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Summary
In practical data analysis, nonresponse phenomenon frequently occurs. In this paper, we propose an
empirical likelihood based confidence interval for a common mean by combining the imputed data,
assuming that data are missing completely at random. Simulation studies show that such confidence
intervals perform well, even the missing proportion is high. Our method is applied to an analysis of
a real data set from an AIDS clinic trial study.
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1 Introduction
In biomedical and epidemiologic researches, data are often missing because subjects fail to
report at clinical centers or refuse to answer some questions, or technicians may lose data.
Simply excluding the missing data, known as complete case analysis, may waste useful
information, because other observed variables associated with the missing variables are also
excluded. More seriously, this simple exclusion may result in an inefficient estimation (see,
for example, Liang et al., 2004; Wu, 2004) and may even lead to a false conclusion although
the implementation of the complete case method is much simpler and it is a default method in
most statistical software. In the literature on missing data, common approaches have been
described: maximum likelihood (Ibrahim, Chen, and Lipsitz, 1999; Ibrahim, Lipsitz, and
Horton, 2001), weighting adjustment (c.f., Cochran, 1977), single imputation (c.f., Rao and
Sitter, 1995), and multiple imputation (Rubin, 1987; Little and Rubin, 2002). This paper will
focus on single imputation.

Single imputation is meant to fill a single value for the missing data. It includes mean
imputation, ratio imputation, regression imputation, and hot deck imputation etc. When such
an imputation is utilized to construct a confidence interval, a normal or t approximation is
usually used. This may not be a very good approximation in practice. In this paper, we will
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propose an empirical likelihood based confidence interval by combining single imputation
approach for missing data. This work was motivated by the analysis of an AIDS clinical trial
data set (see Section 5). CD4+ cell count is an important biomarkers in AIDS research (Liang,
Wu, and Carroll, 2003; Wu, 2004), and have commonly been used to investigate the treatment
effects, which may help clinicians more deeply understand AIDS pathogenesis and improve
therapy. Although antiretroviral therapy for HIV-1 infected patients has been greatly improved
in recent years, and administration of drug cocktails consisting of three or more drugs can
reduce and maintain the viral load below the detection limit for many patients, it is unlikely
that combination therapy can eradicate HIV in infected patients because of the existence of
long-lived infected cells and sites within the body where drugs may not be effective. With the
success of highly active antiretroviral therapy (HAART) against HIV infection, CD4+ cell
counts can come back, and the infection is considered chronic. Clinicians and patients are
therefore interested in monitoring the immunologic system (measured by CD4+ cell counts).
However, there is a common challenge that CD4+ cell count is often missing because CD4+
cell counts and the viral load are measured at different time points. As discussed above, simply
exclusion for the missing data is not wise. For the imputation of the missing CD4+ cell counts,
the use of auxiliary information like treatment time is helpful. We will utilize the methods
discussed in this paper to impute the missing CD4+ cell counts and then give the confidence
intervals of the mean of CD4+ cell counts (Wu, Wong, and Wei, 2006). Careful investigation
of this quantity is biologically and clinically important because it is a good biomarker for anti-
HIV treatment and may be used to evaluate antiretroviral therapies.

The article is organized as follows. In Section 2, we briefly introduce two existing methods in
the literature on the imputation for missing data using auxiliary information. In Section 3, we
propose to use an empirical likelihood based confidence interval incorporating the imputed
data. We illustrate the methods with intensive simulation experiments in Section 4, and analyze
a data set from an AIDS study in Section 5. A discussion is provided in Section 6. The proof
of the theoretical result is put in the appendix.

2 Jackknife-based Confidence Intervals
Assume that a group of subjects with the characteristic values (y, x) are independently observed
n times, where y is the variable of interest with the mean θ, and x is an auxiliary variable. Let
(yi, xi) be available for r1 subjects, whose set is denoted by A1, ȳ1 and x̄1 be their sample means;
only xi be available for r2 subjects, whose set is denoted by A2, and x̄ be the sample mean of
the auxiliary variable over the sample set s = A1 + A2.

2.1 RS Method
For the missing data, Rao and Sitter (1995) used a ratio imputation approach to impute their

values in the finite population inference: For i ∈ A2, define . Correspondingly, an
estimator of θ can be given by

Under the following ratio model
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θ ̂RS is an unbiased estimator of θ regardless of missing mechanism. By using Jackknife
approach, a variance estimator of θ ̂RS can be obtained as

where

and

The reader is referred to Haziza and Picard (2008) for the good properties of the Jackknife
variance estimators in the presence of imputed data. The confidence interval with the level of
1 − α is given by

(1)

where zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

2.2 LZ Method
Recently, aiming to reduce the possible design-bias of the estimator θ ̂RS, Liu et al. (2006)
developed a mean-of-ratio imputation approach to impute the missing data for finite

population: For i ∈ A2, let . Their estimator for θ is

where  with uj = yj/xj.
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Similarly, θ ̂LZ is an unbiased estimator under the ratio model regardless of missing mechanism.

Write

and similarly for , , syu(r1), and sxu(r1). The Jackknife variance estimator of θ ̂LZ is
given by

Correspondingly, the confidence interval with the level of 1 − α is given by

(2)

3 Empirical Likelihood-based Confidence Interval
The confidence intervals introduced in the previous section are based on a normal
approximation. Such confidence intervals, although intuitive and easy to calculate, may not be
true and in a consequence their numerical performance may not be optimistic in small sample
sizes. In this section, we propose an alternative choice, empirical likelihood based confidence
intervals, which have systematically been studied by Owen (2001). The basic idea is to give
an empirical likelihood ratio and then prove that the ratio has a limiting chi-squared distribution,
which assures one to obtain confidence intervals for a variety of settings. The empirical
likelihood method has many advantages over its competitors, such as the normal-
approximation-based method and the bootstrap method (see Hall and La Scala, 1990). The
most appealing features of the empirical likelihood method include the improvement of
confidence region, increase of accuracy of coverage because of using auxiliary information,
and easy implementation. The method has been applied in a variety of topics, for example,
linear models (Owen, 1991; Chen, 1993, 1994), generalized linear models (Kolaczyk, 1994),
and general estimating equation (Qin and Lawless, 1994).

In this section we use the empirical likelihood method combining the imputation for the missing
data to construct a confidence interval for θ. This process for independent data without
missingness was actually studied by Owen (1991), who introduced empirical likelihood ratio
confidence regions and ascertained that the confidence intervals for a one dimensional mean
are less adversely affected by skewness than those based on t statistic. Empirical likelihood
procedure has been used to develop confidence intervals of the means of the response variables
in linear and partially linear models under the setting of missing data; see Wang and Rao
(2002) and Wang, Linton, and Härdle (2004). The topic we study here is similar to that in
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Wang and Rao (2002). But unlike Wang and Rao (2002), we do not make any model
assumption.

Let (p1, …, pn) be a probability vector. Our empirical likelihood ratio function for the mean
θ is defined as

where  for i ∈ A1, and = ŷi which is defined in Section 2.1 for i ∈ A2. Under the missing
completely at random (MCAR) structure, the resulting empirical likelihood based confidence
interval for the mean in large sample sense is given by (3) below whose proof is provided in
the appendix:

(3)

where  is the (1 − α)– quantile of the chi-squared distribution with one degree of freedom,
and Qn(θ) = Un(θ)/Vn(θ) with

4 Simulation Study
To compare the performances of the three confidence intervals introduced in Sections 2 and
3, we conduct intensive simulation studies. We generate the data with the sample sizes 15 and
30 from the following model:

where the distribution of the auxiliary variable xi varies from the normal N(2, 3), Gamma (20,
4) to Uniform (2, 5), and the distribution of the error term εi is normal N(0, 0.52) or

 with  being the chi-squared random variable with the degrees of freedom of 2.
The missing rate for the variable of interest y varies from 50%, 25%, 10% to 0%.

We set the nominal level of confidence interval to be 1 − α = 95% and use formulae (1)-(3) to
calculate the coverage rate, lower bound and upper bound of interval estimation, where for the
empirical likelihood method, we combine the imputed data obtained by the ratio imputation
approach (see Section 2.1, because the results are similar when we use the mean-of-ratio
imputation approach in Section 2.2). We repeat our simulations 25,000 times. As a comparison,
we also do our calculation using naive method, based on normal approximation, which uses
the information only from the observed values of the variable of interest. The calculation results
are presented in Tables 1-2 for model (I). We show the confidence intervals (CI) obtained by
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the averages of lower and upper limits, the average CI lengths (LEN), and the coverage
probabilities (COV). It is seen from Tables 1-2 that the naive method often provides low
coverage probability especially for the serious missingness (≥ 25%) or small sample size (n =
15). Overall, RS, LZ and empirical likelihood methods are superior to the naive method. Both
of the LZ and empirical likelihood methods perform better than RS method. Among the three
methods, RS generally gives the lowest coverage probability together with the shortest interval
lengths, and LZ and empirical likelihood often present the coverage probabilities close to the
nominal level. Further, LZ and empirical likelihood methods are comparable, and the latter is
slightly better. On the other hand, the missing rate has no large effect on the three methods but
the sample size has a relatively larger effect for RS method than for LZ and empirical likelihood
methods. In addition, we have also conducted our simulations based on large samples (n = 200)
which show that all of the four methods tend to have similar behaviors (data not shown).

5 Data Analysis of an AIDS Clinic Trial Group Study
It is well-known that the patients who have been tested positive for the HIV antibody test
develop AIDS as HIV destroys their immune system. The immune system damage is evaluated
by the CD4+ cell count. If a patient with HIV infection has a CD4+ cell count less than 200,
he/she is said to have AIDS. Appropriately estimating CD4+ cell counts is therefore very
helpful for evaluating treatment effects. In this section, we present an analysis of an AIDS
clinical trial group (ACTG 315) study. Our purpose is to investigate the immunologic response
in AIDS clinical trials. In this study, CD4+ cell counts were measured after initiation of an
anti-viral therapy. There are a total of 514 observations with 13.8% of CD4+ cell counts missing
from 53 subjects, with number of observations per subject ranging from 3 to 11. Most of the
missing values of the CD4+ cell count occurred because it was measured at the time points
different from those for the viral load measurements. In other words, the missingness does not
depend on the values being missing, and it is reasonable to regard to be MCAR. The range of
CD4+ cell counts is from 17.28 to 773.76 with mean 267.72 and median 268.96. Figure 1
presents a scatter plot of CD4+ cell count versus treatment time with a simple linear regression
(solid line) and a horizontal line of y = 200 (dashed line) in the left panel, and a boxplot of CD4
+ cell counts in the right panel.

When we simply discard the data corresponding to missing CD4+ cell counts, we obtain that
the mean of the CD4+ cell counts is 266.54, and the associated 95% confidence interval is
[256.52, 276.56]. We apply the methods presented in the previous sections to analyze the data
set. The estimated means of the CD4+ cell counts based on RS and LZ methods are 270.51
and 270.75, and the corresponding confidence intervals are [260.45, 280.58] and [260.75,
280.76], respectively, while an empirical likelihood based confidence interval is [263.89,
281.31]. Three estimated values are similar. However, the interval estimation based on the
empirical likelihood is the shortest among the four methods in which we place confidence on
the basis of our simulation studies. It is also seen that the lower bounds of all confidence
intervals are larger than 200, a critical value as we pointed out at the beginning of this section.
Therefore the empirical likelihood based confidence interval provides the most accurate
information.

6 Discussion
In this paper, we proposed to use an empirical likelihood based confidence interval by
combining the imputed data. Simulation studies show that such confidence intervals perform
well and are not largely affected by the missing rates. Our method was also applied to an
analysis of a real data set from an AIDS clinic trial group study.
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Generally, treating the imputed data as if they were true and using the estimator and its variance
estimator based on full data would underestimate the true variance of the estimator. This would
lead to a shorter confidence interval and so a lower actual coverage probability. Interestingly,
it has been observed from our simulations using model (I) and its version with intercept term
that the similar phenomenon does not occur for the empirical likelihood based confidence
interval, even the missing rate is high (data not shown). This may owe to the sufficient auxiliary
information and appropriate imputations for the missing data. Although showing the robustness
in a sense, the empirical likelihood based confidence interval with complete data has been
adjusted to theoretically attain the nominal level in the presence of missing data in this paper.
Such an adjustment has been taken into account under the given models in literature (see, for
example, Wang and Rao 2002). But we have made no assumption on the underlying models.

A fairly restrictive assumption with our proposed method is that data are MCAR. We can relax
it by forming multiple imputation classes based on the auxiliary variable, as Rao and Shao did
(1992). This article also assumed that the auxiliary information is complete, that is, the
observation on the auxiliary variable x is available for all subjects. Clearly, this may not be
true in practical problems. In other words, the auxiliary information itself may also be missing.
In this scenario, the imputation methods for missing data can be found in Sitter and Rao
(1997) and Liu et al. (2006). Correspondingly, our idea here can be extended to this case. On
the other hand, for the missing data, we have used the ratio imputation and the mean-of-ratio
imputation methods in the empirical likelihood based confidence interval. Naturally, some
other imputations such as regression imputation and hot deck imputation can also be combined
with the empirical likelihood methods. When the underlying model is unavailable, the
modification of the usual empirical likelihood method under these imputations and its
efficiency investigation warrant our further work.
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Appendix: The derivation of formula (3)
To derive the empirical likelihood based confidence interval (3), we consider the following
incomplete observations:

where the auxiliary variable xi is observed completely, and δi = 0 if yi is missing and = 1
otherwise. We assume that these observations are i.i.d. and the missingness of the variable of
interest, y, is MCAR. Also, assume that yi and xi have finite two moments. Define .
Then we have

Write
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and

It can be shown that

(A.1)

where .

It is clear that ζi are i.i.d. with the mean E(ζi) = 0 and the variance-covariance matrix, say Σ,
as follows.

So from the central limit theorem, we obtain  when n → ∞. Noting that

 in probability, we have , which
together with (A.1) implies that

After some algebraic calculations, we see that

Furthermore, it is readily shown that
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in probability. Also, it is easy to verify that Un(θ) → U(θ) and Vn(θ) → V(θ) in probability.
Thus,

(A.2)

in distribution.

On the other hand, mimicking the proof of Theorem 3.2 of Owen (2001), we have |λ| =
Op(n−1/2). A direct simplification yields

(A.3)

where λ satisfies . Noting that

we have

(A.4)

Further,

So
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(A.5)

From (A.3)-(A.5), we obtain

Combining this and formula (A.2), we obtain the empirical likelihood based confidence interval
(3).
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Figure 1.
Scatter plot of CD4+ cell counts versus treatment time (left panel) and boxplot of CD4+ cell
counts.
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