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Abstract
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a
conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally
formed deterministically using the inter-distances or boundaries between the regions. An extension
of CAR model is proposed in this article where the selection of the neighborhood depends on
unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model.
The resulting model shows flexibility in accurately estimating covariance structures for data
generated from a variety of spatial covariance models. Specific examples are illustrated using data
generated from some common spatial covariance functions as well as real data concerning radioactive
contamination of the soil in Switzerland after the Chernobyl accident.

1. Introduction
The accident that occurred at the Chernobyl nuclear power plant on April 26, 1986 was one of
the most serious nuclear power plant catastrophes in history. Discharge from the plant lasted
for ten days and deposited a variety of radioactive particles into the atmosphere. Predicting
and monitoring the pattern of contamination across Europe has been difficult, due to the variety
of radioactive particles, as well as the meteorological conditions. In the ensuing period data on
contamination has been collected across Europe. We analyze a subset of this data collected at
200 irregularly located sites across Switzerland. This data consists of observations of cesium
(137Cs) concentration per square meter measured in kBq/m2 where 1 Bq = one radioactive
decay per second (Kanevski and Maignan, 2004). This concentration is of interest because it
is thought to be a good overall indicator of contamination levels.

Data of this type can be modeled using either a traditional geostatistical model where the spatial
dependence between observed concentrations is captured based on estimating parameters of a
weakly stationary isotropic covariance function. The covariance is defined as a function of
some measure of the separation between observations' locations. Commonly used covariance
weakly stationary functions are Exponential, Gaussian or more generally the Matern family
(Cressie, 1993). However, the use of such stationary isotropic covariance models may not be
appropriate for our motivation data set as we shall show in Section 4. Alternatively, a
conditionally autoregressive (CAR) model can also be used. In the CAR model spatial
dependence is expressed through the mean term by setting the expected value of observations
in a region to be a function of the adjacent areas' means (Besag, 1974). Traditionally
geostatistical models are considered more flexible in capturing the spatial dependence when a

© 2008 Elsevier B.V. All rights reserved.
*Corresponding author. Tel.: +1 919 513 7676; fax: +1 919 5157591. E-mail address: white@stat.ncsu.edu (G. White).
Uncited references
Table 3 and Table 4.

NIH Public Access
Author Manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 10.

Published in final edited form as:
Comput Stat Data Anal. 2009 June 15; 53(8): 3033–3046. doi:10.1016/j.csda.2008.08.010.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



large number of observations can be measured at different sites. The disadvantage to these
models is in the computational burden involved as well as the limitation of the available models
for non-stationary covariance structures. CAR models are seen typically as too restrictive in
the range of spatial dependence that they will model successfully, though computationally they
offer an advantage over geostatistical models (Rue and Tjelmeland, 2002).

Due to potential non-standard features in the data such as anisotropy or non-stationarity it is
desirable to perform an analysis using a class of spatial models that are as flexible as possible.
The size of the dataset studied here, though not excessive lends itself to any effort to improve
computational efficiency, as is useful in general for spatial data analysis. In order to accomplish
these goals we extend the family of Gaussian–Markov Random Fields (MRF) proposed by
Hrafnkelesson and Cressie (2003) for the regular lattice to the case of an irregular lattice and
allow for a stochastic variation of neighborhood for a CAR model. This model combines the
flexibility of a geostatistical model with the computational advantages of a CAR model. The
resulting model demonstrates good characteristics for fitting data from a variety of spatial
covariance models. In addition it is also computationally efficient and easy to implement for
large data sets.

In Section 2, we discuss some of the existing models and present our extension. In Section 3,
we present results based on measuring the Kullback–Liebler discrepancies between true data
generating distribution and the proposed model. We also use simulated data sets to compare
the performance of our proposed model to other existing models. In Section 4, we apply our
proposed model to the motivating data of cesium-137 (137Cs) contamination in Switzerland
and discuss the results. Finally we close with a discussion of the overall results and directions
for possible future work in Section 5.

2. Spatial models
Spatial data can be defined as observed over either specific sites or areas. In the first case,
analysis involves using a geostatistical model where the covariance is defined as a function of
some measure of the separation between the location of observations (Cressie, 1993). In the
case of areal data covariance is modeled typically as a function of the adjacency structure of
the areas, as in a CAR model, or in general as a Markov Random Field on a regular discrete
lattice. For point referenced data the observations are made on a continuous spatial region,
rather than a discrete grid. It has been demonstrated that the difference between these two
approaches is not as distinct as it may initially appear (Werner, 2004; Song et al., in press). We
demonstrate that the proposed Stochastic Neighborhood CAR (SNCAR) model can better
approximate some of the common geostatistical models as compared to regular CAR models.

In our application 137Cs concentration was measured at 200 sites. The locations of these sites
are irregularly located and are most likely not randomly selected. It is assumed that the
concentrations are highly correlated in space. This motivated the use of a spatial model. The
use of an MRF model is motivated by the desire to improve computational efficiency and to
explore the capabilities of anisotropy and non-stationarity in the proposed model.

2.1. Gaussian MRFs
We begin the development of our model by reviewing the definition of a Gaussian Markov
Random Field. For y = (y(s1), …, y(sn))′ an n×1 vector of observations at locations {s1, …,
sn} from a spatial process the full conditional means and variances can be written as

(1)
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and

(2)

If we assume that each of these univariate full conditional distributions are normally distributed
then it follows from Brook's Lemma (Besag, 1974) that the joint distribution is an n-
dimensional multivariate normal distribution given by

(3)

where ρ is a parameter describing the relative strength of spatial dependence, C is an n × n
matrix such that cij = cji and cii = 0, and D is a diagonal matrix with diagonal entries

. This form is most familiar as a CAR model, where C is commonly chosen as the
adjacency matrix with cij = 1 if areas i and j are adjacent and 0 otherwise (Besag and
Kooperberg, 1995). In general this form is not strictly limited to the traditional CAR model
definition of adjacency in defining C. The matrix C can be defined in a variety of ways as long
as the resulting matrix, (D − ρC) is positive definite (Banerjee et al., 2004) for a range of
parameter values and any number of sites/regions. As a result we define C using a similar
neighborhood measure proposed by Hrafnkelesson and Cressie (2003) for a Markov random
field. The resulting model can be used as an approximation of the geostatistical model over a
continuous spatial index, as the regions shrink to their centroids.

2.2. The SNCAR model
In this section we propose a neighborhood measure that defines the off diagonal elements of
the matrix C which are allowed to change with unknown parameter(s). A neighborhood
function can be defined in several different ways as long as the resulting matrix C is symmetric
and (D − ρC) is positive definite. In particular when the observations are point referenced, it
is desirable to create a neighborhood measure based on dij, the intra-point distance for pairs of
locations or centroid of a pair of regions. In the case of data on a regular lattice the adjacency
function for a CAR model, given an upper limit du is cij = I(0 < dij ≤ du) where I(·) denotes the
indicator function taking the value 1 if the condition within (·) is satisfied and taking the value
0 otherwise. For areal data the definition is

(4)

If the observed areas are on a regular lattice (4) is the same as cij = I(0 < dij ≤ du) where du is
the largest distance between the centroid for locations that are considered adjacent. For an
irregular lattice, du is chosen such that no row of C will have all 0 entries. Other choices are
also available for defining du, though caution should be exercised to maintain the positive
definiteness of the matrix D − ρC. The result is a step function which coincides with the CAR
adjacency matrix definition of the neighborhood measure for regular grids. In general this
neighborhood function can be defined as

(5)
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where c(dij,ψ) is some function such that c(dij,ψ) ≤ 1, which may depend on unknown
parameters ψ. As in Hrafnkelesson and Cressie (2003), we employ the following function

 where ψ = −log(α)/log(du) and α > 0 is the amount of spatial dependence present
when dij is equal to some upper limit du; in this paper we set α = 0.05. The value dl is chosen
to ensure that the resulting matrix D − ρC(ψ) is positive definite, and du is chosen as an unknown
upper limit for adjacency to be estimated. The parameter du helps us to ensure that the resulting
precision matrix D − ρC(ψ) is sparse, and dl ensures that it is not too sparse. Note that dij can
always be scaled such that the smallest non-zero value of dij, dl = 1 so that c(dij,ψ) is strictly
decreasing in dij, for i ≠ j. The resulting spatial model has the form of a traditional CAR model
and if the parameter ψ is considered a random variable then the resulting model is a stochastic
neighborhood conditional autoregressive (SNCAR) model.

3. Performance of SNCAR model
In order to compare the performance of a given spatial model we use the Kullback–Liebler
discrepancy (KLD) of the proposed model to the true data generating distribution. Suppose
that data y is generated from a density f(y|A0) and the proposed model is based on f(y|A), where
A0 and A denote the precision matrices under the true and proposed models, respectively. If
we assume that our data are generated from zero mean Gaussian distributions, then it easily
follows that −2 logf(y|Aj) = n log(2π) + yTAjy − log(|Aj|) for j = 0, 1 and hence the KLD between
f(y|A0) and f(y|A) is given by

Now given a true precision matrix A0 and two competing models with precision matrices A1
and A2 we can find Â1 and Â2 that minimize D(A1|A0) and D(A2|A0), respectively. The model
with precision matrix A1 is said to perform better than the model with precision matrix A2 if
D(Â1|A0) < D(Â2|A0). Next we consider several choices for the true precision matrix A0 and
compare the performance of the SNCAR with another competing model. For all our
illustrations we use the centroid of the counties in Missouri as our choice for the sites s1, …,
sn. The main difference between the hierarchical models for the CAR, exponential and SNCAR
models is in the spatial covariance (or equivalently the precision) matrix used and the associated
priors.

(a) The CAR model
The hierarchical model is specified as

and

For the example here we have an adjacency matrix for Missouri based on (4). When the CAR
model is chosen as the data generating distribution we used ρ = (0.2, 0.5, 0.9) and δ0 = (0.1, 1,
10) which results into nine different CAR models. Notice that the CAR precision matrix is
given by A(δ0, ρ) = (D − ρC)/δ0.
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(b) The Exponential model:
The hierarchical model is specified as

and

The range (0.01, 41) for the uniform prior on ϕ is chosen based on prior beliefs about the
maximum and minimum correlation at the largest and smallest distances of the data. When the
Exponential model is chosen as the true data generating distribution we used ϕ = (3, 0.31, 0.17)
and δ0 = (0.1, 1, 10) resulting into nine different true Exponential models. Notice that the
Exponential precision matrix is given by A(δ0, ϕ) = Σ(δ0, ϕ)−1.

(c) The SNCAR model:
The hierarchical model is specified as

and

where dl is fixed at a suitable value so that the resulting precision matrix is positive definite
and ψ = −log(α)/ log(du) with α = 0.05. The prior for Δ is chosen with ∊ = 0.0001 and the upper
limit reflecting a reasonable belief about the maximum distance, in this case this upper limit
is approximately 1/3 the maximum distance between centroid. Notice that the SNCAR
precision matrix is given by A(δ0, ρ, ψ) = (D – ρC(ψ))/δ0 where ψ is a decreasing function of
Δ.

3.1. KLD comparison between SNCAR and competing models
We present the performance of the SNCAR when the true data arise either from a given CAR
model (as specified in (a)) or a given Exponential model (as specified in (b)). Specifically,
suppose A0 ≡ A0(δ0, ρ) to be the precision matrix corresponding a given CAR model, let
A1(δ0, ρ, ψ) represent the precision matrix of a SNCAR model as defined above. Let A2(δ0,
ϕ) denote the precision matrix of an exponential covariance model with range ϕ and partial sill
δ0. We use numerical optimization to obtain (ψ ̂, σ ̂2, ρ̂) that minimizes D(A1(ψ, σ2, ρ)|A0) and
similarly obtain (δ̂0, ϕ̂) that minimizes D(A2(δ0, ϕ)|A0). In Table 1, we report values of D
(A1(ψ ̂, σ̂2, ρ̂)|A0) and D(A2(δ̂0, ϕ̂)|A0) when A0 is chosen as one of the nine CAR models with
true values δ0 = (0.1, 1, 10) and ρ = (0.3, 0.5, .02). We repeat a similar procedure when A0 is
chosen as one of the nine Exponential model with δ0 = (0.1, 1, 10) and ϕ = (3, 0.31, 0.19) and
report the minimized KLD values in Table 2. The minimized KLD indicates that the proposed
SNCAR models outperform both CAR and Exponential models when the models are
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misspecified as Exponential and CAR, respectively. These results indicate that if a maximum
likelihood procedure is used, then the proposed SNCAR model would provide a better fit when
the true precision matrix is misspecified.

3.2. Simulation study to compare the out-of-sample performance of the SNCAR model
Next in order to asses the predictive performance of the SNCAR model as compared to the
Exponential and CAR models we use data sets simulated from Exponential and CAR models.
For each of the previously stated covariance matrices (see (a) and (b) in Section 3) ten data
sets of size 115 are generated from each of nine CAR and nine Exponential models as the true
models. Thus, we have eighteen true models with ten replicated data sets for each. For each of
the 180 data sets we fit a CAR, Exponential and SNCAR models with priors as specified in
(a)–(c) and obtain posterior samples. For each of the 90 data sets generated from a CAR (or
Exponential) model, a random subset of 15 observations is withheld and their values are
predicted using the posterior predictive distribution under the assumed model. If yw denotes
the vector of 15 withheld values and if ypred denotes the corresponding vector of 15 predicted
values, we measure the predictive performance by the sum of squared predictive errors (SSPE)
given by SSPE = ||ypred – yw||2, where || · || denotes the Euclidean norm. Notice that, if yobs

denote the vector of observed 100 values that were used to fit the model then MSPE = E
[SSPE|yobs] = tr(Vw)+||μw–yw||2, where Vw = Var[ypred|yobs] and μw = E[ypred|yobs] denote the
predicitve variance and the mean of ypred given yobs, respectively. Notice that as the data sets
are generated from zero mean Gaussian distributions, both μw and yw are expected to be close
to zero vector and hence the dominating term of MSPE would be the tr(Vw), where tr(·) denotes
the trace of the matrix. Thus, the predictive performance of the models is in their ability to
predict the covariance structure of the withheld data. The difference is then entirely in the
estimation of the covariance matrices. In this predictive measure, it is easy to see that the
SNCAR model outperforms the other models for the misspecified data.

3.3. Performance of SNCAR based on comparing DIC
In addition to the predictive sum of squares and trace metric used to compare models under
misspecification we also calculated DIC and pD (Spiegelhalter et al., 2002) for each of the ten
replicates of the eighteen different models fit. The results are shown in Tables 5 and 6 and Figs.
4-9 (see Appendix). It is clearly evident that when the true model is a CAR and we fit SNCAR
and EXP models, the SNCAR provides a much better fit (in terms having lower DIC), in
comparison to the EXP model for all possible eighteen combinations of the parameter values.
In Table 5 we see by comparing the pD values, that the SNCAR model uses effectively more
parameters compared to the EXP model but in terms of DIC values the SNCAR model is
preferred, as evidenced by the lower DIC. Also from Table 6 it appears that in most cases
SNCAR is preferable to the CAR model when the data is generated from the EXP model.
Except for two cases when ϕ = 3 and δ0 = 0.1 and 1. In these two cases the spatial correlation
is rather weak (recall that σij = δ0 exp(−ϕdij)) and the observations are nearly white noise. In
all other scenarios, especially when the true spatial autocorrelation is comparatively strong,
the SNCAR outperforms the other two commonly used models in terms of DIC and the other
two measures that we described in the earlier two subsections.

The occurrence of negative pD values in several cases of the SNCAR and the exponential
models is a notable event. Negative values for deviance and DIC are not necessarily an
indication of possible problems with the model. Negative values for pD do merit further
attention. This subject has been addressed in Spiegelhalter et al. (2002) as well as in several
recent papers including Celeux et al. (2006) and Plummer (2006). In summary the causes of
negative pD can be the non-log concavity of the sampling distribution, or a posterior distribution
where the mean is a poor estimator. Several remedies for this, and other methods of model
selection have been proposed. However we have not explored such remedies in this article.
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From our extensive simulation study (consisting of 18 different scenarios with 10 replication
each), we can safely conclude that, in most practical cases, the proposed SNCAR model will
provide a better fit than the CAR or EXP model when the models are misspecified.

4. Application to the Swiss 137Cs soil contamination data
In this section we present analysis of the data set that motivated us to develop the SNCAR
model. This data was collected after the Chernobyl Nuclear Reactor accident at 200 locations
measuring cesium (137Cs) concentration per square meter (see Fig. 2). While the contamination
consists of several different radioactive isotopes, the concentration of radioactive cesium is an
important indicator of overall contamination. A spatial model of concentration is useful for
both prediction of concentration at unobserved locations as well as for inference about the
general distribution of contaminants across Switzerland. Before we fit the proposed SNCAR
model to this data set we performed some exploratory data analysis to check the validity of the
assumptions (e.g., Gaussianity, stationarity and isotropy).

4.1. Exploratory data analysis
Based on some preliminary analysis we find that log-normal distribution would be a suitable
family to model the observed concentrations. Let yi be the natural logarithm of the observed
level of 137Cs at site si = (s1i, s2i), for i = 1, …, n = 200, where s1i and s2i denote the latitude
and longitude of the ith location. Our preliminary analysis suggests that the following model
serves as good approximation for the concentration data:

(6)

where measurement errors ei's are independent of the spatial random effects zi's and β0, β1 and
β2 are regression coefficients of the linear trend. The spatial random effect vector z = (z1, …,
zn) is modeled using one of the three spatial models discussed earlier in Section 3. It is also
assumed that the measurement errors ei's are independent and identically distributed (iid) with
mean 0 and variance δ1.

Further exploratory data analysis was carried out using the geoR package in R software. This
initial spatial analysis suggests that the underlying spatial correlations between the sites are
anisotropic. Hence, we transform the observed sites si's using the following transform

(7)

and use the modified measure of distance

(8)

The parameters θ and η denote the angle and ratio respectively, that describe the anisotropy as
defined in Diggle and Ribeiro (2007). For all subsequent analysis we fix the angle (θ) and ratio
(η) parameters at the maximum likelihood estimates θ ̂ = 0.55 and η ̂ = 1.374, obtained using
geoR Ribeiro and Diggle (2001). Moreover, for numerical stability we have centered (by mean)
and scaled (by standard deviation) the response variables yi's and also the site variables  and

. Hence we can use the simplified model given by
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(9)

where the y's and s*'s have been suitably centered and scaled to achieve 
and . Notice that the intercept is now dropped from the model as its estimate would
be essentially zero by using centered responses and predictors.

4.2. Results based on spatial analysis of Swiss data
We estimated the parameters of the model (9) with z distributed as one of the spatial models
(a)–(c) as described in Section 3. In addition we also fitted a model without the spatial effect
(i.e., setting zi = 0 in model (9)). In order to compare the four models first we use DIC
(Spiegelhalter et al., 2002). The DIC and pD values are presented in Table 7. Clearly the null
model having no spatial effects performs poorly and can be safely eliminated from further
considerations. Among the remaining three spatial models SNCAR has the lowest DIC value
along with the lowest pD value. This indicates that the proposed SNCAR model not only
provides a better fit to the data but it also used effectively fewer parameters. The SNCAR model
did take a longer time than the other two models to converge satisfactorily and was run for
50,000 iterations of burn-in, thereafter retaining 10,000 iterations for posterior inference. This
model will be the one discussed in the remainder of this section.

4.3. Parameter estimates based on the SNCAR model
In this section we present the analysis based on the proposed SNCAR model. The estimates of
the various model parameters are of interest in examining the results and better understanding
the model. The posterior distributions of the model parameters are summarized in Table 8 and
Fig. 1.

The density of ρ (in Fig. 1) is extremely skewed to the right (near unity) indicating the presence
of a strong spatial effect. The posterior densities (presented in Fig. 1) for δ0, β1, and β2 appear
reasonably smooth and unimodal. The posterior estimates of β1 and β2 in Table 8 indicate that
there is a significant linear trend with concentrations increasing in the southeastern direction
and that this trend is statistically significant. There is some roughness in the density estimates
for Δ. The posterior correlation between the β's is 0.44 and the posterior correlation between
Δ and δ1 is 0.68. This is also possibly the cause of some variance inflation of the parameter
estimates as well as inflating the pD value. All the posterior estimates are based on 10,000
MCMC samples following 50,000 burn-ins obtained via WinBUGS (Lunn et al., 2000).

4.4. Mapping concentrations
In order to evaluate the model performance we employed several graphical plots. In Fig. 2, we
present the bubble plot of the observed concentrations and also the estimated concentrations
using the posterior predictive mean of the concentration. There appears to be a reasonable
similarity between the observed and predicted concentrations. Next to explore the uncertainty
of our predicted values we also present the standard errors of the predicted concentrations in
Fig. 3 as well as the coefficient of variation. The coefficient of variation (cv) is defined as

(10)
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where sd(yi|yobs) is the predictive standard error for the estimated concentration E(yi|yobs).
Smaller values for the cv are more desirable and the value of the cv > 0.3 are considered
unreliable (Mendenhall and Sincich, 2003).

The bubble plot of the observed data and heatmap of the estimated concentrations show that
there is one region in the southeast corner that appears to have much higher concentrations
than the rest of the area. There is also little smoothing of the data by the model, as evidenced
by both the heatmap and the large pD. This may be due to this prominent anomaly. The large
pD value and the lack of smoothing typically indicate large prediction intervals that compromise
the models' predictive ability, and possibly the inferential value of the model as well.

The second set of heatmaps in Fig. 3 shows the standard errors of the estimated concentrations
and the coefficients of variation as well. The heatmap of the standard errors indicates that the
errors are largest in the regions surrounding the area of lower concentration and are smallest
in the areas of highest concentration. This is also expected as we have used a log-normal model
which allows the variance to vary with the mean. The heatmap of the cv values shows again
that they are lowest in the region of highest concentration, and they are smallest in the region
of lowest concentration immediately adjacent. The model in short works best at estimating
higher concentrations, which would be of primary interest in assessing health risks. One reason
for this result is that the locations where the concentrations are considered low also have a low
density of sites. This lack of information and sparseness of locations provide little information
for estimating a concentration at a specific site other than the single observation taken there.
Another source of variability could be measurement error when observing small values.

The results show that there appears to be an area in south-eastern Switzerland where the
concentration of 137Cs is higher than that in other areas. Geography may play a role in this as
this portion of Switzerland is separated by the Alps mountain range. Since the primary transport
mechanism for 137Cs is by wind patterns, geographic features such as mountain ranges are an
important consideration in interpreting the data. This may also account for the relatively large
pD of the model and the heavy tailed posterior density of Δ.

5. Conclusions
The model results show a good overall fit to the data with standard errors for the fitted values
very reasonable. The overall performance of the SNCAR model based on simulated data as
well as the analysis of the 137Cs data show that it is more flexible in fitting various spatial data.
The SNCAR model has the flexibility of traditional geostatistical models while retaining the
computational advantages of a CAR model.

The region of higher concentration for the 137Cs data may indicate non-stationarity resulting
from geographic and meteorological factors. This is a possible cause of the heavy tailed
posterior density for Δ. The overall results for the model were good and provide useful
information in assessing the underlying 137Cs exposure in Switzerland. Incorporation of other
predictors, such as altitude, wind speed etc. might improve the model fit.

In this paper we have explained a simple function for c(dij, ψ) as defined in (5). It would be of
interest to extend the scope of this function to estimate more complicated forms of the
neighborhood function. However in making such extensions cautions should be exercised so
as to keep the precision matrix positive definite. Our proposed SNCAR can also be used as a
prior within the generalized linear model (GLM) by using a suitable link function.
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Appendix

Appendix
See Figs. 4-9.
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Fig. 1.
Posterior density estimates of the parameters of SNCAR model fitted to 137Cs concentration
data.
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Fig. 2.
Bubbleplot of observed 137Cs concentrations along with the estimated concentration.
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Fig. 3.
Standard errors and coefficients of variation of the log-concentrations.
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Fig. 4.
Density of log(SSPE) for SNCAR (– – –) and Exponential (—) fit to CAR data.
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Fig. 5.
Density of log (tr(Vw)) for SNCAR (– – –) and Exponential (—) fit to CAR data.
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Fig. 6.
Density of log(SSPE) for SNCAR (– – –) and CAR (—) fit to Exponential data.
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Fig. 7.
Density of log (tr(Vw)) for SNCAR (– – –) and CAR (—) fit to Exponential data.
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Fig. 8.
Box Plot of DIC for SNCAR and Exponential fit to CAR data.

White and Ghosh Page 18

Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Box Plot of DIC for SNCAR and CAR fit to Exponential data.
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Table 7
DIC and pD for various models based on Swiss 137Cs data

Model DIC pD

Null 690.232 2.021

CAR −7.594 158.814

Exponential −272.257 165.199

SNCAR −300.086 158.610
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