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Abstract

Multivariate interaction between two or more classes (or species) has important consequences in many
fields and causes multivariate clustering patterns such as segregation or association. The spatial segregation
occurs when members of a class tend to be found near members of the same class (i.e., near conspecifics)
while spatial association occurs when members of a class tend to be found near members of the other class
or classes. These patterns can be studied using a nearest neighbor contingency table (NNCT). The null
hypothesis is randomness in the nearest neighbor (NN) structure, which may result from — among other
patterns — random labeling (RL) or complete spatial randomness (CSR) of points from two or more classes
(which is called the CSR independence, henceforth). In this article, we introduce new versions of overall
and cell-specific tests based on NNCTs (i.e., NNCT-tests) and compare them with Dixon’s overall and
cell-specific tests. These NNCT-tests provide information on the spatial interaction between the classes at
small scales (i.e., around the average NN distances between the points). Overall tests are used to detect
any deviation from the null case, while the cell-specific tests are post hoc pairwise spatial interaction tests
that are applied when the overall test yields a significant result. We analyze the distributional properties
of these tests; assess the finite sample performance of the tests by an extensive Monte Carlo simulation
study. Furthermore, we show that the new NNCT-tests have better performance in terms of Type I error
and power. We also illustrate these NNCT-tests on two real life data sets.
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1 Introduction

Multivariate clustering patterns such as segregation or association. result from multivariate interaction be-
tween two or more classes (or species). Such patterns are of interest in ecological sciences and other application
areas. See, for example, [Pielou (1961), Whippld (1980), and Dixon (1994, 2002). For convenience and gen-
erality, we refer to the different types of points as “classes”, but the class can stand for any characteristic of
an observation at a particular location. For example, the spatial segregation pattern has been investigated
for species (@ (@)), age classes of plants (Hamill and Wrightl (1986)), fish species (Herler and Patzner
M)), and sezes of dioecious plants (Nanami et all (1999)). Many of the epidemiological applications are
for a two-class system of case and control labels (Waller and Gotway (2004)). These methods can also be
applied to social and ethnic segregation of residential areas. For simplicity, we discuss the spatial interaction
between two and three classes only; the extension to the case with more classes is straightforward. The
null pattern is usually one of the two (random) pattern types: random labeling (RL) or complete spatial
randomness (CSR). We consider two major types of spatial clustering patterns as alternatives: segregation
and association. Segregation (association) occurs when objects of a given class have NNs that are more (less)
frequently of the same (other) class than would be expected if there were randomness in the NN structure.

In statistical and other literature, many univariate and multivariate spatial clustering tests have been
proposed (Kulldorff (2006)). These include comparison of Ripley’s K (t) and L(t) functions (Ripleyl (2004)),
comparison of nearest neighbor (NN) distances (Cuzick and Edwards (1990), Diggld (2003)), and analysis
of nearest neighbor contingency tables (NNCTs) which are constructed using the NN frequencies of classes
(Piclou (1961), Meagher and Burdick (1980)). [Pielou (1961) proposed various tests and (1994) intro-
duced an overall test of segregation, cell-specific and class-specific tests based on NNCTs in a two-class setting
and extended his tests to multi-class case in (2002)).

In this article, we introduce new overall and cell-specific tests of segregation based on NNCTs for testing
spatial clustering patterns in a multi-class setting. We compare these tests with Dixon’s NNCT-tests which
are introduced for testing against the RL of points (m)) We extend the use of these tests for
the CSR independence pattern also. We also compare the NNCT-tests with Ripley’s K or L-functions and
pair correlation function g(t) (Stoyan and Stoyan (1994)), which are methods for second-order analysis of the
point pattern. We only consider completely mapped data; i.e., for our data sets, the locations of all events in
a defined area are observed. We show through simulation that Dixon’s cell-specific test can have undesirable
properties in some situations. The newly proposed cell-specific tests perform better (in terms of empirical size
and power) than Dixon’s cell-specific tests. Likewise the new overall test tends to have higher power compared
to Dixon’s overall test under segregation of the classes. Furthermore, we demonstrate that NNCT-tests and
Ripley’s L-function (and related methods) answer different questions about the pattern of interest.

We provide the null and alternative patterns in Section [2] describe the NNCTs in Section [ provide the
cell-specific tests in Section @] overall tests in Section [ empirical significance levels in the two- and three-
class cases in Sections and [Tl respectively, rejection rates of the tests under various Poisson processes
in Section [} empirical power comparisons under the segregation and association alternatives in the two-class
case in Section [ in the three-class case in Section [[0] examples in Section [[Il and our conclusions and
guidelines for using the tests in Section

2 Null and Alternative Patterns

In this section, for simplicity, we describe the spatial point patterns for two classes only; the extension to
multi-class case is straightforward.

In the univariate spatial point pattern analysis, the null hypothesis is usually complete spatial randomness
(CSR) (2003)). Given a spatial point pattern P = {X;(D),i = 1,...,n: D C R?} where X;(D) is
the Bernoulli random variable denoting the event that point ¢ is in region D. The pattern P exhibits CSR if
given n events in domain D, the events are an independent random sample from a uniform distribution on
D. This implies there is no spatial interaction, i.e., the locations of these points have no influence on one
another. Furthermore, when the reference region D is large, the number of points in any planar region with
area A(D) follows (approximately) a Poisson distribution with intensity A and mean X - A(D).



To investigate the spatial interaction between two or more classes in a multivariate process, usually there
are two benchmark hypotheses: (i) independence, which implies two classes of points are generated by a pair
of independent univariate processes and (ii) random labeling (RL), which implies that the class labels are
randomly assigned to a given set of locations in the region of interest (@)) In this article, we will
consider two random pattern types as our null hypotheses: CSR of points from two classes (this pattern will
be called the CSR independence, henceforth) or RL. In the CSR independence pattern, points from each of
the two classes independently satisfy the CSR pattern in the region of interest. On the other hand, random
labeling (RL) is the pattern in which, given a fixed set of points in a region, class labels are assigned to these
fixed points randomly so that the labels are independent of the locations. So RL is less restrictive than CSR,
independence. CSR independence is a process defining the spatial distribution of event locations, while RL
is a process, conditioned on locations, defining the distribution of labels on these locations.

Our null hypothesis is
H, : randomness in the NN structure.

Although RL and CSR independence are not same, they lead to the same null model in tests using NNCT,
which does not require spatially-explicit information. That is, when the points from two classes are assumed
to be independently uniformly distributed over the region of interest, i.e., under the CSR independence
pattern, or when only the labeling (or marking) of a set of fixed points, where the allocation of the points
might be regular, aggregated, or clustered, or of lattice type, is considered, i.e., under the RL pattern, there
is randomness in the NN structure. The distinction between RL and CSR independence is very important
when defining the appropriate null model in practice, i.e., the null model depends on the particular ecological
context. (Goreaud and Pélissier M) state that CSR independence implies that the two classes are a priori
the result of different processes (e.g., individuals of different species or age cohorts), whereas RL implies
that some processes affect a posteriori the individuals of a single population (e.g., diseased vs. non-diseased
individuals of a single species). We provide the differences in the proposed tests under these two patterns.

We treat CSR independence or RL as the main null model of interest, since this is the logical point of
departure (@)) However, in the ecological and epidemiological settings, CSR independence is the
exception rather than rule. Furthermore, it is conceivable for other models to imply randomness in the NN
structure also. We also consider patterns that deviate from stationarity or homogeneity in the point process.
In particular, we consider various types of Poisson cluster processes m )) and other inhomogeneous
Poisson processes (Baddeley and Turner (2005)). Randomness in the NN structure will hold if both classes
independently follow the same process with points having the same support. For example, in a Poisson cluster
process, NN structure will be random if parents are the same for each class. If classes have different parent
sets, then the Poisson cluster process will imply segregation of the classes. If parent and offspring sets are
treated as two different classes, then Poisson cluster process will imply association of the two classes. Further,
if the two classes are from the same inhomogeneous Poisson pattern, again randomness in the NN structure
will follow. But when the two classes follow different inhomogeneous Poisson patterns whose point intensities
differ in space, it might imply the segregation or association of the classes.

As clustering alternatives, we consider two major types of spatial patterns: segregation and association.
Segregation occurs if the NN of an individual is more likely to be of the same class as the individual than to
be from a different class; i.e., the members of the same class tend to be clumped or clustered (see, e.g.,
(I@l)) For instance, one type of plant might not grow well around another type of plant and vice versa. In
plant biology, one class of points might represent the coordinates of trees from a species with large canopy,
so that other plants (whose coordinates are the other class of points) that need light cannot grow (well or at

all) around these trees. See, for instance, (Dixon (1994); |Coomes et al! (1999)).

Association occurs if the NN of an individual is more likely to be from another class than to be of the
same class as the individual. For example, in plant biology, the two classes of points might represent the
coordinates of mutualistic plant species, so the species depend on each other to survive. As another example,
one class of points might be the geometric coordinates of parasitic plants exploiting the other plant whose
coordinates are of the other class. In epidemiology, one class of points might be the geographical coordinates
of residences of cases and the other class of points might be the coordinates of the residences of controls.

Each of the two patterns of segregation and association are not symmetric in the sense that, when two
classes are segregated (or associated), they do not necessarily exhibit the same degree of segregation (or
association). For example, when points from each of two classes labeled as X and Y are clustered at different
locations, but class X is loosely clustered (i.e., its point intensity in the clusters is smaller) compared to class



Y. So classes X and Y are segregated but class Y is more segregated than class X. Similarly, when class Y
points are clustered around class X points but not vice versa, classes Y and X are associated, but class Y is
more associated with class X compared to the other way around. Many different forms of segregation (and
association) are possible. Although it is not possible to list all segregation types, its existence can be tested
by an analysis of the NN relationships between the classes (@

3 Nearest Neighbor Contingency Tables

NNCTs are constructed using the NN frequencies of classes. We describe the construction of NNCTs for
two classes; extension to multi-class case is straightforward. Consider two classes with labels {1,2}. Let N;
be the number of points from class i for i € {1,2} and n be the total sample size, so n = N7 + Ny. If we
record the class of each point and the class of its NN, the NN relationships fall into four distinct categories:
(1,1), (1,2); (2,1), (2,2) where in cell (i,75), class i is the base class, while class j is the class of its NN.
That is, the n points constitute n (base, NN) pairs. Then each pair can be categorized with respect to the
base label (row categories) and NN label (column categories). Denoting N;; as the frequency of cell (4, j)
for i,j € {1,2}, we obtain the NNCT in Table [[] where C; is the sum of column j; i.e., number of times
class j points serve as NNs for j € {1,2}. Furthermore, N;; is the cell count for cell (i,5) that is the count
of all (base, NN) pairs each of which has label (i,j). Note also that n = 37, ; Nij; n; = E?Zl N;j; and

C; = Z?:l N;;. By construction, if N;; is larger than expected, then class j serves as NN more frequently to
class 7 than expected, which implies segregation if i = j and association of class j with class i if ¢ # j. On the
other hand, if V;; is smaller than expected, then class j serves as NN less frequently to class ¢ than expected,
which implies lack of segregation if ¢ = j and lack of association of class j with class 7 if i # j. Furthermore,
we adopt the convention that variables denoted by upper case letters are random quantities, while variables
denoted by lower case letters fixed quantities. Hence, column sums and cell counts are random, while row
sums and the overall sum are fixed quantities in a NNCT.

NN class
class1 class 2 | sum
lass 1 N N n
1 C 11 12 1
base class class 2 N21 N22 N9
sum Ch Cy n

Table 1: The NNCT for two classes.

PPielod M) used Pearson’s x2 test of independence for testing segregation. Due to the ease in com-

putation and interpretation, Pielou’s test of segregation is used frequently (Meagher and Burdick (1980))
for both completely mapped and sparsely sampled data. For example, Pielou’s test is used for the segre-

%[atlon between males and females in dioecious species (see, e.g., [Herrera (|_9_8_8 and [Armstrong and Irvine

)) and between different species (Good and Whippld (I_'L%ﬂ)) However Pielou’s test is not appropriate
for completely mapped data (IMeaghﬁrjnd_B;ude dl_%_d), Dixonl dl_9_9_4| ), since the x? test of independence
requires independence between cell-counts (and rows and columns also), which is violated under RL or CSR
independence. In fact, this independence between cell-counts is violated for spatial data in general and in
particular it is violated under the null patterns, so Pielou’s test is not of the desired size. This problem was
first noted by [Meagher and Burdick (1980) who identify the main source of it to be reflexivity of (base, NN)
pairs. A (base, NN) pair (X,Y) is reflezive if (Y, X; is also a (base, NN) pair. As an alternative, they suggest
using Monte Carlo simulations for Pielou’s test. (@ derived the appropriate asymptotic sampling
distribution of cell counts using Moran join count statistics )) and hence the appropriate test
which also has a y2-distribution asymptotically. ) also states that although Pielou’s test is not
appropriate for completely mapped data, it may be appropriate for sparsely sampled data.

4 Cell-Specific Tests of Segregation

In this section, we describe Dixon’s cell-specific test of segregation and introduce a new type of cell-specific
test based on NNCTs.



4.1 Dixon’s Cell-Specific Tests of Segregation

The level of segregation can be estimated by comparing the observed cell counts to the expected cell counts
under RL of points whose locations are fixed or a realization of points from CSR independence. Dixon
demonstrates that under RL, one can write down the cell frequencies as Moran join count statistics
m)) He then derives the means, variances, and covariances of the cell counts (i.e., frequencies) (see,

(1994) and Dixon (2002)).

Under RL, the expected cell count for cell (7, ) is

B[N, = {n(n ~1)/(n—1) ifi=j

ning/(n=1) i 4} m

where n; is a realization of N, i.e., is the fixed sample size for class ¢ for ¢ = 1,2,...,q. Observe that the
expected cell counts depend only on the size of each class (i.e., row sums), but not on column sums.

The test statistic suggested by Dixon is given by

Zi[j): szv_E[Nz]j (2)
ar[N;]

where

(n+ R)pii + (271 — 2R+Q)piii + (712 —-3n—Q+ R)piiii — (np”-)2 if ¢ = j,
npij + Qpiij + (n* = 3n — Q + R) puij; — (npi;)* if i # 7,
with Prr, Praw, and pye.. are the probabilities that a randomly picked pair, triplet, or quartet of points,
respectively, are the indicated classes and are given by

Var[N;;] = { (3)

bii nn—1)" Pij n(n—1)

el D=2 e

P =D -2) Pt = - 1) (n—2) @
p:nl(nl_l)(nl_2)(nl_3) iy = ni(ni—l)nj(nj—l)

S D) (=2 (1-3) Ry o Yoy

Furthermore, R is twice the number of reflexive pairs and @ is the number of points with shared NNs, which
occurs when two or more points share a NN. Then Q = 2(Q2 4+ 3Q3 + 6 Q4 + 10Q5 + 15Qs) where Qy
is the number of points that serve as a NN to other points & times. Furthermore, under RL @ and R are
fixed quantities, as they depend only on the location of the points, not the types of NNs. So the sampling
distribution is appropriate under RL (see also Remark [£.2) and ZZ asymptotically has N(0,1) distribution.
But unfortunately, for ¢ > 2 the asymptotic normality of the off-diagonal cells in NNCTs is not rigorously
established yet, although extensive Monte Carlo simulations indicate approximate normality for large samples
(Im (@)) One-sided and two-sided tests are possible for each cell (i,j) using the asymptotic normal
approximation of Z[2 given in Equation () (Dixor (1994)).

Under CSR independence, the quantities () and R are random, hence the sampling distributions of the cell
counts are conditional on these quantities. Hence the expected cell counts in () and the cell-specific test in
@) and the relevant discussion are similar to the RL case. The only difference is that under RL, the quantities
@ and R are fixed, while under CSR independence they are random. That is, under CSR independence, Zg
asymptotically has N (0, 1) distribution conditional on @) and R.

4.2 A New Cell-Specific Test of Segregation

In standard cases like multinomial sampling with fixed row totals and conditioning on the column totals, the
expected cell count for cell (7,7) in contingency tables is E[N;;] = % We first consider the difference
Aj; = Ny — Nincj for cell (4, j). Notice that under RL, N; = n; are fixed, but C; are random quantities and

C; =1, Nij, hence

g Cj

n

Aij = Nij —



Then under RL,

nini=l) _ ny E[C;] ifi=j,
E[Au] = { n(ﬁ;l) n; E C ! £ (5)
(n—1)  n [J] IZ#]
For all j, E[C}] = n;, since
E[C] iE[N ] nJ(nJ 1) + Z nin n](”] - 1) + n Z
= ij] = = n;
D D s VA T VR T P>
nj(n; —1) n; ‘
- (n—l) +(n_1)(n n])_n.]
Therefore,
milnd) _m g
EA;] =900 L T (6)
(1;_1”) ——= ifi#j.

Notice that the expected value of A;; is not zero under RL. Hence, instead of A;;, in order to obtain 0
expected value for our test statistic, we suggest the following:

(nifl) e

T. — Nij — =Gy ifi =1, -

ij na e (7)
Ni‘_ﬁCj if i # j.

Then E[T;;] = 0, since, for i = j,

Bl = BNal =y PO = "0 oy =0
and for i # j,
1 H_(ni—l) 1 T My _(ni—l) L
E[TZ]] E[NZJ] (n _ 1) E[C]] (n _ 1) (TL _ 1) n] O'

For the variance of T;;, we have

Var[N;;] + ("i_1)2Var[Cj] - 2(’”:11)) Cov|[N;;,Cy] ifi=j,

(n—1)2 (n
Var(T,;] - § . o ®
Var[Nj;] + =gz Var[C)] — 255, Cov([Ny;, C5]if i # j,
where Var[N;;] are as in Equation (3), Var[C;] = > !, Var[N;]+3", ., >, Cov[Nyj, Ni;j| and Cov([N;;, Cj] =

>i_1 Cov[N;j, Ni;] with Cov[N;;, Niy| are as in Equations (4)-(12) of Dixorl (2002).
As a new cell-specific test, we propose

O 9
B NarlT] 9)

Recall that in the two-class case, each cell count N;; has asymptotic normal distribution d&lzu;k_and_Edmrd.sl
M)) Hence, ZZ-];-] also converges in law to N(0,1) as n — co. Moreover, one and two-sided versions of this

test are also possible.

Under CSR independence, the distribution of the test statistics above is similar to the RL case. The only
difference is that Zi]}’ asymptotically has N (0, 1) distribution conditional on @ and R.

5 Overall Tests of Segregation

In this section, we describe Dixon’s overall test of segregation and introduce a new overall test based on
NNCTs.



5.1 Dixon’s Overall Test of Segregation

In the multi-class case with ¢ classes, combining the ¢? cell-specific tests in Section E.1] (@) suggests
the quadratic form to obtain the overall segregation test as follows.

Cp = (N —-E|N])E,(N — E[N]) (10)

where N is the ¢ x 1 vector of ¢ rows of NNCT concatenated row-wise, E[N] is the vector of E[N;;] which
are as in Equation (), ¥p is the ¢ x ¢? variance-covariance matrix for the cell count vector N with diagonal
entries equal to Var[N;;] and off-diagonal entries being Cov[N;;, Ny for (i,5) # (k,1). The explicit forms
of the variance and covariance terms are provided in (@)) Also, ¥, is a generalized inverse of
%p (Searld (2006)) and ’ stands for the transpose of a vector or matrix. Then under RL Cp has a X§<q71>
distribution asymptotically. Furthermore, the test statistics Zg are dependent, hence their squares do not
sum to Cy. Under CSR independence, the distribution of C'p is conditional on @ and R.

5.2 A New Overall Test of Segregation

Instead of combining the cell-specific tests in Section LIl we can also combine the new cell-specific tests in
Section Let T be the vector of ¢* T;; values, i.e.,

T = [T117T127' .. 7qu7T217T227' .. ,qu,.. '7qu]/7

and let E[T] be the vector of T;; values. Note that E[T] = 0. Hence to obtain a new overall segregation test,
we use the following quadratic form:
Cy = T'SyT (11)

where Yy is the ¢ x ¢? variance-covariance matrix of T. Under RL Cy has a X?q_1)2 distribution asymp-

totically, since rank of X is (¢ — 1)?. Furthermore, the test statistics Zi]}] are dependent, hence their squares
do not sum to Cy.

Under RL, the diagonal entries in the variance-covariance matrix Xy are Var([T};;] which are provided in
Equation (). For the off-diagonal entries in Xy, i.e., Cov|[T};, T] with ¢ # k and j # [, there are four cases
to consider:
case 1: ¢ = j and k =, then

Cov|[T;, Tii] = Cov {N - %O Ny — %Ok} =
Cov[Ny;, Ni] — %cmm, O] — ((7;1'__11)) Cov[N, €] + znl)_(q’;; Y Gov(cy, il (12)
case 2: i = j and k # [, then
Cov|T};, Tiy] = Cov {N - %Q,NH - ﬁcl] -
Cov[Niv, Nu| = - Cov N, C1] - ((7;1'__11)) Cov[Nu, Ci] + (7(1;__711))2’“00\7[@, cl. (13)

case 3: i # j and k = [, then Cov[T};, Tir] = Cov[Iy,T;;], which is essentially case 2 above.
case 4: i # j and k # [, then

n; Nk
(n—1) (n—1)

COV[NU, Nkl] — %COV[NU, Ol] — LCOV[N]CI, Cj] +

(n—1)

COV[T%j,Tkl] = Cov Ni' - Oj Nkl — Ol =

%cov[cj, Cl. (14)



In all the above cases, Cov[N;;, Ny] are as in Dixon (2002), Cov[N,;,C] = Y°1_, Cov[N;;, Ny| and
COV[Ci, Cj] = Z:l Z?:l COV[‘N;?”‘7 Nlj].

Under CSR independence, the distribution of Cy is as in the RL case, except that it is conditional on
and R.

Remark 5.1. Comparison of Dixon’s and New NINCT-Tests: Dixon’s cell-specific test in (2]) depends on
the frequencies of (base, NN) pairs (i.e., cell counts), and measures deviations from expected cell counts. On
the other hand, the new cell-specific test in (@) can be seen as a difference of two statistics and has expected
value is 0 for each cell. For the cell-specific tests, the z-score for cell (7, j) indicates the level and direction of
the interaction of spatial patterns of base class i and NN class j. If Z2 > 0 then class i exhibits segregation
from other classes, and if Z2 < 0 then class i exhibits lack of segregation from other classes. The same holds
for the new cell-specific tests. Furthermore, cell-specific test for cell (4, ) measures the interaction of class j
with class i. When i = j this interaction is the segregation for class i, but if ¢ # j, it is the association of
class j with class i. Hence for i # j cell-specific test for cell (4, 7) is not symmetric, as interaction of class
j with class i could be different from the interaction of class ¢ with class j. However, new cell-specific tests
use more of the information in the NNCT compared to Dixon’s tests, hence they potentially will have better
performance in terms of size and power.

Dixon’s overall test combines Dixon’s cell-specific tests in one compound summary statistic, while new
overall test combines the new cell-specific tests. Hence the new overall test might have better performance in
terms of size and power, as it depends on the new cell-specific tests. [

Remark 5.2. The Status of ) and R under RL and CSR Independence: Under RL, @ and R are
fixed quantities, but under CSR independence they are random. The variances and covariances Var[N;;] and
Cov|[N;j, Ny and all the quantities depending on these quantities also depend on @ and R. Hence under
CSR independence, they are variances and covariances conditional on @ and R. The unconditional variances
and covariances can be obtained by replacing @ and R by their expectations.

Unfortunately, given the difficulty of calculating the expectations of () and R under CSR independence,
it is reasonable and convenient to use test statistics employing the conditional variances and covariances even
when assessing their behavior under CSR independence. Alternatively, one can estimate the expected values
of @ and R empirically and substitute these estimates in the expressions. For example, for the homogeneous
planar Poisson process, we have E[Q /n] ~ .632786 and E[R/n] ~ 0.621120. (estimated empirically by 1000000
Monte Carlo simulations for various values of n on unit square). O

5.3 The Two-Class Case

In the two-class case, (1994) calculates Z;; = (Ny; — E[Ni])/+/Var[Ny] for both i € {1,2} and then
combines these test statistics into a statistic that is equivalent to C'p in Equation (I0) and asymptotically
distributed as x3. The suggested test statistic is

(15)

Cp = Y'S'Y — [ Ni1 — E[N11] }’ { Var[Ni;]  Cov|Ni1, Nao) ]1 [ Ni; — E[N1] }

N22 — E[NQQ] (\JOV[]\/YU7 NQQ] Var[sz] N22 — E[sz]
. .. . 23 At+Z35-2rZanZBR _ Ny —E[Ny4] _ Nyy—E[Ngy]
Notice that this is also equivalent to C' = — where Zaa = NN ZBB = 7\/‘m R

and r = Cov[Nu,Ngg]/\/Var[Nu]Var[Ngg]. Notice that Zaa = Z5 and Zpp = Z&. Furthermore, Cp has a x3
distribution and Cx has a x? distribution asymptotically.

In the two-class case, segregation of class ¢ from class j implies lack of association between classes ¢ and j (i # j)
and lack of segregation of class i from class j implies association between classes i and j (i # j), since Z5 = —Z5
for i = 1,2. Likewise for the new cell-specific tests, since Z{\; = —Zé\;- for j = 1,2. In the multi-class case, a positive
z-score, ZZ . for the diagonal cell (7,7) indicates segregation, but it does not necessarily mean lack of association
between class ¢ and class j (¢ # j), since it could be the case that class ¢ could be associated with one class, yet not
associated with another one. Likewise for the new cell-specific tests.

Remark 5.3. Asymptotic Structure for the NNCT-Tests: There are two major types of asymptotic structures for
spatial data m M)) In the first, any two observations are required to be at least a fixed distance apart, hence
as the number of observations increase, the region on which the process is observed eventually becomes unbounded.
This type of sampling structure is called “increasing domain asymptotics”. In the second type, the region of interest is



a fixed bounded region and more and more points are observed in this region. Hence the minimum distance between
data points tends to zero as the sample size tends to infinity. This type of structure is called “infill asymptotics” due
to (@) The sampling structure in our asymptotic sampling distribution could be either one of increasing
domain or infill asymptotics, as we only consider the class sizes and hence the total sample size tending to infinity
regardless of the size of the study region. O

6 Empirical Significance Levels in the Two-Class Case

In this section, we provide the empirical significance levels for Dixon’s and the new overall and the cell-specific tests
in the two-class case under RL and CSR independence patterns.

6.1 Empirical Significance Levels under CSR Independence of Two Classes

First, we consider the two-class case with classes X and Y. We generate ni points from class X and ns points from
class Y both of which are independently uniformly distributed on the unit square, (0,1) x (0,1). Hence, all X points
are independent of each other and so are Y points; and X and Y are independent data sets. Thus, we simulate the CSR,
independence pattern for the performance of the tests under the null case. Notice that this will imply randomness in
the NN structure, which is the null hypothesis for our NNCT-tests. We generate X and Y points for some combinations
of n1,n2 € {10, 30,50, 100} and repeat the sample generation N,,. = 10000 times for each sample size combination in
order to obtain sufficient precision of the results in reasonable time. At each Monte Carlo replication, we construct
the NNCT, then compute the overall and cell-specific tests. Out of these 10000 samples the number of significant
outcomes by each test is recorded. The nominal significance level used in all these tests is a = .05. The empirical
sizes are calculated as the ratio of number of significant results to the number of Monte Carlo replications, Ny,.. For
example empirical size for Dixon’s overall test, denoted by @p, is calculated as ap := > 0 7° I(X3,; > x5(.05)) where
X]%’i is the value of Dixon’s overall test statistic for iteration i, X%(.05) is the 95" percentile of x2 distribution, and
I(-) is the indicator function. The empirical sizes for other tests are calculated similarly.

We present the empirical significance levels for the NNCT-tests in Table Bl where &f ; and af-Yj are the empirical
significance levels of Dixon’s and the new cell-specific tests, respectively, ap is for Dixon’s and an is for the new
overall tests of segregation. The empirical sizes significantly smaller (larger) than .05 are marked with ° (l), which
indicate that the corresponding test is conservative (liberal). The asymptotic normal approximation to proportions
are used in determining the significance of the deviations of the empirical sizes from the nominal level of .05. For these
proportion tests, we also use a« = .05 to test against empirical size being equal to .05. With N,,. = 10000, empirical
sizes less than .0464 are deemed conservative, greater than .0536 are deemed liberal at o« = .05 level. Notice that in
the two-class case &51 = &52 and &2?1 = &527 since N12 = n1 — N11 and Na1 = na — Naa. Notice also that &{\fl = &é\fl
and a{\fg = &9)’2, since T11 = —T51 and T2 = —T52. So only a{?l, &52, &{\)’1, aé\f% ap, and ay are presented in Table
The empirical sizes are also plotted in Figure [[l where the horizontal lines are the nominal level of .05 and upper
and lower limits for the empirical size (i.e., .0464 and .0536).

Observe that Dixon’s cell-specific test for cell (1,1) (i.e., the diagonal entry with base and NN classes are from
the smaller class) is about the desired level for equal and large samples (i.e., n1 = nz > 30), is conservative when
at least one sample is small (i.e.,, n; < 10), liberal when sample sizes are large but different (i.e., 30 < n1 < n2).
It is most conservative for (ni,n2) = (10,50). On the other hand, Dixon’s cell-specific test for cell (2,2) (i.e., the
diagonal entry with base and NN classes are from the larger class) is about the desired level for almost all sample
size combinations. For Dixon’s cell-specific tests, if at least one sample size is small, the normal approximation is not
appropriate. (m) recommends Monte Carlo randomization instead of the asymptotic approximation for the
corresponding cell-specific tests when cell counts are less than or equal to 10; and when some cell counts are less than
5, he recommends Monte Carlo randomization for the overall test. When sample sizes are small, n; < 10 or large but
different (30 < n1 < m2) it is more likely to have cell count for cell (1,1) to be < 10, however for cell (2,2) cell counts
are usually much larger than 10, hence normal approximation is more appropriate for cell (2, 2).

The new cell-specific tests yield very similar empirical sizes for both cells (1, 1) and (2, 2) and are both conservative
when n1 < 30 and about the desired level otherwise. However, new cell-specific test for cell (1, 1) is less conservative
than that of Dixon’s, since T is less likely to be small because it also depends on the column sum.

Dixon’s overall test is about the desired level for equal and large samples (i.e., n1 = n2 > 30), is conservative when
at least one sample is small (i.e., n; < 10), liberal when sample sizes are large but different (i.e., 30 < n1 < n2). It is
most conservative for (ni,n2) = (10,50). The new overall segregation test is conservative for small samples and has
the desired level for moderate to large samples.

Moreover, we not only vary samples size but also the relative abundance of the classes in our simulation study. The



Empirical Size Plots for the NNCT-Tests under CSR Independence of Two Classes
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Figure 1: The empirical size estimates of the cell-specific tests for cells (1,1) (left), cell (2,2) (middle), and
overall test of segregation (right) under the CSR independence pattern in the two-class case. The empirical
sizes for Dixon’s and the new NNCT-tests are plotted in circles (o) and triangles (A), respectively. The
horizontal lines are located at .0464 (upper threshold for conservativeness), .0500 (nominal level), and .0536
(lower threshold for liberalness). The horizontal axis labels: 1=(10,10), 2=(10,30), 3=(10,50), 4=(30,30),
5=(30,50), 6=(50,50), 7=(50,100), 8=(100,100).

differences in the relative abundance of classes seem to affect Dixon’s tests more than the new tests. See for example
cell-specific tests for cell (1,1) for sample sizes (30, 50) and (50, 100), where Dixon’s test suggests that class X (i.e.,
class with the smaller size) is more segregated which is only an artifact of the difference in the relative abundance.
Likewise, Dixon’s overall test seems to be affected more by the differences in the relative abundance. On the other
hand, the new tests are more robust to differences in the relative abundance, since they depend on both row and
column sums.

Thus we conclude that Type I error rates of the new overall and cell-specific tests are more robust to the differences
in sample sizes. Furthermore, the new tests for cells (1,1) and (2,2) and the new overall test exhibit very similar
behavior under CSR independence. Dixon’s cell-specific test for cell (2,2) is closest to the desired level.

Empirical significance levels under CSR independence

sizes Dixon’s New Overall
(n1,m2 a1 Q39 Q11 Q3.9 ap an

)

10,10) .0454¢ | .0465 || .0452¢ | .0459¢ || .0432¢ | .0484
10,30) .0306¢ | .0485 || .0413¢ | .0420¢ || .0440° | .0434°
)

)

)

(
(
(10,50) | .0270° | .0464 | .0390° | .0396° || .0482 | .0408°
(
(

30,30 0507 | .0505 || .0443° | .0442¢ || .0464 | .0453¢
30,50 .0590° | .0522 .0505 | .0510 || .0443° | .0512
(50,50) .0465 | .0469 .0500 | .0502 .0508 | .0506
(50,100) || .0601° | .0533 0514 | .0515 || .0560° | .0525
(100,100) || .0493 | .0463° || .0485 | .0486 .0504 | .0489

Table 2: The empirical significance levels for Dixon’s and new cell-specific and overall tests in the two-class
case under H, : CSR independence with Np,. = 10000, n1,no in {10,30,50,100} at the nominal level of
a = .05. ¢ empirical size significantly less than .05; i.c., the test is conservative. *: empirical size significantly
larger than .05; i.e., the test is liberal. af}i and a{fi are for the empirical significance levels of Dixon’s and

the new cell-specific tests, respectively, for i = 1,2; ap is for Dixon’s and ay is for the new overall tests of
segregation.

6.2 Empirical Significance Levels under RL of Two Classes

Recall that the segregation tests we consider are conditional under the CSR independence pattern. To evaluate their
empirical size performance better, we also perform Monte Carlo simulations under the RL pattern, for which the tests
are not conditional. For the RL pattern we consider three cases, in each of which, we first determine the locations of
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Figure 2: The fixed locations for which RL procedure is applied for RL Cases (1)-(3) with n; = ny = 100 in
the two-class case. Notice that z-axis for RL Case (3) is differently scaled.

points and then assign labels to them randomly.

RL Case (1): First, we generate n = (n1 + nz) points iid U((0,1) x (0,1)) for some combinations of ni,ns €
{10, 30,50,100}. The locations of these points are taken to be the fixed locations for which we assign the labels
randomly. Thus, we simulate the RL pattern for the performance of the tests under the null case. For each sample size
combination (ni,n2), we randomly choose n; points (without replacement) and label them as X and the remaining
n2 points as Y points. We repeat the RL procedure N,,. = 10000 times for each sample size combination. At each
RL iteration, we construct the 2 x 2 NNCT, and then compute the overall and cell-specific tests. Out of these 10000
samples the number of significant results by each test is recorded. The nominal significance level used in all these tests
is a = .05. Based on these significant results, empirical sizes are calculated as the ratio of number of significant test
statistics to the number of Monte Carlo replications, Np,c.

RL Case (2): We generate n; points iid #4((0,2/3) x (0,2/3)) and n2 points iid U((1/3,1) x (1/3,1)) for some
combinations of ni,ns € {10, 30,50, 100}. The locations of these points are taken to be the fixed locations for which
we assign labels randomly. The RL process is applied to these fixed points N,,. = 10000 times for each sample size
combination. The empirical sizes for the tests are calculated similarly as in RL Case (1).

RL Case (3): We generate ny points iid U((0, 1) x (0, 1)) and n2 points iid ¢((2, 3) x (0,1)) for some combinations of
ni,ng € {10, 30,50,100}. RL procedure and the empirical sizes for the tests are calculated similarly as in the previous
RL Cases.

The locations for which the RL procedure is applied in RL Cases (1)-(3) are plotted in Figure 2l for n; = na = 100.
Observe that in RL Case (1), the set of points are iid ¢/((0,1) x (0,1)), i.e., it can be assumed to be from a Poison
process in the unit square. The set of locations are from two overlapping clusters in RL Case (2), and from two disjoint
clusters in RL Case (3).

We present the empirical significance levels for the NNCT-tests in Table Bl where the empirical significance level
labeling is as in Table[2l The empirical sizes are marked with ¢ and ¢ for conservativeness and liberalness as in Section
0. 1]

Observe that Dixon’s cell-specific test for cell (1, 1) has the same trend under RL Cases (1)-(3): extremely conser-
vative when the observed cell count is very likely to be < 5 (i.e., when n1 < 10 and nq1 # n2) liberal for most other
cases, and close to being at the nominal size for large and equal sample sizes. New cell-specific test for cell (1,1) is
conservative for small samples and closer to the nominal level otherwise. Moreover the new test fluctuates with smaller
deviations from the nominal level of .05 compared to Dixon’s test.

Dixon’s cell-specific test for cell (2,2) is closer to the nominal level compare to that for cell (1,1), but is still
conservative or liberal for very different sample sizes. The new cell-specific test for cell (2,2) is conservative when at
least one sample is small (i.e., n; < 30), about the desired level otherwise. Notice also that the new cell-specific tests
for both cells (1,1) and (2,2) have similar empirical size performance.

Dixon’s overall test is conservative for small samples and (n1,n2) = (30, 50), and about the desired level otherwise.
The new overall test is conservative when at least one sample size is < 10, about the desired level otherwise for RL
Cases (2) and (3). For RL Case (1), it is conservative for small samples and liberal for very different large samples,
about the desired level for similar size large samples.

Thus, under RL, for large samples the new cell-specific tests have better empirical size performance compared to



Empirical significance levels under RL

RL Case (1) RL Case (2) RL Case (3)
sizes cell C cell C cell C
T O R R O O R s B P
a1 39 anN a1 39 anN a7 39 anN

(10,10) 06047 | 05577 | .0349° || .06247 | .06577 | .0446° || .0444° | .0481 | .0404°
.0359¢ | .0354¢ | .0409¢ || .0351¢ | .0357¢ | .0434¢ || .0345¢ | .0344¢ | .0421¢
(10,30) || .0311¢ [ .06997 | .0466 || .0297¢ | .0341°¢ | .0327¢ || .0281° | .0447° | .0324¢
.0426¢ | .0391¢ | .0428¢ || .0364¢ | .0406¢ | .0366¢ || .0348¢ | .0321¢ | .0348¢
(10,50) || .0264° | .0472 | .0507 || .0251¢ | .0384° | .0508 || .0260¢ | .0404° | .0500
.0424¢ | .0428¢ | .0437¢ || .0383¢ | .0390¢ | .0401¢ || .0390¢ | .0394¢ | .0408¢
(30,30) || .05797 | .0547% | .0497 || .0513 | .0523 | .0469 [ .0549% | .0553° | .0484
.0440¢ | .0429¢ | .0447¢ || .0468 | .0468 | .0471 | .0494 | .0494 | .0494
(30,50) 06217 | .06087 | .0444°¢ || .06267 | .05947 | .0411¢ || .0677F | .0685% | .0445¢
.0454¢ | .0464 | .0469 || .0519 | .0506 | .0533 | .0513 | .0496 | .0525
(50,50) 0512 | .0524 | .0497 || .0509 | .0511 | .0501 || .0504 | .0506 | .0488
.0542¢ | .0531 | .0560¢ || .0439¢ | .0439¢ | .0446¢ || .0502 | .0493 | .0521
(50,100) || .0625° | .0512 | .0482 || .0566° | .0421¢ | .0460° || .0590° | .0484 | .0479
0496 | .0496 | .0518 || .0490 | .0490 | .0494 | .0499 | .0501 | .0501
(100,100) || .05387 | .0534 | .0525 || .0439° | .0453° | .0505 || .0495 | .0476 | .0534
0574% | .0571¢ | .0576% || 0484 | .0484 | .0483 || .0478 | .0478 | .0482

Table 3: The empirical significance levels in the two-class case under H, : RL for RL Cases (1)-(3) with
Npme = 10000, n1,ns in {10, 30,50,100} at the nominal level of a = .05. (“: empirical size significantly less
than .05; i.e., the test is conservative. ’: empirical size significantly larger than .05; i.e., the test is liberal.
cell = cell-specific tests, C' = overall segregation test.)

Dixon’s cell-specific tests. On the other hand the performance of the new overall test depends on the RL Case, i.e.,
the allocation of the points confounds the results of the overall tests.

Comparing Tables [2] and [3] we observe that the empirical sizes are not very similar under the RL and CSR
independence patterns. Moreover, the performance of Dixon’s cell-specific test for cell (2,2) and the new overall test
have different size performance under each RL Case. Although cell-specific test for cell (1, 1) is very similar for all RL
and CSR independence Cases, the other tests are not very similar, and their sizes are closer to the nominal level under
the CSR independence pattern compared to those under RL Cases. However, we can also conclude that the tests are
usually conservative when at least one sample is small, regardless of whether the null case is RL or CSR independence.

7 Empirical Significance Levels in the Three-Class Case

In this section, we provide the empirical significance levels for Dixon’s and the new overall and cell-specific tests of
segregation in the three-class case under RL and CSR independence patterns.

7.1 Empirical Significance Levels under CSR Independence of Three Classes

The symmetry in cell counts for rows in Dixon’s cell-specific tests and columns in the new cell-specific tests occur only
in the two-class case. Therefore, in order to better evaluate the performance of cell-specific tests in the absence of
such symmetry, we also consider the three-class case with classes X, Y, and Z under CSR independence. We generate
n1, n2, ng points distributed independently uniformly on the unit square (0,1) x (0,1) from classes X, Y, and Z,
respectively. That is, each data set of classes X, Y, and Z enjoy within sample and between sample independence.
We generate data points for some combinations of n1, n2, ns € {10, 30,50, 100}; and for each sample size combination,
we generate data sets X, Y, and Z for N,,. = 10000 times. The empirical sizes and the significance of their deviation
from .05 are calculated as in Section [G.11

We present the empirical significance levels for the cell-specific tests in Table [ where the estimated levels for
Dixon’s test are provided in the top, while for the new version in the bottom for cell (7, j) € {(1,1), (1,2), (1,3),...,(3,3)}.
Notice that when at least one class is small (i.e., n; < 10) tests are usually conservative, with the Dixon’s cell-specific



Empirical significance levels for the NNCT-tests

cell-specific overall
(n17n27n3) (171) (172) (173) (271) (272) (273) (371) (372) (37 3)
(10,10,10) .0277¢ | .0355° | .0337° || .0386° | .0283° | .0370° || .0371° | .0391° | .0250° || .0421°
L0481 | .0447°¢ | .0403¢ || .0463¢ | .0512 | .0456° || .0445°¢ | .0457° | .0470 || .0459°
(10,10,30) 0464 | .0342° | .0260° || .0336° | .0428° | .0267° || .0455° | .0494 | .0477 || .0445°
.0381¢ | .0428° | .0490 || .0425° | .0367°¢ | .0495 || .0466 | .0468 | .0495 | .0445°
(10,10,50) .0661° | .0434¢ | .0416° || .0439¢ | .0667° | .0430° || .0505 | .0455¢ | .0505 .0510
0464 | .0394° | .0449¢ || .0408° | .0444° | .0449¢ || .0400° | .0441°¢ | .0463° || .0543°
(10,30,30) 06577 | .0494 | .0520 || .0468 | .0425° | .0488 || .0511 | .0444° | .0402° || .0439°
0465 | .0432° | .0469 | .0462° | .0487 | .0506 || .0448° | .0487 | .0492 | .0453¢
(10,30,50) .0367° | .0343° | .0566° || .0605° | .0539° | .0579° || .0452° | .0468 | .0544° || .0450°
.0407° | .0454° | .0486 || .0468 | .0488 | .0519 || .0497 | .0502 | .0502 .0467
(30,30,30) 0526 | .0508 | .0503 || .0487 | .0488 | .0499 || .0517 | .0458° | .0505 .0497
0479 | .0535 | .0520 || .0475 | .0455°¢ | .0487 || .0542° | .0493 | .0485 0475
(10,50,50) .0758° | .0548% | .0525 || .0322° | .0565° | .0457¢ || .0316° | .0442° | .0548% || .0517
.0515 | .0493 | .0491 .0516 | .0527 | .0501 0519 | .0516 | .0517 .0529
(30,30,50) 0515 | .0535 | .0474 || .0566° | .0468 | .0442° || .0466 | .0532 | .0520 || .0463°
.0516 | .0492 | .0485 || .0515 | .0469 | .0474 || .0495 | .0523 | .0513 .0511
(30,50,50) .0370° | .0606° | .06027 || .0440° | .0519 | .0424° || .0451° | .0424° | .0510 .0486
.0463° | .0513 | .0493 || .0484 | .0525 | .0519 || .0494 | .0505 | .0482 | .0457°
(50,50,50) .0605° | .0514 | .0477 || .0503 | .0603° | .0483 || .0508 | .0480 | .0575° || .0497
0520 | .0506 | .0521 0530 | .0504 | .0527 | .0539° | .0521 | .0450° || .0514
(50,50,100) .0462° | .0444° | .0447° || .0421° | .0490 | .0405° || .0460° | .0458° | .0492 .0488
.0466 | .0510 | .0535 | .0447¢ | .0481 | .0507 || .0527 | .0551° | .0499 .0505
(50,100,100) 0493 | .0614 | .0601 0505 | .0580° | .0540° || .0511 | .0554° | .0552° || .0495
.0463¢ | .0499 | .0475 || .0468 | .0523 | .0453° || .0522 | .0480 | .0507 .0496
(100,100,100) || .0499 | .0522 | .0540° || .0571% | .0468 | .0525 | .0534 | .0508 | .0469 .0456
.0533 | .0522 | .0514 || .0514 | .0451° | .0508 || .0513 | .0477 | .0473 .0482

Table 4: The empirical significance levels for the Dixon’s cell-specific and overall tests (top) and for the new
version of the cell-specific and overall tests (bottom) in the three-class case under H, : CSR independence
with N, = 10000, ny,n9,n3 in {10,30,50,100} at the nominal level @ = .05. ©: The empirical level is
significantly smaller than .05; ¢: The empirical level is significantly larger than .05.

tests being the most conservative. The empirical sizes for the new cell-specific tests are closer to the nominal level
for all sample size combinations, while Dixon’s cell-specific tests fluctuate around .05 with larger deviations. In the
three-class case, both of the overall tests exhibit similar performance in terms of empirical size, with Dixon’s test being
slightly more conservative for small samples. Thus, Type I error rates of the new cell-specific tests are more robust to
the differences in sample sizes (i.e., relative abundance) and are closer to .05 compared to Dixon’s cell-specific tests.

7.2 Empirical Significance Levels under RL of Three Classes

To remove the confounding effect of conditional nature of the tests under CSR independence, we also perform Monte
Carlo simulations under the RL pattern. For RL with 3 classes, we consider two cases. In each case, we first determine
the locations of points and then assign labels to them randomly.

For the RL pattern we consider three cases, in each of which, we first determine the locations of points and then
assign labels to them randomly.

RL Case (1): First, we generate ni + nz + ns points iid U((0,1) x (0,1)) for some combinations of ni,na, n3 €
{10, 30,50,100}. The locations of these points are taken to be the fixed locations for which we assign the labels
randomly. Thus, we simulate the RL pattern for the performance of the tests under the null case. For each sample
size combination (n1,n2,n3) we pick n1 points (without replacement) and label them as X, pick n2 points from the
remaining points (without replacement) and label them as Y points, and label the remaining n3 points as Z points.
We repeat the RL procedure N,,. = 10000 times for each sample size combination. At each RL iteration, we construct
the 3 x 3 NNCT for classes X, Y, and Z and then compute the test statistics. Out of these 10000 samples the number
of significant tests by the tests is recorded. The nominal significance level of .05 is used in all these tests. Based on
the number of significant results, empirical sizes are calculated as before.
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Figure 3: The fixed locations for which RL procedure is applied for RL Cases (1) and (2) with ny = ny =
n3 = 100 in the two-class case. Notice that z-axis for RL Case (2) is differently scaled.

RL Case (2): We generate n; points iid U((0, 1) x (0,1)), ne points iid U((2,3) x (0,1)), and n3 points iid U((1,2) x
(2,3)) for some combinations of ni,n2,ns € {10, 30,50,100}. RL procedure is performed and the empirical sizes for
the tests are calculated similarly as in RL Case (1).

The locations for which the RL procedure is applied in RL Cases (1) and (2) are plotted in Figure Bl for ny = no =
ng = 100. In RL Case (1), the locations of the points can be assumed to be from a Poisson process in the unit square.
In RL Case (2), the locations of the points are from three disjoint clusters.

We present the empirical significance levels for the NNCT-tests in Table Bl where the empirical significance level
labeling is as in Table[dl The empirical sizes are marked with ¢ and ¢ for conservativeness and liberalness as in Section
Observe that under both RL Cases, the new cell-specific tests are closer to the nominal level, and are more robust
to differences in sample sizes. The overall tests exhibit similar performance under each RL Case, with sizes for Dixon’s
overall test being slightly smaller than those for the new overall test for most sample sizes.

Comparing Tables @] and [Bl we observe that, although the empirical sizes are not similar for the RL and CSR
independence patterns, the trend is similar. That is, the new cell-specific tests are at about the desired level for most
sample sizes, and more robust to the differences in sample sizes compared to Dixon’s cell-specific tests. Overall tests
have similar size performance under both RL Cases.

Remark 7.1. Main Result of Monte Carlo Simulations for Empirical Sizes: (@) recommends Monte
Carlo randomization test when some cell count(s) are smaller than 10 in a NNCT for his cell-specific tests and when
some cell counts are less than 5 for his overall tests and we concur with his suggestion. We extend his suggestion to
the new cell-specific test for cell (i, 7) when sum of column j is < 10 which happens less frequently than cell (3, )
being < 10.

Dixon’s and new overall tests exhibit similar performance in terms of empirical sizes: for small samples they are
usually conservative and are about the nominal level otherwise.

Thus, when sample sizes are small (hence the corresponding cell counts are < 5 for overall test and < 10 for
cell-specific tests), the asymptotic approximation of the tests may not appropriate, especially for Dixon’s cell-specific
tests. In this case, the power comparisons should be carried out using the Monte Carlo critical values. On the other
hand, for large samples, the power comparisons can be made using the asymptotic or Monte Carlo critical values.

Furthermore, Dixon’s cell-specific and overall tests are confounded by the differences in the relative abundance of
the classes. On the other hand, the new cell-specific tests are more robust to differences in sample sizes (i.e., relative
abundance) and less sensitive to the cell counts they pertain to. O

Remark 7.2. Monte Carlo Critical Values: When sample sizes are small so that some cell counts or column sums
are expected to be < 5 with a high probability, then it will not be appropriate to use the asymptotic approximation
hence the asymptotic critical values for the overall and cell-specific tests of segregation (see Remark [[I]). In order
to better evaluate the empirical power performance of the tests, for each sample size combination, we record the test
statistics at each Monte Carlo simulation under the CSR independence cases of Sections Bl and [[Il We find the 95"
percentiles of the recorded test statistics at each sample size combination (not presented) and use them as “Monte
Carlo critical values” for the power estimation in the following sections. For example, for Dixon’s cell-specific test for



cell (1,1) in the two-class case for (n1,m2) = (30,50), the Z{; values are recorded for (n1,n2) = (30,50) under the
CSR independence pattern as in Section [6.1] then the 95" percentile of these statistics is used as the Monte Carlo
critical value for (n1,n2) = (30,50). That is, under a segregation or association alternative with (n1,n2) = (30, 50), a
calculated test statistic is deemed significant if it is larger than this Monte Carlo critical value. [J

8 Finite Sample Performance of NNCT-Tests under Various Pois-
son and Inhomogeneous Point Processes

In this section, we provide the finite sample performance of the NNCT-tests under point patterns that are different
from RL or CSR independence. In particular, we will consider various versions of Poisson cluster processes and some
other inhomogeneous processes ).

First Version of Poisson Cluster Process (PCP1(np,n1,n2,0)): In this process, first we generate n, parents
iid on the unit square, (0,1) x (0, 1) then for each parent ni/n, offsprings are generated for sample X and n2/n, for
sample Y from radially symmetric Gaussian distribution with parameter o. Hence we generate n1 X and ns2 Y points,
respectively. In the first case, we use the same parent set for both X and Y points. In the second case, we use different
parent sets for each of X and Y points.

Second Version of Poisson Cluster Process (PCP2(n,,n1,n2,0)): In this process, we generate n, parents
and n1 X and n2 Y offsprings as in the first version PCP1, except the offsprings are randomly allocated amongst the
parents.

For both versions of the above Poisson cluster processes, we take o € {0.05,.10,.20} and (n1,n2) € {(30, 30), (30, 50),
(50, 50) 1.

Matern Cluster Process (MCP(k,r,u)): In this process, first we generate a Poisson point process of “parent”
points with intensity x. Then each parent point is replaced by a random cluster of points. The number of points in
each cluster are random with a Poisson(u) distribution, and the points are placed independently and uniformly inside
a disc of radius r centered on the parent point. The parent points are not restricted to lie in the unit square; the
parent process is effectively the uniform Poisson process on the infinite plane. We consider x = 5, r € {.05,.10, .20}
for both X and Y points and u = n1/5 for X points and p = n2/5 for Y points. In case 1, we use the same parents
for both X and Y offsprings, while in case 2, we generate different sets of parents with x = 5. For each of the above
cases, we take (ni,n2) € {(50,50), (50,100), (100, 100)}. For more on Matern cluster processes, see (1984d)

and [Waagepetersen (2007)).

Inhomogeneous Poisson Cluster Process (IPCP(A(z,y))): In this process, the intensity of the Poisson
process is set to be A(z,y) which is a function of (z,y). We generate a realization of the inhomogeneous Poisson
process with intensity function A(x,y) at spatial location (x,y) inside the unit square by random “thinning”. That is,
we first generate a uniform Poisson process of intensity A(x,y), then randomly delete or retain each point, independently
of other points, with retention probability p(z,y) = A(z,y)/lmaz Where lmaz = SUP(, ,1e(0,1)x (0,1) MT, Y)-

We take A(z,y) = niy/x + y for sample X. Then for sample Y, we take A(z,y) = n2y/x + y in case 1, A(z,y) =
n2,/Ty in case 2, and A(z,y) = nz2|r — y| in case 3. That is, in case 1 X and Y points are from the same inhomo-
geneous Poisson process; in cases 2 and 3, they are from different processes. For each of the above cases, we take
(n1,m2) € {(50,50), (50, 100), (100,100)}. For more on inhomogeneous Poisson cluster processes, see (2003)
and [Baddeley and Turneil (IZM)) The rejection rates of the NNCT-tests are provided in Table[@l Observe that under
PCP1 with same parents, the rejection rates are slightly (but significantly) larger than 0.05. Hence under PCP1, the
two classes are slightly segregated, so they do not satisfy randomness in the NN structure. Under PCP1 with different
parents, the two classes are strongly segregated. Under PCP2 with the same parents, the two classes satisfy random-
ness in the NN structure, while under PCP2 with different parents, the two classes are strongly segregated. Notice
that under these implementations of PCP, the rejection rates decrease as o increases; i.e., the level of segregation
is inversely related to o. Under MCP with the same parents, the two classes satisfy randomness in NN structure;
but with different parents, the classes are strongly segregated. Furthermore, as r increases, the level of segregation
decreases under MCP with different parents. Under IPCP patterns, the two classes satisfy randomness in NN structure
as long as the density functions are same or similar (see cases 1 and 2); but if the density functions are very different,
we observe moderate segregation between the two classes. Notice also that this segregation is detected better by the
new NNCT-tests.
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Figure 4: The empirical power estimates for Dixon’s tests (circles (o)) based on asymptotic critical values
(black) and Monte Carlo critical values (red) and new tests (triangles (A)) based on asymptotic critical values
(black) and Monte Carlo critical values (red) under the segregation alternative HZ in the two-class case.
The horizontal axis labels: 1=(10,10), 2=(10,30), 3=(10,50), 4=(30,30), 5=(30,50), 6=(50,50), 7=(50,100),
8=(100,100).

9 Empirical Power Analysis in the Two-Class Case

We consider three cases for each of segregation and association alternatives in the two-class case.

9.1 Empirical Power Analysis under Segregation of Two Classes
For the segregation alternatives, we generate X; ~ U((0,1—5)x(0,1—s)) and Y; (S U((s,1)x (s,1)) fori=1,...,m1
and j = 1,...,n2. Notice the level of segregation is determined by the magnitude of s € (0,1). We consider the
following three segregation alternatives:

Hi:s=1/6, HY :s=1/4, and H' : s =1/3. (16)

Observe that, from Hé to qu” (i.e., as s increases), the segregation gets stronger in the sense that X and Y
points tend to form one-class clumps or clusters more and more frequently. We calculate the power estimates using the
asymptotic critical values based on the standard normal distribution for the cell-specific tests and the corresponding
x2-distributions for the overall tests and using the Monte Carlo critical values.

The power estimates based on the asymptotic critical values are presented in Table[ We omit the power estimates
of the cell-specific tests for cells (1,2) and (2, 1), since ,BlDJ = 51[,)2 and ,32DJ = 62[,)2; likewise ,B{\fl = ,Bé\fl and ,B{\fg = Bé\é.
Observe that, for both cell-specific tests, as n = (n1 + n2) gets larger, the power estimates get larger; for the same
n = (n1 + n2) values, the power estimate is larger for classes with similar sample sizes; and as the segregation gets
stronger, the power estimates get larger at each sample size combination. For both cells (1,1) and (2,2), the new
cell-specific tests have higher power estimates compared to those of Dixon’s. Furthermore, the new overall test has
higher power estimates compared to Dixon’s overall test.

The power estimates based on the asymptotic and Monte Carlo critical values under Hf are plotted in Figure
[l Observe that the power estimates based on Monte Carlo critical values are very similar to but tend to be slightly
larger compared to the ones using the asymptotic critical values. However, this difference do not influence the trend in
the power estimates, that is new tests tend to have higher power based on either asymptotic critical values or Monte
Carlo critical values. Hence we omit the power estimates based on Monte Carlo critical values under other segregation
alternatives.

Considering the empirical significance levels and power estimates, for small samples we recommend Monte Carlo
randomization tests; for large samples, the new version of the cell-specific tests in the two-class case when testing
against the segregation alternatives, as they are at the desired level for more sample size combinations and have higher
power for each cell. Likewise, we recommend the new overall test over the use of Dixon’s overall test for the segregation
alternatives.



9.2 Empirical Power Analysis under Association of Two Classes

For the association alternatives, we consider three cases also. In each case, first we generate X; & U((0,1) x (0,1)) for
1=1,2,...,n1. Then we generate Y; for j = 1,2,...,n2 as follows. For each j, we pick an ¢ randomly, then generate
Y; as X; + Rj (cosTy,sinTj) where R; “ U(0,r) with r € (0,1) and Tj & U(0,27). In the pattern generated,
appropriate choices of r will imply association between classes X and Y. That is, it will be more likely to have (X,Y)
or (Y, X) NN pairs than same-class NN pairs (i.e., (X, X) or (Y,Y)). The three values of r we consider constitute the
following association alternatives;

HY:r=1/4, HY :r=1/7 and HY'" :r = 1/10. (17)

Observe that, from H} to HA! (i.e., as r decreases), the association gets stronger in the sense that X and Y points
tend to occur together more and more frequently. By construction, for similar sample sizes the association between
X and Y are at about the same degree as association between Y and X. For very different samples, larger sample is
associated with the smaller but the abundance of the larger sample confounds its association with the smaller.

The empirical power estimates are presented in Table[8] Observe that the power estimates increase as the associa-
tion gets stronger at each sample size combination and the power estimates increase as the equal sample sizes increase
and as the very different sample sizes increase under each association alternative.

Dixon’s cell-specific test for cell (1, 1) has extremely poor performance for very different small samples (i.e., n1 < 10
and n1 # n2). On the other hand, for larger samples, the empirical power estimates get larger as association gets
stronger at each sample size combination. When samples are large, class Y is more associated with class X if na > nq
and this is reflected in the empirical power estimates. The power estimates for the new cell-specific test for cell (1, 1)
increase as the association gets stronger and equal sample sizes increase. Both tests have the lowest power estimates
for (n1,n2) = (10,50), since cell counts and column sums could be very small for this sample size combination.

Dixon’s cell-specific test for cell (2,2) has higher power estimates under weak association compared to those of the
new cell-specific test. When association gets stronger, power estimates for Dixon’s cell-specific test for cell (2,2) has
higher power for smaller samples and lower power for larger samples compared to the new cell-specific tests. The new
cell-specific test has the worst performance for (n1,n2) = (10,50), in which case, column sums could be small.

Dixon’s overall test has similar power as the new overall test for smaller samples; and new overall test has higher
power estimates for larger samples.

Furthermore, empirical power estimates based on Monte Carlo critical values exhibit similar behavior hence not
presented.

Considering the empirical significance levels and power estimates, for small samples we recommend Monte Carlo
randomization or simulation approach; for larger samples we recommend both Dixon’s and new overall and cell-specific
tests for testing against the association alternatives, as it will not be very likely to know the degree of association a
priori.

10 Empirical Power Analysis in the Three-Class Case

We consider three cases for each of segregation and association alternatives in the three-class case.

10.1 Empirical Power Analysis under Segregation of Three Classes

For the segregation alternatives, we generate X; & U((0,1 —2s) x (0,1 —2s)), Y; « U((2s,1) x (2s,1)), and Z; (9
U((s,1—3s) x(s,1—s8)) fori=1,...,n1, 5 =1,...,n2, and £ = 1,...,n3. Notice that the level of segregation is
determined by the magnitude of s € (0,1/2). We consider the following three segregation alternatives:

Hs, :s=1/12, Hs,:s=1/8, and Hg, : s = 1/6. (18)
Observe that, from Hg, to Hgs, (i.e., as s increases), the segregation gets stronger in the sense that X, Y, and

Z points tend to form one-class clumps or clusters more frequently. Furthermore, for each segregation alternative, X
and Y are more segregated compared to Z and X or Z and Y.

We plot the empirical power estimates for the NNCT-tests in Figures[Bland[Gl The test statistics are mostly positive
for diagonal cells which implies segregation of classes and are mostly negative for off-diagonal cells which implies lack
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Figure 5: The empirical power estimates of Dixon’s cell-specific tests (circles (o)) and the new cell-specific tests
(triangles (A)) under the segregation alternatives Hg, (black), Hg, (red), and Hg, (blue) in the three-class
case. The horizontal axis labels are: 1=(10,10,10), 2=(10,10,30), 3=(10,10,50), 4=(10,30,30), 5=(10,30,50),
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13=(100,100,100). Notice that they are arranged in the increasing order for the first and then the second
entries. The size values for discrete sample size combinations are joined by piecewise straight lines for better

visualization.
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Figure 6: The empirical power estimates of Dixon’s overall test (circles (o)) and the new overall test (triangles
(A)) under the segregation alternatives Hg, (black), Hg, (red), and Hg, (blue) in the three-class case. The
horizontal axis labels are as in Figure

of association between classes. For both cell-specific tests for the diagonal cells (4,4) for ¢ = 1,2, 3, as equal sample
sizes get larger, the power estimates get larger under each segregation alternative; and as the segregation gets stronger,
the power estimates get larger for each cell at each sample size combination. The higher degree of segregation between
X and Y is reflected in cells (1,1) and (2,2). Furthermore, since the sample sizes satisfy n1 < m2 in our simulation
study, cell (2,2) power estimates tend to be larger. Since class Z is less segregated from the other two classes, cell
(3,3) power estimates tend to be lower than the other diagonal cell statistics. Notice also that off-diagonal cells are
more severely affected by the differences in the sample sizes.

The higher degree of segregation between classes X and Y can also be observed in cells (1,2) and (2,1) power
estimates, since more segregation of these classes imply higher negative values in these cells’ test statistics. The lesser
degree of segregation between classes X and Z can be observed in cells (1,3) and (3,1), as they yield much lower
power estimates compared to the other cells. Although Y and Z are segregated in the same degree as X and Z, the
power estimates for cells (2,3) and (3,2) are larger than those for cells (1,3) and (3, 1), since (n1 +ns3) < (n2 + ns) in
our simulation study and larger sample sizes imply higher power under the same degree of segregation.

Furthermore, the power estimates for the new cell-specific tests tend to be higher for each cell under each segregation
alternative for each sample size combination. In summary, in the three-class case, new cell-specific tests have better
performance in terms of power.

The performance of the overall tests are similar to the performance of cell-specific tests for the diagonal cells:
power estimates increase as the segregation gets stronger; power estimates increase as the sample sizes increase; and
new overall test has higher power than Dixon’s overall test.

The empirical power estimates based on the Monte Carlo critical values yield similar results, hence not presented.

Considering the empirical significance levels and power estimates, for small samples we recommend Monte Carlo
randomization for these tests; for larger samples we recommend the new versions of the overall and cell-specific tests
for testing against the segregation alternatives, as they either have about the same power as or have larger power than
Dixon’s tests. Furthermore, if one wants to see the level of segregation between pairs of classes, we recommend using
the diagonal cells, (7,1) for ¢ = 1,2, 3 as they are more robust to the differences in class sizes (i.e., relative abundance)
and more sensitive to the level of segregation.

10.2 Empirical Power Analysis under Association of Three Classes

For the association alternatives, we also consider three cases. In each case, first we generate X; U((0,1) x (0,1))
for i =1,2,...,n1. Then we generate Y; and Z, for j =1,2,...,no and £ = 1,2,...,n3 as follows. For each j, we pick
an i randomly, then generate R} & Uu(0,ry) with ry, € (0,1) and 7} & U(0,27) set Y; := X; + R} (cosTj,sinTy)'.



Similarly, for each ¢, we pick an i randomly, then generate RZ (S (0,7-) with r. € (0,1) and U, (S U(0,27) and set

Zo = X; 4+ RZ (cos Ug,sin Uy)'.

In the pattern generated, appropriate choices of ry (and r.) values will imply association between classes X and
Y (and X and Z). The three association alternatives are

Ha, :ry=1/7,r.=1/10, Ha, :r, =1/10, r, =1/20, Ha, :r, =1/13, r. = 1/30. (19)

Observe that, from Ha, to Ha, (ie., as ry, and 7. decrease), the association between X and Y gets stronger in the
sense that Y points tend to be found more and more frequently around the X points. Likewise for X and Z points.
Furthermore, by construction, classes X and Z are more associated compared to classes X and Y.
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Figure 7: The empirical power estimates of Dixon’s cell-specific tests (circles (o)) and the new cell-specific
tests (triangles (A)) under the association alternatives Hy4, (black), Ha, (red), and Hy4, (blue) in the three-
class case. The horizontal axis labels are as in Figure

The power estimates for the NNCT-tests are plotted in Figures [ and The test statistics tend to be negative
for the diagonal cells, which implies lack of segregation for the classes; positive for cells (1,2),(2,1),(1,3), and (3,1),
which implies association between classes X and Y and association between classes X and Y’; negative for cells (2, 3)
and (3,2), which implies lack of association (and perhaps mild segregation) between classes Y and Z.
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Figure 8: The empirical power estimates of Dixon’s overall test (circles (o)) and the new overall test (triangles
(A)) under the association alternatives Ha, (black), Ha, (red), and Hy, (blue) in the three-class case. The
horizontal axis labels are as in Figure

At each sample size combination, as the association gets stronger, the power estimates increase. Further, the
higher degree of association between X and Z compared to that of X and Y are reflected in higher power estimates
for cell (1, 3) compared to cell (1,2). For the same reason, power estimates for cell (3, 1) are higher than those for cell
(2,1).

For cells (1,2), (2,1), (1,3), and (3,1) the power estimates get larger as the equal sample sizes increase. The
new cell-specific tests have higher power for cells (1,2) and (1,3) and Dixon’s cell-specific tests have higher power for
cells (2,1) and (3,1). By construction the classes Y and Z are not associated, instead they can be viewed as mildly
segregated from each other. The test statistics for cells (2,3) and (3,2) are negative to indicate such segregation or
lack of association between classes Y and Z. However, cell (3,2) power estimates are much larger than cell (3,2),
which implies that class Z can be viewed as more segregated from class Y. As for the diagonal cells, the higher power
estimates for cell (1,1) for larger samples are indicative of high degree of association of classes Z and Y with class X.
Such association, by construction, is barely reflected in cells (2,2) and (3, 3).

In summary, for cells (i,7) with ¢ < j, the new tests have higher power, while for cells (7, ) with ¢ > j, Dixon’s
tests have higher power. For the diagonal cells both versions of the cell-specific tests have about the same power
performance. So we recommend both versions of cell-specific tests to be applied in a given situation and the results
compared and interpreted carefully.

The power estimates of the overall tests tend to increase as the association gets stronger at each sample size
combination; as the sample sizes tend to increase, except for the sudden decrease at (ni,n2,n3) = (10, 50,50), in
which case cell (1,1) counts and column 1 sums tend to be very small. Furthermore, Dixon’s overall test has higher
power compared to the new overall test. So Dixon’s overall test is recommended for the association alternative over
the new overall test.

The empirical power estimates based on the Monte Carlo critical values yield similar results, hence not presented.

Remark 10.1. Main Result of Monte Carlo Power Analysis: Based on the recommendations made in Remark
[C1] when at least one sample size is small (in the sense that some cell count is < 5), we recommend Monte Carlo
randomization for the NNCT-tests. For large samples, one can use asymptotic or Monte Carlo versions of the NNCT-
tests. In Sections @11 [@.2] 0.1l and we observe that under the segregation alternatives, the new cell-specific
and new overall tests have higher power compared to Dixon’s cell-specific and overall tests. Under the association
alternatives, we observe that for cells with the associated class is the NN class, the new cell-specific tests have higher
power, while for cells with the associated class as the base class, Dixon’s cell-specific tests have higher power, and
for diagonal cells Dixon’s and new cell-specific tests have similar power. Additionally, Dixon’s overall test has higher
power than the new overall test for association. Thus we recommend both of the new and Dixon’s NNCT-tests under
the association alternatives. [J



11 Examples

We illustrate the tests on two ecological data sets: Pielou’s Douglas-fir/ponderosa pine data (m M)) and a

swamp tree data (Good and Whipplé M))

11.1 Pielou’s Data

M) used a completely mapped data set that is comprised of two tree species: Douglas-fir trees
(Pseudotsuga menziesii formerly P. taxifolia) and ponderosa pine (Pinus ponderosa) from a region in British
Columbia. Her data set was also used by Dixon as an illustrative example (m (@)) The question of
interest is the type of spatial interaction between the two tree species. The corresponding 2 x 2 NNCT and
the percentages for each cell are provided in Table The cell percentages are with respect to the sample
sizes of each species, for example, 86 % of Douglas-firs have NNs from Douglas firs and remaining 15 % of
Douglas-firs have NNs from ponderosa pines. The row and column percentages are marginal percentages with
respect to the total sample size. The percentage values are suggestive of segregation for both species.

The raw data are not available, hence we can not perform Monte Carlo simulation nor randomization
versions of the tests. Fortunately, PPielod M) provided @ = 162 and R = 134, hence we can calculate the
test statistics and use the asymptotic approximation for these tests. The overall and cell-specific test statistics
and the corresponding p-values (in parentheses) based on the asymptotic approximation, denoted by pasy,
are provided in Table Although the locations of the tree species are not known, they can be viewed a
priori resulting from different processes rather than some process affecting a posteriori the individuals of a
single population. So the more appropriate null hypothesis is CSR independence of the trees. Hence our
inference will be a conditional one (see Remark [2)). Observe that Dixon’s and new overall test statistics
yield significant p-values, implying some sort of deviation from CSR independence. In order to see the type of
deviation, we apply the cell-specific tests. Both versions of the cell-specific tests for each cell are significant,
implying significant deviation from CSR independence. The cell-specific test statistics are positive for the
diagonal cells (1,1) and (2,2) (and negative for the off-diagonal cells (1,2) and ( 1mplyin seg 1on
for both species. This is in agreement with what the NNCT suggests and the ﬁndings of
However, Dixon’s cell (1, 1) statistics are much larger than cell (2, 2) statistics, which may be mterpreted as
clustering of Douglas-firs is stronger than the clustering of ponderosa pines. Our simulation study indicates
that this might be an artifact of the relative abundance of the tree species. On the other hand, new cell (1,1)
and cell (2,2) statistics are very similar, hence the segregation of both tree species are at about the same
degree.

11.2 Swamp Tree Data

Good and Whippld (1 d_%j considered the spatial interaction between tree species along the Savannah River,
South Carolina, U.S.A. From this data, (@ used a single 50m x 200m rectangular plot to illustrate
his NNCT-tests. All live or dead trees with 4.5 cm or more dbh (diameter at breast height) were recorded
together with their species. Hence it is an example of a realization of a marked multi-variate point pattern. The
plot contains 13 different tree species, four of which comprises over 90 % of the 734 tree stems. The remaining
tree stems were categorized as “other trees”. The plot consists of 215 water tupelos (Nyssa aquatica), 205 black
gums (Nyssa sylvatica), 156 Carolina ashes (Frazinus caroliniana), 98 bald cypresses (Tazodium distichum),
and 60 stems from 8 additional species (i.e., other species). A 5 x 5 NNCT-analysis is conducted for this data
set. If segregation among the less frequent species is important, a more detailed 12 x 12 NNCT-analysis should
be performed. The locations of these trees in the study region are plotted in Figure[d and the corresponding
5 x 5 NNCT together with percentages based on row and grand sums are provided in Table[I1l For example,
for black gum as the base species and Carolina ash as the NN species, the cell count is 26 which is 13 % of
the 205 black gums (which is 28 % of all trees). Observe that the percentages and Figure [ are suggestive of
segregation for all tree species, especially for Carolina ashes, water tupelos, black gums, and the “other” trees
since the observed percentages of species with themselves as the NN are much larger than the row percentages.

The locations of the tree species can be viewed a priori resulting from different processes, so the more
appropriate null hypothesis is the CSR independence pattern. Hence our inference will be a conditional one
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Figure 9: The scatter plot of the locations of water tupelos (triangles A), black gum trees (pluses +), Carolina
ashes (crosses x ), bald cypress trees (diamonds ¢), and other trees (inverse triangles V).

(see Remark B2). We calculate Q = 472 and R = 454 for this data set. We present Dixon’s overall test of
segregation and cell-specific test statistics and the associated p-values in Table [[2] where pagy stands for the
p-value based on the asymptotic approximation, py,. is the p-value based on 10000 Monte Carlo replication
of the CSR independence pattern in the same plot and pyang is based on Monte Carlo randomization of the
labels on the given locations of the trees 10000 times. Notice that pasy, Pmec, and prana are very similar for
each test. We present the new overall test of segregation and cell-specific test statistics and the associated
p-values in Table [[3] where p-values are calculated as in Table Again, all three p-values in Table [[3] are
similar for each test.

Dixon’s and the new overall test of segregation are both significant implying significant deviation from the
CSR independence pattern for at least for one pair of the tree species. Then to determine which pairs exhibit
segregation or association, we perform the cell-specific tests. Dixon’s and the new cell-specific tests agree for
all cells (i.e., pairs) in term of significance at .05 level except for (B.G.,B.C.), (BC,W.T), and (B.C.,C.A.)
pairs. The statistics are all negative for the off-diagonal cells, except for (B.C.,C.A.) and (C.A., B.C.) pairs.
Based on the Monte Carlo simulation analysis, the new test is more reliable to attach significance to these
situations. The spatial interaction is significant between each pair which does not contain bald cypresses.
That is, the new cell-specific test statistics are positive for the diagonal cells (4,4) for i = 1,2,...,5 and are
significant for i = 1,2, 3,5 at .05 level (which also holds for Dixon’s tests); and are negative for the off-diagonal
cells (i, 5) with i, 7 € {1,2,3,5} and @ # j and significant for most of them. Hence each tree species except bald
cypresses exhibits significant segregation from each other. These findings are mostly in agreement with the
results of )). Hence except for bald cypresses, each tree species seem to result from a (perhaps)
different first order inhomogeneous Poisson process.

Based on the NNCT-tests above, we conclude that all tree species but bald cypresses exhibit significant
deviation from the CSR independence pattern. Considering Figure [ the corresponding NNCT in Table
[[1l and the cell-specific test results in Tables 2 and [[3] this deviation is toward the segregation of the tree
species. However, these results pertain to small scale interaction at about the average NN distances. We
might also be interested in the causes of the segregation and the type and level of interaction between the
tree species at different scales (i.e., distances between the trees). To answer such questions, we also present
the second-order analysis of the swamp tree data. We calculate Ripley’s (univariate) L-function which is the

modified version of K function as Li; (t) = (I?“(t) / 7r) where ¢ is the distance from a randomly chosen
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Figure 10: Second-order analysis of swamp tree data. Functions plotted are Ripley’s univariate L-functions
L;(t) —t for i = 0,1,...,5, where i« = 0 stands for all data combined, i = 1 for water tupelos, i = 2 for
black gums, ¢ = 3 for Carolina ashes, ¢ = 4 for bald cypresses, and ¢ = 5 for other trees. Wide dashed lines
around 0 (which is the theoretical value) are the upper and lower (pointwise) 95 % confidence bounds for the
L-functions based on Monte Carlo simulation under the CSR independence pattern.

event (i.e., location of a tree), K (t) is an estimator of
K (t) = A\"'E[# of extra events within distance ¢ of a randomly chosen event] (20)

with A being the density (number per unit area) of events and is calculated as

Ka(t) =233 w(ls, 1)I(dy < t)/N (21)

i jF£i

where A = N /A is an estimate of density (N is the observed number of points and A is the area of the study
region), d;; is the distance between points ¢ and j, I(-) is the indicator function, w(l;,;) is the proportion
of the circumference of the circle centered at I; with radius d;; that falls in the study area, which corrects
for the boundary effects. Under CSR independence, L(t) — ¢ = 0 holds. If the univariate pattern exhibits
aggregation, then L(t) —t tends to be positive, if it exhibits regularity then L(¢) — ¢ tends to be negative. The
estimator K (t) is approximately unbiased for K () at each fixed t. Bias depends on the geometry of the study
area and increases with ¢. For a rectangular region it is recommended to use ¢ values up to 1/4 of the smaller
side length of the rectangle. See )) for more detail. So we take the values ¢ € [0,12.5] in our
analysis, since the smaller side of the rectangular region of swamp tree data is 50 m. In Figure[IQl we present
the plots of L;;(t) —t functions for each species as well as the plot of all trees combined. We also present the
upper and lower (pointwise) 95 % confidence bounds for each L;;(t) — t. Observe that for all trees combined
there is significant aggregation of trees (the Lo (t) —t curve is above the upper confidence bound) at all scales
(i.e., distances). Water tupelos exhibit significant aggregation for the range of the plotted distances; black
gums exhibit significant aggregation for distances ¢ > 1 m; Carolina ashes exhibit significant aggregation for
the range of plotted distances; bald cypresses exhibit no deviation from CSR independence for ¢ < 5 m, then
they exhibit significant spatial aggregation for ¢ > 4 m; other trees exhibit significant aggregation for the
range of plotted distances. Hence, segregation of the species might be due to different levels and types of
aggregation of the species in the study region.
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Figure 11: Pair correlation functions for all trees combined and for each species in the swamp tree data. Wide
dashed lines around 1 (which is the theoretical value) are the upper and lower (pointwise) 95 % confidence
bounds for the L-functions based on Monte Carlo simulation under the CSR independence pattern.

We also calculate Ripley’s bivariate L-function as iij(t) = (IA(”(t)/ﬂ') where IAQJ- (t) is an estimator of

K;;(t) = A;lE[# of extra type j events within distance ¢ of a randomly chosen type i event]

with A; being the density of type j events. Then IA(Z-]- (t) is calculated as
~ OB
Kij(t) = ()\i)\jA) Zzw(ikajl)I(dik,jz <t), (22)
v g

where d;, j;, is the distance between kth type i and [*" type j points, w(ig, ;) is the proportion of the
circumference of the circle centered at k' type i point with radius d;, ;, that falls in the study area, which is
used for edge correction. Notice that by construction, iij(t) is symmetric in ¢ and j, that is, Eij (t) = Ejl- (t) for
all 4, 7. Under CSR independence, L;;(t) —t = 0 holds. If the bivariate pattern is segregation, then L;;(t) —t
tends to be negative, if it is association then L;;(t) — ¢ tends to be positive. See (2003)) for more
detail. In Figure T2 we present the bivariate plots of Eij (t) — t functions together with the upper and lower
(pointwise) 95 % confidence bounds for each pair of species (due to the symmetry of Eij (t) there are only 10
different pairs). Observe that for distances up to ¢ &~ 10 m, water tupelos and black gums exhibit significant
segregation (Zlg(t) — t is below the lower confidence bound) and for the rest of the plotted distances their
interaction is not significantly different from the CSR independence pattern; water tupelos and Carolina ashes
are significantly segregated up to about ¢ ~ 10 m; water tupelos and bald cypresses do not have significant
deviation from the CSR independence pattern for distances up to 4 m, for larger distances they exhibit
significant segregation; water tupelos and the other trees do not deviate from CSR independence for the
range of the plotted distances. Black gums and Carolina ashes are significantly segregated for ¢ > 2 m; black
gums and bald cypresses are significantly segregated for ¢ > 2 m; black gum and other trees are significantly
segregated for all the distances plotted. Carolina ashes and bald cypresses are significantly associated for
distances larger than 3 m; and Carolina ashes and the other trees exhibit significant segregation for 3 <t <7



m and for ¢ > 11 m they exhibit significant association. On the other hand, bald cypresses and other trees
are significantly associated for distance larger than 4 m.

But Ripley’s K-function is cumulative, so interpreting the spatial interaction at larger distances is prob-
lematic (Wiegand et all (2007)). The (accumulative) pair correlation function g(t) is better for this purpose

Stoyan and Stoyan (1994)). The pair correlation function of a (univariate) stationary point process is defined
as
K'(1)
t) =
9t) = 5—

where K'(t) is the derivative of K (¢). For a univariate stationary Poisson process, g(t) = 1; values of g(t) < 1
suggest inhibition (or regularity) between points; and values of g(t) > 1 suggest clustering (or aggregation).
The pair correlation functions for all trees and each species for the swamp tree data are plotted in Figure
[[1l Observe that all trees are aggregated around distance values of 0-1,3,4,5,7,9-10 m; water tupelos are
aggregated for distance values of 0-4 and 5-7 m; black gums are aggregated for distance values of 1-6 and 8-11
m; Carolina ashes are aggregated for all the range of the plotted distances; bald cypresses are aggregated for
distance values of 2-8 and around 11 m; and other trees are aggregated for all distance values except 3-5 m.
Comparing Figures [0 and [[T], we see that Ripley’s L and pair correlation functions detect the same patterns
but with different distance values. That is, Ripley’s L implies that the particular pattern is significant for a
wider range of distance values compared to g(t), since Ripley’s L is cumulative, so the values of L at small
scales confound the values of L at larger scales (Loosmore and Ford (2006)). Hence the results based on pair
correlation function g(t) are more reliable.

The same definition of the pair correlation function can be applied to Ripley’s bivariate K or L-functions
as well. The benchmark value of K;;(t) = w2 corresponds to g(t) = 1; g(t) < 1 suggests segregation of the
classes; and ¢g(t) > 1 suggests association of the classes. The bivariate pair correlation functions for the species
in swamp tree data are plotted in Figure Observe that water tupelos and black gums are segregated for
distance values of 0-1 m; water tupelos and Carolina ashes are segregated for values of 0-1 and 2.5 m and are
associated for values about 6 m; water tupelos and bald cypresses are segregated for 0-1, 5.5, 9.5, and 11 m
and are associated for 6.5 m; water tupelos and other trees are segregated for 0-0.5 and 7 m and are associated
for 8 m; black gums and Carolina ashes are segregated for 2-2.5, 3.5-4.5, 6-8.5, and 9.5-12 m; black gums and
bald cypresses are segregated for 3.5, 5.5-6.5,7, and 9.5 m; black gums and other trees are segregated for 5
and 6-7.5 m; Carolina ashes and bald cypresses are associated for 1.5-3, 5.5., and 7 m; Carolina ashes and
other trees are associated for 5 and 9-10 m; and bald cypresses and other trees are segregated for 4 m and
are associated for 3-4 and 6.5-7.5 m.

However the pair correlation function estimates might have critical behavior for small ¢ if g(t) > 0 since
the estimator variance and hence the bias are considerably large. This problem gets worse especially in cluster
processes (Stoyan and Stoyan (1996)). See for example Figures [l and I3 where the confidence bands for
smaller ¢ values are much wider compared to those for larger ¢ values. So pair correlation function analysis is
more reliable for larger distances and it is safer to use g(t) for distances larger than the average NN distance
in the data set. Comparing Figure [0 with Figure [[T] and Figure [[2] with Figure [[3] we see that Ripley’s L
and pair correlation functions usually detect the same large-scale pattern but at different ranges of distance
values. Ripley’s L suggests that the particular pattern is significant for a wider range of distance values
compared to g(t), since values of L at small scales confound the values of L at larger scales where ¢(t) is more

reliable to use (Loosmore and Ford (2006)).

While second order analysis (using Ripley’s K and L-functions or pair correlation function) provides in-
formation on the univariate and bivariate patterns at all scales (i.e., for all distances), NNCT-tests summarize
the spatial interaction for the smaller scales (for distances about the average NN distance in the data set). In
particular, for the swamp tree data average NN distance (£ standard deviation) is about 1.8 (£ 1.04) meters
and notice that Ripley’s L-function and NNCT-tests yield similar results for distances about 2 meters.

12 Discussion and Conclusions

In this article we introduce new overall and cell-specific tests of segregation based on nearest neighbor con-
tingency tables (NNCTs). Such tests are referred to as NNCT-tests. We also consider Dixon’s NNCT-tests,
discuss the differences in these (new and Dixon’s) NNCT-tests, present the asymptotic properties of them,



compare the tests using extensive Monte Carlo simulations under RL and CSR independence and under var-

ious segregation and association alternatives for two and three classes. We also illustrate the tests on two
examples and compare them with Ripley’s L-function M M))

NNCT-tests (i.e., overall and cell-specific tests of segregation) are used in testing randomness in the nearest
neighbor (NN) structure between two or more classes. The overall test is used for testing any deviation from
randomness in all the NNCT cells combined; cell-specific test for cell (4, 7) is used for testing any deviation
from randomness in cell (i, ), i.e., NN structure in which base class is i and NN class is j. This statistic
tests the segregation or lack of it if i = j; the association or lack of it between classes i and j if i # j. The
randomness in the NN structure is implied by the RL or CSR independence patterns. We demonstrate that
under the CSR independence pattern, NNCT-tests are conditional on @) and R, while under the RL pattern,
these tests are unconditional. In the two-class case, cell-specific tests are essentially different only for two
cells, since cell (1,1) and (1,2) yield the same test statistic in absolute value for Dixon’s cell-specific test,
likewise for cells (2,1) and (2,2). Similarly, cell (1,1) and (2, 1) yield the same test statistic in absolute value
for the new cell-specific test, likewise for cells (1,2) and (2, 2).

Based on our Monte Carlo simulations, we conclude that the asymptotic approximation for the cell-specific-
tests is appropriate only when the corresponding cell count in the NNCT is larger than 10; and for the overall
test when all cell counts are larger than 4. When at least one cell count is less than 5, we recommend the
Monte Carlo randomization version of the overall tests; and when a cell count is less than 10, we recommend
the Monte Carlo randomization of the cell-specific tests. When each cell count is larger than 5, the new
versions of the segregation tests have empirical significance levels closer to the nominal level. Type I error
rates (empirical significance levels) of the new cell-specific tests are more robust to the differences in sample
sizes (i.e., differences in relative abundance). When some cell count(s) are less than 5 for overall test and
less than 10 for the cell-specific tests, we compare the power of the tests using Monte Carlo critical values.
For large samples, the power comparisons can be made using both the asymptotic or Monte Carlo critical
values. For the segregation alternatives, we conclude that the new cell-specific and overall tests have higher
power estimates compared to those of Dixon’s tests. For the association alternatives, we observe that the
best performer NNCT-test depends on the cell and level of association. When testing against association, the
new cell-specific tests have higher power estimates for the upper triangular cells in the NNCT and Dixon’s
cell-specific tests have higher power estimates for the lower triangular cells in the NNCT. We recommend
the new cell-specific and overall tests for the segregation alternatives. For the association alternatives, we
recommend both versions of the overall and cell-specific tests.

The CSR independence pattern assumes that the study region is unbounded for the analyzed pattern,
which is not the case in practice. Edge effects are a constant problem in the analysis of empirical (i.e., bounded)
data sets and much effort has gone into the development of edge corrections methods

)). So the edge (or boundary) effects might confound the test results if the null pattern is the CSR
independence. Two correction methods for the edge effects on NNCT-tests, namely buffer zone correction
and toroidal correction, are investigated in @ M)) where it is shown that the empirical sizes of
the NNCT-tests are mildly affected by the toroidal edge correction. However, the (outer) buffer zone edge
correction method seems to have slightly stronger influence on the tests compared to toroidal correction. But
for these tests, buffer zone correction does not change the sizes significantly for most sample size combinations.
This is in agreement with the findings of [Barot et all (IL%H) who say NN methods only require a small buffer
area around the study region. A large buffer area does not help much since one only needs to be able to see
far enough away from an event to find its NN. Once the buffer area extends past the likely NN distances (i.e.,
about the average NN distances), it is not adding much helpful information for NNCTs. Hence we recommend
inner or outer buffer zone correction for NNCT-tests with the width of the buffer area being about the average
NN distance. We do not recommend larger buffer areas, since they are wasteful with little additional gain.
On the other hand, we recommend the use of toroidal edge correction with points within the average NN
distance in the additional copies around the study region. For larger distances, the gain might not be worth
the effort.

NNCT-tests summarize the pattern in the data set for small scales, more specifically, they provide infor-
mation on the pattern around the average NN distance between all points. On the other hand, pair correlation
function ¢(t) and Ripley’s classical K or L-functions and other variants provide information on the pattern at
various scales. However, the classical L-function is not appropriate for the null pattern of RL when locations
of the points have spatial inhomogeneity. For such cases, Diggle’s D-function (@ M) p. 131) is more



appropriate in testing the bivariate spatial clustering at various scales.

Ripley’s classical K (t) or L(t) functions can be used when the null pattern can be assumed to be CSR
independence, that is when the null pattern assumes first-order homogeneity for each class. When the null
pattern is the RL of points from an inhomogeneous Poisson process they are not appropriate M)),
Cuzick-Edward’s k-NN tests are designed for testing bivariate spatial interaction and mostly used for spatial
clustering of cases in epidemiology; Diggle’s D-function is a modified version of Ripley’s K-function
M)) and adjusts for any inhomogeneity in the locations of, e.g., cases and controls. Furthermore, there are
variants of K (t) that explicitly correct for inhomogeneity (see Baddeley et al! (2000)). Ripley’s K —, Diggle’s
D-functions and pair correlation functions are designed to analyze univariate or bivariate spatial interaction
at various scales (i.e., inter-point distances). Our example illustrates that for distances around the average
NN distance, NNCT-tests and Ripley’s bivariate L-function yield similar results.

The NNCT-tests and Ripley’s L-function provide similar information in the two-class case at small scales.
For g-class case with ¢ > 2 classes, overall tests provide information on the (small-scale) while the Ripley’s
L-function requires performing all bivariate spatial interaction analysis. The cell-specific tests can serve as
pairwise post hoc analysis only when the overall test is significant. Furthermore, the cell-specific tests are
testing the spatial clustering of one class or bivariate interaction between two classes as part of the multivariate
interaction between all the classes. On the other hand, Ripley’s univariate K- or L-functions are restricted to
one class and bivariate K- or L-functions are restricted to two classes they pertain to, ignoring the potentially
important multivariate interaction between all classes in the study area. However, there are forms of the J-
function which is derived from the well-known G and F' functions (van Lieshout and Baddeley (1999)) and
deal with this multi-type setting (i.e., consider the pattern of type ¢ in the context of the pattern of all other
types). ivan Lieshout and Baddeley d_umd) define two basic types of J-functions. First is a type-i-to-type-j
function which considers the points of type i in the context of the points of type j. The second one is the
type-i-to-any-type function which considers the points of type ¢ in the context of points of all types including
type i. Other forms can be derived from them by re-defining the types. For example, if we want to consider
the points of type ¢ in the context of points of all other types, then we collapse all the other types j (i.e., all
J which are not equal to i) into a single type i’ and then use the type-i-to-type-i’ function. Several authors
have written about the bivariate K-function, which is of the type-i-to-type-j form leggLe_andﬁhm;gnd
(1991), [Haase (1995), and Diggld (2003)). Type-i-to-type-j K-function can easily be modified to type-i-to-
any-type K-function. Thus essentially there is only one family of multi-type K-functions in literature. But
type-i-to-type-j K-function is comparable with a NNCT analysis based on a 2 x 2 NNCT restricted to the
classes ¢ and j. Similarly, type-i-to-type-i’ K-function is comparable with the NNCT analysis based on a
2 x 2 NNCT with classes 7 and the rest of the classes labeled as i’. Since pairwise analysis of ¢ classes
with 2 x 2 NNCTs might yield conflicting results compared to ¢ x ¢ NNCT analysis (Im (@)), Ripley’s
L-function and NNCT-tests might also yield conflicting results at small distances. Hence Ripley’s L-function
and NNCT-tests may provide similar but not identical information about the spatial pattern and the latter
might provide small-scale interaction that is not detected by the former. Since the pair correlation functions
are derivatives of Ripley’s K-function, most of the above discussion holds for them also, except g(t) is reliable
only for large scale interaction analysis. Hence NNCT-tests and pair correlation function are not comparable
but provide complimentary information about the pattern in question.

Cell-specific tests for diagonal cells in a NNCT and Ripley’s univariate K- or L-functions (and hence pair
correlation functions) are symmetric, as they measure the spatial clustering of one class only. On the other
hand, Ripley’s bivariate K- or L-functions and pair correlation functions are symmetric in the two classes
they pertain to. But cell-specific tests for two classes (i.e., off-diagonal cells in the NNCT) are not symmetric.
Hence, at small scales, the cell-specific test for an off-diagonal cell, provides the type and different levels of
spatial interaction for the corresponding two classes, while Ripley’s L-function and pair correlation function
provide only the type of spatial interaction, but can not distinguish the class-specific level of interaction for
each of the two classes in question.

For a data set for which CSR independence is the reasonable null pattern, we recommend the overall
segregation test if the question of interest is the spatial interaction at small scales (i.e., about the mean NN
distance). If it yields a significant result, then to determine which pairs of classes have significant spatial
interaction, the cell-specific tests can be performed. One can also perform Ripley’s K or L-function and
only consider distances up to around the average NN distance and compare the results with those of NNCT
analysis. If the spatial interaction at higher scales is of interest, pair correlation function is recommended



(Loosmore and Ford (2006)), due to the cumulative nature of Ripley’s K- or L-functions for larger distances.
On the other hand, if the RL pattern is the reasonable null pattern for the data, we recommend the NNCT-

tests if the small-scale interaction is of interest and Diggle’s D-function if the spatial interaction at higher
scales is also of interest.
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Empirical significance levels for the RL pattern

cell C
(n1,n2,n3) LYy 1 @2 [ @3 [ e ] @2 23 [ 611 632 ]33
RL Case (1)

(10,10,10) .0239° | .0343° | .0365° || .0320° [ .0234° | .0342° [[ .0292° | .0330° | .0244° [| .0377¢
0469 | .0422°¢ | .0418° || .0411°¢ | .0471 | .0440° || .0385° | .0452¢ | .0452° || .0422¢
(10,10,30) 0498 | .0361° | .0273° || .0399¢ | .0488 | .0287° || .0430° | .0517 | .0432° || .0455°
.0421¢ | .0429°¢ | .0447¢ || .0459° | .0425° | .0451° || .0486 | .0485 | .0515 || .0480
(10,10,50) 0676 | .0415° | .0423° || .0418° | .0630° | .0394°¢ || .0390° | .0386¢ | .0416° || .0477
0475 | .0404° | .0487 || .0382° | .0408° | .0415° || .0453° | .0434° | .0462° || .0511
(10,30,30) 0737 | .0510 | .0505 || .0533 | .0458° | .0433° || .0533 | .0449° | .0435¢ || .0477
0483 | .0450° | .0415° || .0478 | .0505 | .0479 || .0462¢ | .0506 | .0495 || .0495
(10,30,50) .0389° | .0409° | .0612° || .0660" | .0418° | .0625" || .0531 | .0545" | .0590° || .0518
.0444¢ | .0535 | .0539° || .0521 | .0471 | .0555° || .0547° | .0533 | .0537° || .0547°
(30,30,30) .0562° | .0318° | .0317° || .0371° | .0580° | .0328° || .0323° | .0309¢ | .0602° || .0471
0517 | .0520 | .0544° || .0553° | .0481 | .0537° || .0539° | .0516 | .0486 .0496
(10,50,50) .0758% | .0561° | .0498 || .0303° | .0620° | .0355¢ || .0301¢ | .0346° | .0617° || .0533
0505 | .0533 | .0463° || .0533 | .0467 | .0487 || .0513 | .0479 | .0491 .0526
(30,30,50) 0493 | .0400° | .0505 || .0407¢ | .0479 | .0550° || .0586° | .0622% | .0398° || .0489
0489 | .0532 | .0554° || .0494 | .0463° | .0559° || .0529 | .0541° | .0526 .0516
(30,50,50) .0396° | .0609° | .0649° || .0379¢ | .0481 | .0443° || .0406¢ | .0454° | .0518 || .0473
0475 | .0515 | .0503 || .0491 | .0483 | .0487 | .0545° | .0511 | .0519 || .0483
(50,50,50) 0483 | .0453° | .0454° || .0468 | .0521 | .0468 || .0436° | .0510 | .0500 || .0469
0474 | .0489 | .0471 0476 | .0487 | .0511 || .0440° | .0493 | .0445° || .0466
(50,50,100) 0478 | .0479 | .0388° || .0459° | .0495 | .0405° || .0464 | .0460° | .0509 || .0450°
.0490 | .0514 | .0471 0489 | .0511 | .0502 || .0517 | .0518 | .0419¢ || .0461°¢
(50,100,100) .0520 | .0603° | .0601° || .0490 | .0557° | .0504 || .0467 | .0501 | .0491 .0476
0481 | .0483 | .0501 0514 | .0505 | .0466 | .0532 | .0465 | .0467 || .0488
(100,100,100) || .0499 | .0559° | .0539° || .0563° | .0470 | .0551° || .0513 | .0539° | .0501 .0510
0484 | .0515 | .0495 || .0537° | .0498 | .0534 || .0494 | .0521 | .0496 || .0519
RL Case (2)
(10,10,10) .0227¢ 1 .0302° | .0312° [ .0349°¢ [ .0220° | .0327° [[ .0339¢ [ .0329° | .0217¢ [| .0372°
.0466 | .0391¢ | .0408° || .0415° | .0469 | .0437° || .0426° | .0417¢ | .0471 || .0431°¢
(10,10,30) 0488 | .0338° | .0217° || .0304¢ | .0475 | .0249° || .0461¢ | .0474 | .0426° || .0470
.0397¢ | .0459¢ | .0472 || .0441°¢ | .0408° | .0500 || .0482 | .0499 | .0466 || .0447°¢
(10,10,50) .0657° | .0429¢ | 0469 || .0414° | .0631° | .0412° || .0443° | .0459¢ | .0501 .0501
.0448° | .0404° | .0468 || .0389° | .0445° | .0446° || .0457¢ | .0408° | .0464 || .0529
(10,30,30) 0677° | 0487 | 0492 || .0472 | .0429°¢ | .0420° || .0505 | .0399¢ | .0377¢ || .0420°
L0483 | .0399¢ | .0442° || .0429¢ | .0519 | .0492 || .0468 | .0525 | .0484 || .0449¢
(10,30,50) .0414° | .0387¢ | .05517 || .0619° | .0599° | .0541° || .0378° | .0392° | .0479 .0529
.0422¢ | .0479 | .0537° || .0508 | .0499 | .0454¢ || .0566° | .0461° | .0505 || .0528
(10,50,50) 0752° | 0518 | .0512 || .0334° | .0674° | .0395° || .0341° | .0393¢ | .0642° || .0507
0530 | .0475 | .0472 || .0500 | .0526 | .0522 || .0501 | .0513 | .0526 || .0530
(30,30,30) .0607° | .0440° | .0500 || .0473 | .0571° | .0468 || .0496 | .0462° | .0622° || .0472
0512 | .0468 | .0463° || .0456° | .0430° | .0472 || .0494 | .0509 | .0509 || .0495
(30,30,50) .0445° | .0538% | .0459¢ || .0598° | .0485 | .0457° || .0466 | .0455¢ | .0678° || .0436°
.0462¢ | .0458° | .0500 || .0488 | .0463° | .0490 || .0501 | .0469 | .0545° || .0451°¢
(30,50,50) .0360° | .06237 | .0620° || .0371°¢ | .0472° | .0437° || .0379¢ | .0441° | .0504 || .0475
0480 | .0520 | .0493 || .0495 | .0477 | .0524 || .0505 | .0523 | .0514 || .0491
(50,50,50) 0534 | .0515 | .0508 || .0462° | .0531 | .0479 || .0496 | .0501 | .0510 || .0513
0512 | .0561° | .0521 0499 | .0534 | .0499 || .0542° | .0540 | .0512 || .0462°
(50,50,100) .0462° | .0480 | .0429° || .0497 | .0464 | .0414° || .0458° | .0473 | .0512 || .0497
0468 | .0480 | .0528 || .0477 | .0485 | .0512 || .0533 | .0524 | .0536 || .0497
(50,100,100) 0510 | .0638° | .0631 0483 | .0544° | .0539° || .0471 | .0531 | .0480 || .0516
0489 | .0525 | .0519 || .0532 | .0478 | .0481 0518 | .0483 | .0474 || .0511
(100,100,100) || .0477 | .0549° | .0525 || .0499 | .0473 | .0571° || .0525 | .0520 | .0449° || .0457¢
0491 | .0518 | .0494 || .0487 | .0479 | .0541° || .0489 | .0534 | .0478 || .0469

Table 5: The empirical significance levels in the three-class case under H, : RL for RL Cases (1) and (2)
with N,,. = 10000, n1,n2,ng in {10, 30,50,100} at the nominal level of « = .05. (¢: the empirical size is
significantly smaller than .05; i.e., the test is conservative. : the empirical size is significantly larger than
.05; i.e., the test is liberal. cell = cell-specific test, C' = overall test.)



Rejection Rates of the NNCT-Tests Under Various PCP and Inhomogeneous Patterns

PCP1(np,n1,n2,0,(0,1) x (0,1)) with n, = 5, n. = ni/n, for sample X and n. = na/n, for sample Y (same parent set for X and Y")

case 1: 0 = .025

case 2: 0 = .05

case 3: 0 = .10

sizes Dixon’s New Overall Dixon’s New Overall Dixon’s New Overall
(n1,n2) af, aly aty gy ap an af, al at ag, ap an af, ay, aty ag, oD an

(30, 30) .0814 | .0716 || .0726 | .0719 || .0709 | .0735 || .0779 | .0701 || .0707 | .0717 || .0675 | .0727 || .0719 | .0656 || .0630 | .0619 || .0611 | .0631

(30, 50) .0702 | .0728 || .0620 | .0615 || .0571 | .0637 || .0676 | .0684 || .0598 | .0600 || .0582 | .0613 || .0627 | .0634 || .0533 | .0537 || .0538 | .0543

(50, 50) .0624 | .0614 || .0693 | .0694 || .0615 | .0691 || .0605 | .0602 || .0677 | .0677 || .0608 | .0674 || .0556 | .0541 || .0598 | .0599 || .0543 | .0600
(different parent sets for X and Y)

(30, 30) 9993 | 1.000 || 1.000 | 1.000 || 1.000 | 1.000 || .9880 | .9882 || .9959 | .9958 || .9922 | .9957 || .7641 | .7622 || .8527 | .8522 || .7806 | .8522

(30, 50) 1.000 | .9997 || 1.000 | 1.000 || 1.000 | 1.000 || .9967 | .9950 || .9985 | .9985 || .9964 | .9985 || .8702 | .8271 || .9058 | .9064 || .8555 | .9075

(50, 50) 9999 | 9999 || 1.000 | 1.000 || 1.000 | 1.000 || .9987 | .9988 || .9996 | .9996 || .9993 | .9996 || .8985 | .8984 || .9525 | .9531 || .9232 | .9532

PCP2(np,n1,n2,0,(0,1) x (0,1)) with n, =5, n. = n1/n, for sample X and n. = na/n, for sample ¥ (same parent set for X and Y)

(30, 30) .0509 | .0498 || .0465 | .0475 || .0472 | .0470 || .0523 | .0509 || .0459 | .0470 || .0475 | .0469 || .0512 | .0485 || .0428 | .0438 || .0448 | .0440

(30, 50) .0587 | .0545 || .0483 | .0492 || .0443 | .0499 || .0595 | .0522 || .0492 | .0494 || .0453 | .0509 || .0609 | .0573 || .0502 | .0496 || .0460 | .0510

(50, 50) .0479 | .0499 || .0534 | .0536 || .0483 | .0537 || .0482 | .0487 || .0526 | .0527 || .0474 | .0530 || .0476 | .0466 || .0516 | .0525 || .0487 | .0529
(different parent sets for X and Y)

(30, 30) 9993 | 9998 || .9999 | 1.000 || .9998 | 1.000 || .9884 | .9878 || .9953 | .9953 || .9910 | .9953 || .7779 | .7812 || .8624 | .8633 || .8007 | .8627

(30, 50) 1.000 | .9999 || 1.000 | 1.000 | .9999 | 1.000 || .9976 | .9945 || .9991 | .9991 || .9977 | .9991 || .8854 | .8445 || .9169 | .9177 || .8677 | .9187

(50, 50) 1.000 | 1.000 || 1.000 | 1.000 || 1.000 | 1.000 || .9987 | .9991 || .9997 | .9997 || .9995 | .9997 || .9182 | .9112 || .9607 | .9600 || .9354 | .9602

MCP(k,r, 1, (0,1) x (0,1)) with & =5 for both X and Y samples (same parent set for X and V)
case 1: r = .05 case 2: r = .10 case 3: 7 = .20

(50, 50) .0494 | .0487 || .0478 | .0483 || .0495 | .0487 || .0530 | .0540 || .0582 | .0580 || .0504 | .0585 || .0514 | .0487 || .0527 | .0519 || .0476 | .0524

(50,100) || .0495 | .0463 | .0466 | .0471 || .0418 | .0473 || .0452 | .0496 || .0481 | .0485 || .0457 | .0487 || .0502 | .0516 || .0489 | .0489 || .0459 | .0497

(100,100) || .0458 | .0508 || .0498 | .0499 || .0471 | .0501 || .0527 | .0495 || .0536 | .0534 || .0498 | .0536 | .0507 | .0496 || .0500 | .0501 || .0493 | .0504
(different parent sets for X and Y)

(50, 50) 29983 | L9985 || 19997 | .9997 || .9996 | .9997 || .9887 | .9899 || .9954 | .9954 || .9938 | .9954 || .8019 | .8026 || .8873 | .8874 || .8341 | .8881

(50,100) || .9992 | .9981 || .9994 | .9994 || .9993 | .9994 || .9963 | .9927 || .9979 | .9979 || .9973 | .9979 || .9087 | .8674 || .8674 | .9438 || .9149 | .9443

(100,100) || .9992 | .9994 || .9998 | .9998 || .9998 | .9998 || .9988 | .9987 || .9998 | .9998 || .9997 | .9998 || .9581 | .9579 || .9804 | .9805 || .9705 | .9805

IPCP(\x,y) = n; fi(z,y),(0,1) x (0,1)) with ¢ = 1,2 for X and Y points, respectively

case 1: fl(%y):fg(x,y):\/x——ky case 2: fi(z,y) =z +y, fg(x,y)z\/x_y case 3: fl(x,y):\/(x+y),f2(x,y):|x—y|

(50, 50) .0541 | .0495 || .0507 | .0507 || .0511 | .0512 || .0487 | .0518 || .0525 | .0527 || .0499 | .0534 || .0617 | .1018 || .1042 | .1048 || .0797 | .1059

(50, 100) .0471 | .0465 || .0459 | .0458 || .0440 | .0463 || .0515 | .0540 || .0563 | .0561 || .0524 | .0564 || .0936 | .1225 || .1408 | .1420 || .0962 | .1423

(100,100) || .0469 | .0516 || .0491 | .0490 || .0496 | .0491 || .0513 | .0572 || .0591 | .0592 || .0532 | .0596 || .0819 | .1326 || .1421 | .1415 || .1071 | .1421

Table 6: The rejection rates for the NNCT-tests under various patterns different from CSR and RL
Process, IPCP: Inhomogeneous Poisson Cluster Process. See Section [§ for details on these point processes.

. PCP: Poisson Cluster Process, MCP: Matern Cluster




Empirical power estimates under the segregation alternatives
sizes Dixon’s New Overall

(n1,n2) || B1Y ‘ B B ‘ By Bp ‘ BN
10,10) .0734 | .0698 || .1068 | .1060 || .0775 | .1086
10,30) 1436 | .1540 || .1977 | .2019 || .1414 | .1997
10,50) 1639 | (1615 || .2465 | .2491 || .2193 | .2497
HL 30,30) 2883 | .2783 || .3898 | .3894 || .2904 | .3891
S 30,50) 4491 | .4045 || .5228 | .5243 || .3911 | .5270
50,50) 5091 | .5016 || .6786 | .6793 || .5546 | .6811
50,100) || .7686 | .6689 || .8417 | .8420 || .7425 | .8423
100,100) || .8761 | .8730 || .9564 | .9567 || .9121 | .9568
10,10) 2057 | .2044 || .3280 | .3270 || .2305 | .3279
10,30) 4601 | 4133 || .5725 | .5793 || .4555 | 5750
10,50) 5420 | .4477 || .6747 | .6794 || .6174 | .6803
HII 30,30) 7783 | .T769 || .8939 | .8938 || .8141 | .8933
o 30,50) 9262 | .8775 || .9619 | .9626 || .9126 | .9627
50,50) 9543 | 19551 || .9938 | .9936 || .9777 | .9935
50,100) || .9977 | .9866 || .9994 | .9994 | .9975 | .9994
100,100) || .9998 | .9999 || 1.000 | 1.000 || 1.000 | 1.000
10,10) 5144 | 5121 || .7324 | .7320 || .5817 | .7296
10,30) 8873 | .7833 || .9402 | .9425 || .8787 | .9409
10,50) 9353 | .8002 || .9699 | .9711 || .9528 | .9713
HLI 30,30) 9929 | 19915 || .9990 | .9990 || .9969 | .9990
o 30,50) 29999 | .9979 || 1.000 | 1.000 || .9997 | 1.000
50,50) 29999 | 1.000 || 1.000 | 1.000 | 1.000 | 1.000
50,100) || 1.000 | 1.000 || 1.000 | 1.000 || 1.000 | 1.000
100,100) || 1.000 | 1.000 || 1.000 | 1.000 || 1.000 | 1.000

Table 7: The empirical power estimates for the tests under the segregation alternatives, H é, H él ,and H él 1
in the two-class case with N,,,. = 10000, for some combinations of ny,ne € {10,30,50} at a = .05. The power
estimates that are not significantly different between Dixon’s and the new cell specific tests are marked with
an asterisk (*). For all others the larger power estimate is significantly larger than the other at o = .05. 8p
and B ~ stand for empirical power estimates for Dixon’s and new overall tests, respectively. Bg and Bﬁ[ stand
for empirical power estimates for Dixon’s and cell-specific tests, respectively, for cell (i,7) with i = 1, 2.



Empirical power estimates under the association alternatives

sizes Dixon’s New Overall

(nuno) || B0 [ 89, || BN [ B, || Bp | Bw
(10,10) 1349 | 1776 || .1638 | .1689 || .1105 | .1792
(10,30) .0002 | .4366 || .2575 | .2728 || .3007 | .2838
(10,50) .0002 | .4947 || .0686 | .1071 || .3318 | .1536
HI (30,30) 1413 | 2434 || .2110 | .2134 || .1697 | .2138
A (30,50) 1833 | .3984 || .3268 | .3314 || .2903 | .3335
(50,50) 1149 | 2421 || .2151 | .2181 || .1738 | .2181
(50,100) || .1813 | .4411 || .3448 | .3497 || .3410 | .3534
(100,100) || .0853 | .2309 || .1720 | .1740 || .1677 | .1750
(10,10) .2499 | .2569 || .2898 | .2900 || .1834 | .3006
(10,30) .0000 | .6463 || .4919 | .5123 || .4956 | .5255
(10,50) .0000 | .7062 || .1959 | .2699 || .5500 | .3418
gl (30,30) 4053 | .4457 || .5267 | .5293 || .4141 | .5294
4 (30,50) 4896 | .6957 || .7196 | .7239 || .6332 | .7258
(50,50) 14034 | .4961 || .5824 | .5848 || .4616 | .5854
(50,100) || .5527 | .7991 || .8003 | .8043 || .7559 | .8070
(100,100) || .3868 | .5575 || .5944 | .5957 || .5013 | .5981
(10,10) 3038 | 2918 || .3475 | .3471 || .2222 | .3554
(10,30) .0000 | .7364 || .6115 | .6290 || .6003 | .6407
(10,50) .0000 | .7907 || .2885 | .3718 || .6512 | .4522
HI (30,30) .6092 | .6011 || .7308 | .7301 || .6157 | .7319
4 (30,50) 7211 | .8491 || .9052 | .9072 || .8386 | .9082
(50,50) .6842 | .6891 || .8289 | .8302 || .7285 | .8299
(50,100) || .8024 | .9442 || .9631 | .9640 || .9433 | .9648
(100,100) || .7207 | .7973 || .8831 | .8828 || .8030 | .8834

Table 8: The empirical power estimates for the tests under the association alternatives H x{‘, H 1{11 ,and H x{‘I 1
in the two-class case with N,,,. = 10000, for some combinations of ny,ng € {10,30,50} at a = .05. The power
estimates that are not significantly different between Dixon’s and the new cell specific tests are marked with
an asterisk (*). For all others the larger power estimate is significantly larger than the other at o = .05.

NN NN
D.F. P.P. | sum DF. PP
base D.F. | 137 23 | 160 base DF. |8 % 15% | 70%
P.P. 38 30 68 PP. |56% 44 % | 30 %
sum | 175 93 | 228 77T % 23% | 100 %

Table 9:  The NNCT for Pielou’s data (left) and the corresponding percentages (right), where the cell
percentages are with respect to the row sums (i.e., species sizes) and the marginal percentages are with
respect to the total sample size. D.F. = Douglas-firs, P.P. = ponderosa pines.

Dixon’s NNCT-Tests
Overall test
Cp = 19.67 (pagy = .0001)

Cell-specific tests

The New NNCT-Tests
Overall test
Cn = 13.11 (pasy = -0003)

Cell-specific tests

D.F. PP. D.F. PD.

DF. | 436 ~4.36 DF.| 3.63 “3.61
(< .0001) | (< .0001) (.0003) | (.0003)

PP. | -2.29 2.29 PP. | -363 3.61
(.0221) | (.0221) (.0003) | (.0003)

Table 10: The overall and cell-specific test statistics for Dixon’s NNCT-tests (left) and the new NNCT-tests
(right) and the corresponding p-values (in parenthesis) based on asymptotic approximation for Pielou’s data.
D.F. = Douglas-firs, P.P. = ponderosa pines; C'p and Cy stand for the value of Dixon’s and new overall test
statistic, respectively. pasy stands for the p-value based on the asymptotic approximation of the tests.



NN

W.T. B.G. C.A. B.C. O.T. sum
W.T. | 112 (52 %) 40 (19 %) 29 (13%) 20(11 %) 14 (9 %) 215 (29 %)
B.G. | 38(19%) 117 (57 %) 26 (13 %) 16 (8 %) 8 (4 %) 205 (28 %)
base C.A. | 23 (15 %) 23 (15 %) 82 (63 %) 22 (14 %) 6 (4 %) 156 (21 %)
B.C. | 19 (19 %) 29 (30 %) 29 (30 %) 14 (14 %) 7(7T%) 98 (13 %)
O.T. 7 (12 %) 8 (13 %) 5 (8 %) 7T(12%) 33 (55 %) 60 (8 %)
sum | 199 (27 %) 217 (30 %) 171 (23 %) 79 (11 %) 68 (9 %) | 734 (100 %)

Table 11: The NNCT for swamp tree data (left) and the corresponding percentages (right), where the cell
percentages are with respect to the row sums and marginal percentages are with respect to the total size.
W.T. = water tupelos, B.G. = black gums, C.A. = Carolina ashes, B.C. = bald cypresses, and O.T. = other

tree species.

Table 12: Test statistics and p-values for Dixon’s overall and cell-specific tests and the corresponding p-values
(in parentheses). W.T. = water tupelos, B.G. = black gums, C.A. = Carolina ashes, B.C. = bald cypress and
O.T. = other tree species. Dagsy, Pmc, and Prand stand for the p-values based on the asymptotic approximation,
Monte Carlo simulation, and randomization of the tests, respectively.

Dixon’s overall test

Cp = 275.64 (pasy < .0001, pme < .0001, prana < .0001)

Dixon’s cell-specific tests

W.T. B.G. CA. B.C. O.T.

6.39 311 287 | 182 | 004

Pasy | (<.0001) | (.0019) | (.0041) | (.0682) | (.3484)

WI | pe | (<.0001) | (.0014) | (.0043) | (.0702) | (.3489)
Prand | (<.0001) | (.0015) | (.0048) | (.0670) | (.3286)

344 8.05 300 | 243 | =234

Pasy | (0006) | (<.0001) | (.0020) | (.0150) | (.0194)

B.G. 1y o | (0004) | (<.0001) | (.0014) | (.0179) | (.0192)
Prana | (0005) | (<.0001) | (.0012) | (.0172) | (.0198)

1.05 373 8.08 0.28 .04

Pasy | (0001) | (.0002) | (<.0001) | (.7820) | (.0410)

CA | pc | (<.0001) | (.0004) | (<.0001) | (.7810) | (.0430)
Prand | (< .0001) | (.0001) | (< .0001) | (.7580) | (.0409)

218 70.36 2.04 0.25 0.33

Pasy | (0205) | (.7180) | (.0418) | (.8011) | (.7008)
B.Colpe | (0202) | (7120) | (.0410) | (.7601) | (.6739)
Prana | (:0203) | (.6861) | (.0419) | (.7910) | (.6555)
3.02 554 247 | 039 | 1077

Pasy | (0025) | (.0112) | (.0135) | (.6952) | (< .0001)

OT. | pe | (0028) | (0112) | (.0115) | (.6582) | (< .0001)
Prana | (:0021) | (.0121) | (.0158) | (.6490) | (< .0001)




New overall test

Cn = 263.10 (pasy < -0001, pme < -0001, prana < -0001)

New cell-specific tests

W.T. B.G. CA. B.C. O.T.

7.55 1,08 106 | 074 | 174

Pasy | (<.0001) | (<.0001) | (.0001) | (.4584) | (.0819)

W.I L pie | (<.0001) | (<.0001) | (<.0001) | (.4564) | (.0860)
Prand | (< -0001) | (< .0001) | (< .0001) | (.4645) | (.0824)

3.04 8.16 495 | 145 | 327

Pasy | (.0023) | (<.0001) | (< .0001) | (.1479) | (.0011)

BG1 pe | (0028) | (<.0001) | (<.0001) | (.1550) | (.0013)
Prana | (:0018) | (<.0001) | (< .0001) | (.1493) | (.0008)

371 152 7.06 1.36 277

Pasy | (:0002) | (<.0001) | (< .0001) | (.1745) | (.0056)

CA pe | (0001) | (0001) | (<.0001) | (.1776) | (.0064)
Prana | (:0001) | (<.0001) | (<.0001) | (.1806) | (.0064)

178 0.00 1.61 0.89 0.82

Pasy | (0754) | (.9977) | (.1081) | (.3725) | (.4097)
B.Col poe | (0702) | (.9952) | (.1098) | (.3771) | (.4105)
Prana | (0723) | (.9958) | (.1114) | (.3796) | (.4071)
272 2.90 2.04 0.21 10.71

Pasy | (0066) | (.0037) | (.0033) | (.8335) | (< .0001)

OT. | poc | (0060) | (.0031) | (.0027) | (.8375) | (< .0001)
Prana | (.0070) | (.0036) | (.0026) | (.8354) | (< .0001)

Table 13: Test statistics and p-values for the new overall and cell-specific tests and the corresponding p-values

(in parentheses). The labeling of the species and p-values are as in Table
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Figure 12: Second-order analysis of swamp tree data. Functions plotted are Ripley’s bivariate L-functions
L;j(t) —t fori,j =1,2,...,5 and i # j where i = 0 stands for all data combined, i = 1 for water tupelos,
1 = 2 for black gums, ¢ = 3 for Carolina ashes, 1 = 4 for bald cypresses, and ¢ = 5 for other trees. Wide
dashed lines around 0 (which is the theoretical value) are the upper and lower (pointwise) 95 % confidence
bounds for the L-functions based on Monte Carlo simulations under the CSR independence pattern. W.T.
= water tupelos, B.G. = black gum, C.A. = Carolina ashes, B.C. = bald cypresses, and O.T. = other tree
species.
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Figure 13:

oA
IS

W.T.vs B.C.

0 2 4 6 8 10 12
t(m)
C.A.vs O.T.

Pair correlation functions for each pair of species in the swamp tree data. Wide dashed lines

around 1 (which is the theoretical value) are the upper and lower (pointwise) 95 % confidence bounds for the
L-functions based on Monte Carlo simulations under the CSR independence pattern. W.T. = water tupelos,
B.G. = black gums, C.A. = Carolina ashes, B.C. = bald cypresses, and O.T. = other tree species.
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