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Abstract

The efficiency of an experimental design is ultimately measured in terms of time
and resources needed for the experiment. Optimal sequential (multi-stage) design
is studied in the situation where each stage involves a fixed cost. The problem is
motivated by switching measurements on superconducting Josephson junctions. In
this quantum mechanical experiment, the sequences of current pulses are applied to
the Josephson junction sample and a binary response indicating the presence or the
absence of a voltage response is measured. The binary response can be modeled by
a generalized linear model with the complementary log-log link function. The other
models considered are the logit model and the probit model. For these three models,
the approximately optimal sample size for the next stage as a function of the cur-
rent Fisher information and the stage cost is determined. The cost-efficiency of the
proposed design is demonstrated in simulations based on real data from switching
measurements. The results can be directly applied to switching measurements and
they may lead to substantial savings in the time needed for the experiment.
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1 Introduction

In binary response experiments carried out in various fields of experimental
science, the researcher chooses the value of a covariate variable and measures
a binary response. The measurement data is modeled by a binary response
model where the probability of success or failure is assumed to be a monotone
function of the covariate. Three parametric models, the logit, the probit and
the complementary log-log (cloglog) model are frequently used to model the
dependence between the binary response Y and the continuous covariate x. All
these models can be presented in the framework of generalized linear models
(McCullagh and Nelder, 1989)

P (Y = 1) = E(Y ) = F (ax+ b), (1)

where the response curve F is a cumulative distribution function (cdf) and the
a and b are the parameters of the model to be estimated. The three response
curves commonly used are: logistic distribution for the logit model

F (ax+ b) =
exp(ax+ b)

1 + exp(ax+ b)
, (2)

normal distribution for the probit model

F (ax+ b) = Φ(ax+ b), (3)

where Φ is the cdf of the standard normal distribution, and the Gompertz
distribution for the cloglog model

F (ax+ b) = 1− exp(− exp(ax+ b)). (4)

The problem of optimal design arises when the covariate values need to be
chosen in optimal manner to estimate some parameters of interest. In binary
response models (1), the parameters of interest are a and b that determine the
slope and the location of the response curve. Several optimality criteria have
been proposed in the statistics literature. Among the most popular are D-
optimal designs, which minimize the generalized variance. The minimization
of the generalized variance equals to the maximization of the determinant
of the Fisher information. The expected Fisher information of the data xi,
i = 1, . . . , n under the binary response model (1) is defined as

J =













n
∑

i=1

g(zi)x
2
i

n
∑

i=1

g(zi)xi

n
∑

i=1

g(zi)xi
n
∑

i=1

g(zi)













, (5)
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where zi = axi + b and

g(z) =
e−z

(1 + e−z)2
for logit model (2), (6)

g(z) =
(Φ

′

(z))2

Φ(z)(1 − Φ(z))
for probit model (3) and (7)

g(z) =
e2z

eexp(z) − 1
for cloglog model (4). (8)

Now the D-criterion can be defined as the square root of the determinant of
Fisher information (5)

D =
√

det(J). (9)

The (locally) D-optimal design is derived by maximizing D under the as-
sumptions that n → ∞ and the true values of the the parameters a and
b are known. The derivation is non-trivial and can be found in the gen-
eral form in (Ford et al., 1992). The widely used logit model (2) is stud-
ied also by Abdelbasit and Plackett (1983); Minkin (1987); Sitter and Wu
(1993); Mathew and Sinha (2001). The above references show that the D-
optimal design is a two-point design for the logit, the probit and the cloglog
models and the optimal covariate values x∗ can be solved from the equation
ax∗+b = z∗, where the values of the canonical parameter z∗ are reported in Ta-
ble 1. Extensions to the models with more than one covariate are considered
by Woods et al. (2006), Dror and Steinberg (2008) and Dorta-Guerra et al.
(2008).

Table 1
D-optimal covariate values for the models (2), (3) and (4). The optimal covari-
ate values x∗1 and x∗2 are solved from equations ax∗1 + b = z∗1 and ax∗2 + b = z∗2 .
Columns F (z∗1) and F (z∗2) report the cdf values related to the optimal covariates,
i.e. probabilities of response 1.

model Optimal covariates

z∗1 z∗2 F (z∗1) F (z∗2)

logit -1.543 1.543 0.176 0.824

probit -1.138 1.138 0.128 0.872

cloglog -1.338 0.980 0.231 0.930

The efficient use of resources is not measured by the D-criterion but in terms of
time and resources used for the experiment. Optimal sequential (multi-stage)
design is studied in the situation where there is a fixed cost for each stage. As
a motivating example, switching measurements on superconducting Josephson
junctions (Josephson, 1962; Grabert and Devoret , Eds.; Pekola et al., 2005)
are considered. In this quantum mechanical experiment, the experimenter
varies the height of the applied current pulse and observes the presence or the
absence of the voltage response generated by macroscopic quantum tunnel-
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ing (Caldeira and Leggett, 1980). An experimental design for switching mea-
surements was proposed by Karvanen et al. (2007). The following properties
are characteristic for switching measurements:

• The data acquisition is fast and the total number of observations can be
high. In the experiment reported in (Karvanen et al., 2007), the total num-
ber of observations was over 100000 and the experiment took about 8 min-
utes. This means that there is no time for expert analysis during the exper-
iment but automated processing must be used.

• Sequential/multi-stage designs are applicable. There is, however, a cost re-
lated to the number of the stages which usually makes the fully sequential
approach inefficient.

• The measurement system remains stable only for a limited time because
very low temperatures are needed for superconductivity. This emphasizes
the need for cost-efficient designs.

• Prior information on the model parameters may be very poor.
• Differently from dose-response trials (Biedermann et al., 2006), ethical con-
siderations do not restrict the choice of the design.

Sensitivity to the modeling assumptions and the need of initial estimates are
the well-known disadvantages of D-optimality. In switching measurements,
however, there are good reasons to use D-optimality: First, it can be shown
(Karvanen et al., 2007) that the cloglog model (4) provides a very good ap-
proximation for the probability of switching as a function of the height of the
applied current pulse. In other words, in switching measurements, the true
model is actually known. Second, the experiment is carried out sequentially,
which means that poor initial estimates will not spoil the whole experiment. In
sequential switching measurements, a number of current pulses with a certain
height are generated, responses are measured for each pulse and finally the
height of the pulse for the next stage is calculated. Because the configuration
of the pulse generator takes time, it is not practical to change the height of
the pulse after every pulse. The total cost equals to the time used for the
experiment and consist of the time used for measuring and computing and
the time used for the configuration of the pulse generator between the stages.

The optimal number of measurements per stage in sequential designs with a
fixed stage cost is determined for the logit, the probit the cloglog models. The
proposed solution is approximal and based on numerical analysis. It is assumed
that the initial maximum likelihood estimates for the parameters are available.
If the initial estimates are not available, they can be found, for instance, by
the binary search algorithm (Karvanen, 2008). After the initial estimation, the
experiment continues as a sequential design where the D-optimality criterion
is used. The optimal stage size, i.e., the optimal number of measurements per
stage, is derived as a function of the stage cost CS and the observed value
of D. The derived cost-efficient designs can be presented in simple functional
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form and are easily applied to practical experiments.

Most of the existing works on sequential design do not consider the cost of
the experiment as a design criterion. Wu (1985) considered fully sequential
designs where the measurements are done one by one. He criticized the ear-
lier approaches: the stochastic approximation method (Robbins and Monro,
1951) and the up-and-down method (Dixon and Mood, 1948) and proposed a
sequential approach to the estimation of 100pth percentile. In this approach,
the next covariate point xn+1 is chosen so that F̂n(xn+1) = p, where F̂n is the
estimated cdf of logistic distribution. Ivanova et al. (2003) considered several
designs from the family of up-and-down rules for the sequential allocation of
dose levels to subjects in a dose-response study. The use of group up-and-
down designs (Gezmu and Flournoy, 2006) implies that there is a cost related
to the number of stages also in dose-finding experiments although this cost is
not usually explicitly considered. McLeish and Tosh (1990) studied sequential
design in bioassay and used a cost function that included unit cost plus extra
cost for each positive response. Sitter and Forbes (1997) and Sitter and Wu
(1999) studied two-stage designs for the logit and the probit model and used
the second stage to balance the first stage. The second stage design was
found by numerical optimization. The results can be extended to the multi-
stage designs. Theoretical results on asymptotics of sequential designs were
provided in (Chaudhuri and Mykland, 1993) and (Chaudhuri and Mykland,
1995). A review of Bayesian approach to sequential designs was given by
Chaloner and Verdinelli (1995). A recent major contribution to the sequen-
tial design was the procedure proposed by Dror and Steinberg (2008). Their
procedure is based on a Bayesian analysis that exploits a discretization of the
parameter space to efficiently represent the posterior distribution. Tekle et al.
(2008) studied maximin D-optimal designs for binary longitudinal responses.
Karvanen et al. (2008) considered two-stage designs for gene-disease associa-
tion studies where the motivation for the design arises from cost considera-
tions.

In Section 2, cost-efficient sequential designs are derived assuming that the
initial maximum likelihood estimates of the parameters exist. In Section 3,
application to switching measurements is presented. Discussion in Section 4
concludes the paper.
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2 Cost-efficient sequential designs

2.1 Problem definition

Consider a sequentially performed experiment where the total cost of the ex-
periment consists of two components: a cost related to the number of measure-
ments and a cost related to the number of stages. Without loss of generality,
the marginal cost of making one additional measurement is fixed as unity
and the cost of having one additional stage is marked by CS. Thus, the total
cost of an experiment with total of n measurements in K stages would be
C = n + KCS. The number of measurements at stage k is marked by nk,
k = 1, . . . , K. It follows that

∑K
k=1 nk = n. Assume that after k− 1 stages the

maximum likelihood estimates âk−1 and b̂k−1 and the related Fisher informa-
tion matrix Jk−1 are obtained. On the basis of the estimates âk−1 and b̂k−1 and
the results in Table 1, the estimated D-optimal covariate points x∗k1 and x∗k2
are calculated. The problem is to decide the optimal number of measurements
nk to be made in the points x∗k1 and x∗k2. For practical reasons, it is assumed
that nk is an even number so that the measurements can be divided equally
between x∗k1 and x∗k2. Because âk−1 and b̂k−1 are only estimates of the true
parameters, the covariate points x∗k1 and x

∗

k2 may be far from the actual truly
D-optimal covariate points. If nk is small, â and b̂ are updated quickly and the
number of measurements needed is small but the number of stages needed is
high. On the other hand if nk is large, the number of measurements needed is
higher but the number of stages needed is smaller. Obviously, the optimal nk

depends on the stage cost CS and the Fisher information Jk−1.

The scheme described above approximates the cost structure of switching
measurements. In switching measurements, there are actually three types of
costs involved:

marginal unit cost time needed for making one additional measurement
with the present pulse height,

configuration cost time needed for changing the pulse height,
computing cost time needed for updating parameter estimates.

The marginal unit cost and the configuration cost remain almost constant dur-
ing the experiment but the computing cost depends on the details of numerical
optimization and may vary from stage to stage. Additional complications fol-
low from the fact that the D-optimal design is a two-point design implying
that the signal generator needs to be configured when moving from one design
point to another. This does not prevent using the described scheme because
the stage cost may be defined as a sum of the computing cost plus two times
the configuration cost.
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The problem of cost-efficient design may be expressed as an optimization prob-
lem with respect to a precision target or a budget constraint. If a precision
target ψtarget is used, the optimal nk is found as a solution to the following
minimization problem

argmin
nk

E (C(x,y) |ψ(x,y) ≥ ψtarget,xk−1,yk−1, nk) , (10)

where xk−1 and yk−1 present all measurement data available after k−1 stages,
C(x,y) is the cost of collecting measurement data (x,y) and ψ(x,y) is the
value of the precision criterion calculated from the measurement data (x,y).
For instance, D may be used as the precision criterion. The expectations in
minimization (10) are integrals over all possible measurement data (Xk,Yk)
available after k stages. For data (Xk = xk,Yk = yk) the expected cost to
reach the precision target is given by

kCS +
k
∑

i=1

ni + min
nk+1,nk+2,...

E (C(x,y) |ψ(x,y) ≥ ψtarget,xk,yk) , (11)

where the last term in the summation is the expected cost to reach the pre-
cision target on the condition of data (xk,yk) when the optimal strategy is
used for the rest of the experiment. In the other words, minimization (10)
involves recursive calculations where the same minimization is performed for
the subsequent stage sizes nk+1, nk+2, . . ..

Alternatively, if a budget constraint Cbudget is used, the optimal nk is found
as a solution to the following maximization problem

argmax
nk

E (ψ(x,y) |C(x,y) ≤ Cbudget,xk−1,yk−1, nk) . (12)

Maximization (12) requires similar recursive calculations as minimization (10).

In stochastic optimization (Birge and Louveaux, 1997), the problems (10) and
(12) may be characterized as multi-stage recourse problems where the number
of the stages is not fixed. Because of the nonlinearity of the objective functions
and the recursive structure of the problem, it seems difficult to find optimal
nk in analytical means. The high number of branches in the recursion implies
that straightforward simulations cannot solve the problem either, at least not
in reasonable time. To overcome these difficulties, our solution uses numerical
computation and simplifying approximations.

2.2 Design paths in the (D,C)-plane

Because it is difficult to derive cost-efficient sequential designs analytically,
approximations and simulations are used to obtain designs that are approxi-
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mately cost-efficient. The first approximation made is to compress the infor-
mation matrix J into the square root of its determinant D. This allows to
compare candidate designs in the (D,C)-plane. Each design is characterized
by the number of measurements n1, n2, . . . , nK per stage and can be drawn
as a path in the (D,C)-plane so that each point of the path represents the
expected value of D as a function of C. At the beginning of each stage there
is a vertical jump in the path corresponding to the stage cost CS. After that
D is expected to increase with a constant slope as C increases. If two addi-
tional measurements are made, the expected change in D is denoted h(D0),
where D0 is the value of D at the beginning of the stage. The number of the
additional measurements is two because the D-optimal designs are two-point
designs. An approximation for the function h(D0) is obtained by means of sim-
ulation. The idea is to simulate the distribution of â and b̂ on the condition
that the expected square root of the determinant of the information matrix
is D0. Without loss generality it is fixed a = 1 and b = 0. The information
matrix is taken to be

J0 =
D0

D∗

J∗, (13)

where

J∗ =







g(z∗1)(z
∗

1)
2 + g(z∗2)(z

∗

2)
2 g(z∗1)z

∗

1 + g(z∗2)z
∗

2

g(z∗1)z
∗

1 + g(z∗2)z
∗

2 g(z∗1) + g(z∗2)





 , (14)

which is the information matrix of the D-optimal covariates, andD∗ =
√
det J∗ ≈

0.8094. An approximation that â and b̂ are normally distributed with the mean
vector (a, b) and the covariance matrix J−1

0 is made. In the other words, it is
assumed that the estimates â and b̂ originate from previous D-optimal mea-
surements. The value of det(J(â, b̂)) is calculated for each generated pair of â
and b̂

det(J(â, b̂)) =
√

g(z1)g(z2)(z1 − z2)2, (15)

where

z1 =
z∗1 − b̂

â
and z2 =

z∗2 − b̂

â
. (16)

The expected change h(D0) is then obtained as average over the values of
det(J(â, b̂)). All numerical calculations are done using R (R Development Core Team,
2006). The obtained function h(D0) is plotted in logarithmic scale in Figure 1
for the cloglog model. When D0 increases, h(D0) approaches its theoretical
maximum 0.8094 that corresponds to making the two additional measure-
ments at the D-optimal points z∗1 and z∗2 . The graphs for the logit and the
probit model are similar (not shown).

In order to use the expected change of the D-criterion in the optimization,
the function h(D0) need to be interpolated. By looking Figure 1 it is found
that h(D0) can be roughly approximated by logistic function D∗/(1+exp(η+
θ log(D0))), where η and θ are parameters estimated from the simulated data.
Using this approximation as the basis of the model, a generalized additive
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Fig. 1. The expected information increase as a function of current information for the
cloglog model when two additional measurements are made. The solid line represents
the average of h(D0) in 400000 simulation runs and the dashed lines represents
1st, 5th, 10th, 20th, 50th, 80th, 90th, 95th and 99th percentiles. The theoretical
maximum of h(D0) corresponding to the D-optimal two-point design is marked by
the dotted line.

model (Hastie and Tibshirani, 1990; Hastie, 2006) is fitted to the simulated
data. In the model, smoothing splines with the degree of freedom 8 are used
to model the nonlinearities remaining after the logistic approximation. The
estimated model fits very well to the simulated data so that in Figure 1 it
would not be easy to separate the observed h(D0) from the modeled h(D0)
(the maximum absolute difference between the observed and modeled values
of h(D0) is 0.016).

2.3 Comparing design paths

Next the optimal number of measurements nk for the next stage are calculated
providing that the current point in the (D,C)-plane is (Dk−1, Ck−1) and the
stage cost is CS. For the calculation a two-stage approximation that evaluates
a large number of candidate paths after two stages is used. The candidate
paths are chosen such a way that the potential values of nk are covered. It is
assumed that our precision target (defined in terms of D) and budget restric-
tion (defined in terms of C) do not restrict the evaluation, i.e. the target and
the restriction are not met after two additional stages. The idea of the calcu-
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lation is illustrated in Figure 2. The benchmark path (dashed line) is a line
that goes through the point (Dk−1, Ck−1 +CS) and has slope 2/h(Dk−1). The
benchmark path corresponds to the decision completing the experiment after
having only one additional stage. The candidate paths have two stages. After
the first stage the expected location is (Dk−1+nkh(Dk−1)/2, Ck−1+CS +nk).
For the second stage the slope is 2/h(Dk). Because h(Dk) > h(Dk−1), the
candidate paths cut the benchmark path at point

D =Dk−1 +
nkh(Dk−1)

2
+

CSh(Dk−1)h(Dk)

2(h(Dk)− h(Dk−1))
, (17)

C =Ck−1 + nk +

(

1 +
h(Dk)

h(Dk)− h(Dk−1)

)

CS.

The cut points are calculated for a large number of candidate paths. The candi-
date path that has the earliest cut-point (the smallest D) with the benchmark
path is chosen as the optimal one. The corresponding number of measurements
nk is taken as optimal for Dk−1 when the stage cost is CS.

2.4 Approximately optimal sequential designs

In order to find a general model for the optimal nk as a function of the cur-
rent information Dk−1 and the stage cost CS, the optimal nk is calculated for a
large number of (Dk−1, CS) pairs using the two-stage approximation described
in Section 2.3. The current information Dk−1 has 104 unequally spaced values
from 1 to 1000. The stage cost CS has 35 unequally spaced values from 1 to
1000. The approximately optimal nk is chosen among of 368 candidate val-
ues 2, 4, 6, . . . , 180000, 190000, 200000. The obtained data contain the approx-
imately optimal nk for 3640 (Dk−1, CS) pairs. Figure 3 presents the contours
of nk in the (Dk−1, CS)-plane for the cloglog model. Figure 3 suggests that the
contours are nearly linear in the log-scale when Dk−1 > 10.

The following model is found to have an excellent fit with the data

log nk = α + β logDk−1 + γ logCS + δ logDk−1 logCS. (18)

The estimated model parameters α, β, γ and δ for the logit, the probit and
the cloglog model are presented in Table 2. Apart from the intercept term,
the estimated models are quite similar.

In the model (18) it is assumed that a = 1. When a is estimated, model (18)
is written as

lognk = α + β log(âDk−1) + γ logCS + δ log(âDk−1) logCS. (19)
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C

D

(D k−1,C k−1)

(D k,C k)

cut point

benchmark path

candidate path

CS

CS

Fig. 2. Schematic illustration of comparison of design paths. The benchmark path
marked by dashed line starting from (Dk−1, Ck−1) corresponds to completing the
experiment in one stage whereas the candidate path path (solid line) corresponding
to having first stage of nk measurements and then completing the experiment in
one stage. The candidate design has an additional cost of CS compared with the
benchmark design but because of the additional information obtained at the first
stage, the increase in the information is faster at the second stage. The cut point of
the paths is given by (17) and the D-coordinate of the cut point serves as a criterion
for comparing candidate paths with different nk.

In practical experiments, the stage size nk calculated from (19) need to be
rounded to the closest even integer.
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CS

D k−1

1 10 100 1000

1
10

10
0

10
00

Fig. 3. Optimal number of measurements nk for the next stage as a function of
current information Dk−1 and stage cost CS for the cloglog model. The dots indicate
the 3640 (Dk−1, CS) pairs for which the value of nk was determined. The contours
are calculated from these numbers.

3 Application to switching measurements

The measurement data from (Karvanen et al., 2007) is reanalyzed in order to
illustrate the efficiency of the presented approach. The data are available from
the Royal Statistical Society Datasets Website http://www.blackwellpublishing.com/rss/Volumes/Cv56p2.htm.
In the experiment, a sample consisting of aluminium–aluminium oxide–aluminium
Josephson junction circuit in a dilution refrigerator at 20 millikelvin temper-
ature was connected to computer controlled measurement electronics in order
to apply the current pulses and record the resulting voltage pulses. The initial
maximum likelihood estimates were found using a binary search algorithm
(Karvanen et al., 2007; Karvanen, 2008). After that the experiment continued
as sequential design where D-optimal covariates values were calculated from

12
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Table 2
Summary of estimated models (18).

logit R2 = 0.9992

estimate standard error

α 1.01515 0.00553

β 1.43396 0.00162

γ 0.41042 0.00134

δ -0.01388 0.00039

probit R2 = 0.9990

estimate standard error

α 0.12859 0.00611

β 1.41891 0.00179

γ 0.40324 0.00148

δ -0.00949 0.00043

cloglog R2 = 0.9934

estimate standard error

α 0.48044 0.01366

β 1.34593 0.0042

γ 0.39711 0.00331

δ -0.00778 0.00102

the current maximum likelihood estimates of the parameters a and b. The
approximate cost-efficient solution was not available at the time when the ex-
periment was carried out and the stage size was set according to an ad-hoc rule
where the stage size was 100 at the beginning and was then increased by 10
percent at each stage. The recorded data contains parameter estimates after
each stage. In addition, the data contains the times needed for measuring and
for computation. These times are plotted in Figure 4 as a function of stage size.
It can be seen that there is a linear relationship with the stage size and the
total time. This supports the usage of the cost model defined in Section 2.1.
From the data it is estimate that the stage cost is 0.88167 seconds and the
marginal cost of making one additional measurement is 0.00386 seconds. These
numbers depend on the technical details of the measurement devices and can-
not be generalized to other experiments. In order to apply the model (19) the
stage cost need to be standardized CS = 0.88167/0.00386 = 228.4.
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Fig. 4. Time needed for measuring and for computing as function of stage size in
the studied switching measurement.

The design used in the experiment is compared to the cost-efficient design
where the stage size is determined according to model (18). The initial esti-
mation took 4.0 seconds and resulted estimates â0 = 0.380, b̂ = −95.60 and
D0 = 54.05. Now model (19) suggest the stage size 720 for the next stage
while the stage size used in the experiment was only 134. Thus, the used ad-
hoc rule leads to some losses in cost-efficiency and should not be used when it
is important to minimize the time needed for the experiment. Further compar-
isons are carried out by means of simulation. For the simulation, it is assumed
that the final estimates â = 0.240 and b̂ = −60.628 are the true parame-
ter values. Starting from the initial estimates, the D-optimal covariate values
and the cost-efficient stage size are calculated and new measurement data are
generated. The simulation continues sequentially until D exceeds the final D
achieved in the experiment. The resulting design path in (D,C)-plane calcu-
lated as the median of 100 simulated paths are presented in Figure 5. It can
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Fig. 5. Comparison of the used sequential design and the cost-efficient sequential
design in the (D,C)-plane. The circles show the stages of the design used in the
actual switching measurement experiment. The squares show the path with the
cost-efficient design calculated as the median of 100 simulated paths. The dots
present the stages of the 100 simulated paths and give an idea on the variation
between the simulation runs. It is instantly seen that the cost-efficient design saves
time needed for the experiment. The dashed line shows the theoretical limit where
the optimal covariate values are known from the beginning of the experiment.

be seen that the cost-efficient design is close to theoretical design where the
D-optimal covariate values are known from the beginning and only one stage
is needed. It is also seen that the ad-hoc rule leads to updating the parameter
estimates too frequently. The total time needed for the experiment was 497
seconds, of which the cost-efficient design could have saved about 40 seconds.
This is not a crucial saving in a single switching measurement experiment but
has importance when a number of experiments are carried out.
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4 Discussion

Motivated by a practical problem from experimental physics, a framework
for cost optimization in sequential designs has been formulated. Particularly,
the approximately cost-efficient sequential designs for the logit, the probit
and the cloglog model are determined. Cost-efficient designs for other link
functions can be obtained in a similar way. The results can be directly applied
to switching measurements and they may lead to substantial savings in the
time needed for the experiment. In addition, the results are potentially useful
in other experiments in physics, chemistry or engineering. Finding the specific
applications will be a part of the future research.

The proposed approach may be criticized for using several approximations:
Information matrix J is compressed to its determinant D. The change in D
is approximated by its expectation which itself is calculated numerically. The
choice between design paths is based on a two-stage approximation. Finally,
the optimal nk is obtained from the statistical model estimated from numer-
ical data relying on all previous approximations. Naturally, the approxima-
tions have been used because analytical results are difficult to obtain. Nev-
ertheless, it seems that the analytical results would not significantly improve
cost-efficiency compared to the approximate results. Simulations in Section 3
suggest that the approximate optimal design performed well compared to the
theoretical D-optimal design with known parameters.

The idea of balancing by Sitter and Forbes (1997) and Sitter and Wu (1999)
could be worth trying at least in the early stages of a sequential experiment.
The calculation of the balanced design complicates the approach and takes
some computational time but might result in further savings in the total time.

The concept of cost-efficiency narrows the gap between the theory of opti-
mal design and the requirements of practical applications. When the cost is
minimized, the most relevant criterion for the experiment is optimized. The
presented cost model with a fixed stage cost can be easily extended to serve
the needs of different applications. Due to the complexity of cost optimization,
the determination of cost-efficient designs requires numerical approximations.
The numerical calculations may be complicated, but as it was demonstrated,
once the optimization is done, the results are easily applied to all experiments
with similar cost structure.
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