, results in a different decision boundary
when LDA is applied to the same test subjects. This classifier also has a misclassification
error rate of 13/39 ≐ 0.33 for the training sample and 17/56 ≐ 0.30 for the test sample.

What cannot be discerned from Figs. 2 and 3 is the extent of agreement between the second
and third procedures. This information is summarized in Table 2. There were 6 test subjects
(3 normal, 3 AD) that were classified as normal by the second procedure and as AD by the
third procedure; the two procedures agreed on the other 50 test subjects. One also discerns
that the normal test subjects were easier to classify than the AD test subjects. Only 5 of the
33 normal test subjects on which the second and third procedures agreed were misclassified,
an error rate of 0.15. In contrast, 9 of the 17 AD test subjects on which the second and third
procedures agreed were misclassified, an error rate of 0.53.

The illustrative 2-dimensional Euclidean representations displayed in Figs. 1 and 3 suggest
considerable overlap in the hippocampal shapes of AD patients and normal elderly. Perhaps
hippocampal shape is not systematically affected by AD, or perhaps these representations
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fail to capture critical information needed for better discrimination. We proceed to
investigate the latter possibility.

Each of the representations displayed in Figs. 1 and 3 was constructed by forming the
product of the first principal components from left and right embeddings. We now consider
a variety of Euclidean representations, constructed by forming products of the first dl
principal components of the left embedding and the first dr principal components of the right
embedding. Thus, in the case of semisupervised classification, if Xl is the 95 × dl
configuration matrix that results from applying CMDS to L and Xr is the 95 × dr
configuration matrix that results from applying CMDS to R, then X = [Xl|Xr] is a 95 × (dl +
dr) configuration matrix and LDA is applied to the 39 training subjects in X.

We considered dl, dr ∈ {0, 1,…, 6}, excepting the pair (0, 0). As in the previous example,
(dl, dr) = (1, 1), we used each of the three procedures described above to classify each of the
56 test subjects. The resulting numbers of misclassification errors are reported in Table 3.
Interpretation of these results is facilitated by considering that the test sample comprised 36
normal subjects and 20 AD patients. The expected number of misclassification errors that
would result from randomly classifying each test subject as normal with probability 1/2 and
AD with probability 1/2 is 28, and the probability of observing ≤ 20 errors is just 0.022.
However, classifying all test subjects as normal would result in 20 misclassification errors
and classifying all test subjects as AD would result in 36 errors. Hence, the expected number
of misclassification errors that would result from randomly choosing to classify all test
subjects as normal with probability 1/2 and AD with probability 1/2 is also 28, but the
probability of observing 20 errors is 0.500. How one assesses the performance of a classifier
that produces 20 misclassification errors depends on which of these models one uses for
comparison.

The numbers of test subjects classified as AD are reported in Table 4. For most (dl, dr), each
procedure classified some test subjects as normal and others as AD; hence, it seems
reasonable to assess the performances of these procedures by comparing them to the null
procedure that randomly classifies each test subject by a fair coin toss. The probability that
coin-tossing would produce ≤ 12 misclassification errors (the best result reported in Table 3,
by semisupervised classification for dl = 1 and dr = 3) is just 1.04 × 10−5. Although it is not
clear how to adjust this probability in light of 48 highly dependent analyses, it does provide
some evidence that hippocampal shape is predictive of AD.

Table 4 also reveals that fully supervised classification with simultaneous out-of-sample
embedding can behave quite differently than semisupervised classification. A dramatic
example occurs when dl = 2 and dr = 1. In this case, the former procedure classified 4 test
subjects as AD whereas the latter classified 38 test subjects as AD. Table 5 compares these
procedures in the more interesting case of dl = 1 and dr = 3. In this case, the procedures
disagreed on their labeling of 13 test subjects. For 12 of these 13 subjects, the fully
supervised procedure diagnosed AD when the semisupervised procedure did not.

The general picture that emerges from our results is that, properly represented, some AD
patients can be distinguished from normal elderly on the basis of hippocampal shape while
others overlap normal elderly. This finding is entirely plausible, as AD is progressive. It
would be interesting to investigate if the AD patients that could be distinguished from
normal were suffering from a more advanced stage of the disease. See Miller et al.
(submitted for publication) for further discussion of the effect of AD on hippocampal shape.

6. Discussion
We have described a two-stage approach to learning from dissimilarity data:
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1. Embed all objects (labeled and unlabeled) in a Euclidean space.

2. Train a classifier on the labeled objects in the Euclidean representation.

The embedding stage is not supervised: information from unlabeled objects can be used to
construct the representation in which classification will proceed. Thus, the entire procedure
is properly regarded as semisupervised.

We have analyzed the case in which linear discriminant analysis is used in the classification
stage. We argued in Section 3.1 that the use of LDA in the classification stage naturally
invites the use of classical multidimensional scaling in the embedding stage; hence, our
emphasis on CMDS followed by LDA. A significant challenge in implementing our
methods is the choice of the Euclidean space in which to embed the objects. This is a model
selection problem that involves the usual trade-off between underfitting (too few
dimensions) and overfitting (too many dimensions).

Fully supervised approaches must construct a Euclidean representation using only labeled
objects. The potential advantage of the semisupervised approach is its ability to exploit
additional information in the embedding stage. Whether or not this additional information
results in superior classifier performance depends on the extent to which the population
principal component directions estimated in the embedding stage contain the population
discriminant directions estimated in the classification stage. In the case of spherical
covariances, these directions are perfectly aligned and the semisupervised approach is
necessarily superior. The simulation study reported in Section 4 demonstrates that this
superiority is not restricted to the case of sphericity, but the choice of dimension is critical.

To classify unlabeled objects using the fully supervised approach, it is necessary to insert
these out-of-sample objects into the original Euclidean representation, then apply the
original classifier to the newly embedded out-of-sample objects. Thus, the fully supervised
approach necessitates solving an out-of-sample embedding problem. This can be
accomplished by the methods described in Trosset and Priebe (2008), either by embedding
each out-of-sample object individually or by embedding all out-of-sample objects
simultaneously. In contrast to individual embedding, simultaneous embedding exploits
information about the relations between the out-of-sample objects.

Our analysis of the pairwise dissimilarities of left and right hippocampal shapes for 95
human subjects demonstrates that the above procedures can produce dramatically different
results. In particular, there may be more than one globally optimal out-of-sample
embedding, so that the same fully supervised procedure may produce dramatically different
classifiers.
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Fig. 1.
A 2-dimensional Euclidean representation of 18 AD patients (★), 21 normal elderly control
subjects (◦), and 56 test subjects (●), constructed from dissimilarities in their hippocampal
shapes. The horizontal coordinates were obtained from the 1-dimensional CMDS embedding
of the left-side dissimilarities of the 39 training subjects; the vertical coordinates were
obtained from the 1-dimensional CMDS embedding of the corresponding right-side
dissimilarities. The 56 test subjects were then embedded individually, without trying to
approximate dissimilarities between test subjects. Compare the individual out-of-sample
embedding displayed here to the simultaneous out-of-sample embedding displayed in Fig. 2.
The line is the decision boundary that corresponds to Fisher’s best linear discriminator,
inferred from the 39 training subjects.
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Fig. 2.
A 2-dimensional Euclidean representation of 18 AD patients (★), 21 normal elderly control
subjects (◦), and 56 test subjects (●), constructed from dissimilarities in their hippocampal
shapes. The horizontal coordinates were obtained from the 1-dimensional CMDS embedding
of the left-side dissimilarities of the 39 training subjects; the vertical coordinates were
obtained from the 1-dimensional CMDS embedding of the corresponding right-side
dissimilarities. The 56 test subjects were then embedded simultaneously, in an attempt to
approximate dissimilarities between pairs of test subjects. Compare the simultaneous out-of-
sample embedding displayed here to the individual out-of-sample embedding displayed in
Fig. 1. The line is the decision boundary that corresponds to Fisher’s best linear
discriminator, inferred from the 39 training subjects.
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Fig. 3.
A 2-dimensional Euclidean representation of 18 AD patients (★), 21 normal elderly control
subjects (◦), and 56 test subjects (●), constructed from dissimilarities in their hippocampal
shapes. The horizontal coordinates were obtained from the 1-dimensional CMDS embedding
of the left-side dissimilarities of all 95 subjects; the vertical coordinates were obtained from
the 1-dimensional CMDS embedding of the corresponding right-side dissimilarities. The
line is the decision boundary that corresponds to Fisher’s best linear discriminator, inferred
from the 39 training subjects.
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Table 2

Performance of the classifiers in Figs. 2 and 3 on 56 test subjects, comprising 36 normal elderly control (NC)
subjects and 20 AD patients

Procedure 2 is fully supervised classification with simultaneous out-of-sample embedding; Procedure 3 is semisupervised classification.

Comput Stat Data Anal. Author manuscript; available in PMC 2010 April 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Trosset et al. Page 21

Ta
bl

e 
3

N
um

be
rs

 o
f m

is
cl

as
si

fic
at

io
n 

er
ro

rs
 (o

f 5
6)

 fo
r t

hr
ee

 c
la

ss
ifi

er
s c

on
st

ru
ct

ed
 fr

om
 1

8 
A

D
 p

at
ie

nt
s a

nd
 2

1 
no

rm
al

 e
ld

er
ly

 c
on

tro
l s

ub
je

ct
s

0
1

2
3

4
5

6

0
–|

–|
–

20
|3

6|
17

20
|3

6|
22

20
|3

6|
13

20
|3

6|
17

19
|3

6|
13

20
|3

6|
16

1
23

|2
1|

21
18

|1
7|

17
18

|1
7|

20
18

|1
7|

12
18

|1
7|

19
17

|1
6|

14
16

|2
2|

17

2
21

|2
2|

30
18

|(20 18
)|28

19
|2

3|
28

17
|1

7|
17

17
|(23 16

)|26
19

|(16 18
)|23

18
|2

1|
25

3
22

|2
3|

32
21

|2
0|

26
21

|2
1|

27
19

|2
2|

17
19

|2
6|

27
19

|1
7|

25
18

|2
4|

26

4
22

|2
3|

25
22

|2
1|

22
23

|2
2|

25
19

|2
3|

16
19

|2
6|

22
20

|1
7|

21
18

|2
5|

22

5
23

|2
3|

24
19

|1
6|

22
18

|1
5|

24
21

|1
7|

15
21

|1
8|

21
21

|1
5|

19
19

|2
2|

22

6
23

|2
3|

25
19

|1
7|

19
18

|1
8|

22
21

|1
7|

16
20

|2
0|

22
20

|1
5|

21
20

|2
1|

20

R
ow

s a
re

 la
be

le
d 

by
 d

l, 
co

lu
m

ns
 b

y 
d r

. T
he

 c
la

ss
ifi

er
s w

er
e 

co
ns

tru
ct

ed
 b

y 
LD

A
 in

 E
uc

lid
ea

n 
re

pr
es

en
ta

tio
ns

 w
ith

 d
l +

 d
r d

im
en

si
on

s. 
Th

e 
re

pr
es

en
ta

tio
ns

 w
er

e 
co

ns
tru

ct
ed

 fr
om

 d
is

si
m

ila
rit

ie
s i

n
hi

pp
oc

am
pa

l s
ha

pe
s b

y 
fo

rm
in

g 
th

e 
pr

od
uc

t o
f t

he
 d

l -
di

m
en

si
on

al
 C

M
D

S 
em

be
dd

in
g 

of
 le

ft-
si

de
 d

is
si

m
ila

rit
ie

s a
nd

 th
e 

d r
-d

im
en

si
on

al
 C

M
D

S 
em

be
dd

in
g 

of
 ri

gh
t-s

id
e 

di
ss

im
ila

rit
ie

s. 
Fo

r p
ro

ce
du

re
 (1

) a
nd

(2
), 

C
M

D
S 

w
as

 a
pp

lie
d 

to
 th

e 
39

 tr
ai

ni
ng

 su
bj

ec
ts

, t
he

n 
th

e 
56

 o
ut

-o
f-

sa
m

pl
e 

te
st

 su
bj

ec
ts

 w
er

e 
po

si
tio

ne
d 

in
 re

la
tio

n 
to

 th
e 

tra
in

in
g 

su
bj

ec
ts

. T
he

 o
ut

-o
f-

sa
m

pl
e 

em
be

dd
in

g 
w

as
 p

er
fo

rm
ed

 in
di

vi
du

al
ly

 fo
r

(1
), 

si
m

ul
ta

ne
ou

sl
y 

fo
r (

2)
. F

or
 p

ro
ce

du
re

 3
, C

M
D

S 
w

as
 a

pp
lie

d 
to

 a
ll 

95
 su

bj
ec

ts
. F

or
 e

ac
h 

(d
l, 

d r
), 

th
e 

th
re

e 
en

tri
es

 a
re

 th
e 

re
sp

ec
tiv

e 
nu

m
be

rs
 o

f e
rr

or
s f

or
 th

e 
th

re
e 

pr
oc

ed
ur

es
. T

he
 te

st
 sa

m
pl

e 
co

m
pr

is
ed

36
 n

or
m

al
 su

bj
ec

ts
 a

nd
 2

0 
A

D
 p

at
ie

nt
s;

 h
en

ce
, c

la
ss

ify
in

g 
al

l t
es

t s
ub

je
ct

s a
s n

or
m

al
 re

su
lts

 in
 2

0 
m

is
cl

as
si

fic
at

io
n 

er
ro

rs
. F

or
 d

l =
 2

 a
nd

 d
r =

 1
, 4

, 5
, t

he
re

 a
pp

ea
r t

o 
be

 tw
o 

di
ff

er
en

t g
lo

ba
lly

 o
pt

im
al

em
be

dd
in

gs
 fo

r p
ro

ce
du

re
 (2

), 
re

su
lti

ng
 in

 tw
o 

di
ff

er
en

t n
um

be
rs

 o
f e

rr
or

s.

Comput Stat Data Anal. Author manuscript; available in PMC 2010 April 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Trosset et al. Page 22

Ta
bl

e 
4

N
um

be
rs

 o
f t

es
t s

ub
je

ct
s c

la
ss

ifi
ed

 a
s A

D
 b

y 
th

e 
pr

oc
ed

ur
es

 d
es

cr
ib

ed
 in

 T
ab

le
 3

0
1

2
3

4
5

6

0
–|

–|
–

26
|5

6|
19

26
|5

6|
30

22
|5

6|
9

22
|5

6|
15

21
|5

6|
13

24
|5

6|
12

1
29

|2
7|

27
26

|1
3|

19
26

|2
5|

28
22

|2
1|

10
22

|2
1|

17
19

|1
8|

14
20

|2
8|

15

2
29

|3
4|

48
28

|(26 4
)|38

27
|3

1|
42

21
|9

|2
5

21
|(29 12

)|36
21

|(22 6
)|33

20
|3

1|
33

3
32

|3
7|

50
29

|2
8|

36
29

|3
1|

41
27

|3
4|

25
27

|4
2|

37
25

|2
9|

35
26

|4
2|

38

4
32

|3
9|

35
28

|2
9|

32
27

|3
2|

41
27

|3
5|

20
27

|4
0|

34
26

|2
9|

31
26

|4
3|

26

5
29

|2
9|

36
31

|1
4|

30
30

|1
7|

40
27

|2
1|

23
27

|2
4|

33
27

|1
7|

29
27

|3
4|

28

6
29

|2
9|

35
31

|1
7|

27
30

|2
4|

38
27

|2
1|

24
26

|2
6|

36
26

|1
7|

33
30

|2
7|

26

Th
e 

te
st

 sa
m

pl
e 

co
m

pr
is

ed
 5

6 
su

bj
ec

ts
, o

f w
ho

m
 2

0 
w

er
e 

A
D

 p
at

ie
nt

s. 
N

ot
ic

e 
th

at
 th

e 
tw

o 
di

ff
er

en
t s

im
ul

ta
ne

ou
s e

m
be

dd
in

gs
 o

bt
ai

ne
d 

fo
r d

l =
 2

 a
nd

 d
r =

 1
, 4

, 5
 re

su
lte

d 
in

 v
er

y 
di

ff
er

en
t c

la
ss

ifi
er

s.

Comput Stat Data Anal. Author manuscript; available in PMC 2010 April 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Trosset et al. Page 23

Table 5

Performance of two classifiers on 56 test subjects, comprising 36 normal elderly control (NC) subjects and 20
AD patients

In contrast to Table 2, in which the subjects were represented in dl = 1 plus dr = 1 dimensions, here the subjects were represented in dl = 1 plus dr
= 3 dimensions. Procedure 2 is fully supervised classification with simultaneous out-of-sample embedding; Procedure 3 is semisupervised
classification.
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