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Abstract
Given a decomposable graph, we characterize and enumerate the set of pairs of vertices whose
connection or disconnection results in a new graph that is also decomposable. We discuss the
relevance of this results to Markov chain Monte Carlo methods that sample or optimize over the
space of decomposable graphical models according to probabilities determined by a posterior
distribution given observed multivariate data.
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1 Introduction
The flexibility and tractability of decomposable graphical models make them an attractive
option for fitting to a broad array of complex multivariate data types. Commonly, the Markov,
or conditional independence, graph of the graphical model is regarded as unknown, and is an
objective of inference, along with parameters of the joint probability distribution of the data.
This is the setting, of joint structural and parametric inference, that is considered here. [6]
developed a penalized likelihood approach to graphical model estimation that they
implemented in the BIFROST program, which used a deterministic search method to find an
optimal model. Other authors have used random methods to optimize the model, or sample
from well fitting models, in effect implementing Metropolis-Hastings [10,5] or simulated
annealing [8] samplers for the posterior probability distribution on decomposable graphical
models corresponding to the penalized likelihood. [4] developed such methods for Gaussian
models, while [13] and [12] applied this approach to modelling discrete distributions for allelic
association between genetic loci in the same genomic region. The programs developed for this
latter application can also be used to estimate a graphical model for general finite valued
multivariate data. More recent work in graphical model estimation includes [7] and [2].
Common algorithmic elements in these approaches are, given a decomposable graphical model
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with Markov graph G, to propose a new graph G′ by either adding or deleting an edge, checking
that the G′ is decomposable, calculating its likelihood and prior probability, and hence either
accepting or rejecting the proposal as appropriate according to the posterior probabilities.
Implemented naively, checking for decomposability of G′, using a maximum cardinality search
[11] for example, will take time of order |V | + |E| where V and E are respectively the vertex
and edge sets of G. Calculating the likelihood and prior of G′ directly is also a substantial
computation of order |V |. However, [4] showed that establishing the decomposability of G′,
given the decomposability of G, could be done in close to constant time when the perturbations
involve either adding or deleting an edge and, moreover, that the difference in likelihood and
prior between G and G′ depends only on local differences that can be evaluated in time
independent of the size of the graph. These results allow much faster sampling and optimization
methods even for moderately large graphs. For example, the HapGraph program [12] for
estimating graphical models for allelic association between genetic loci has been changed to
use Giudici and Green’s method and so works in reasonable time for several thousand variables.

However, for very large graphs the probability that the addition or deletion of a randomly
proposed edge results in a decomposable graph becomes vanishingly small. Intuitively, for the
relatively sparse graphical models often seen in practice, we would expect the number of
allowable changes to be approximately linear in the size of the graph, whereas the number of
all pairs is quadratic. Thus, as the size of the problem increases, any rejection algorithm
becomes very inefficient. Recent advances in technology, particularly in molecular biology,
allow simultaneous measurement of hundreds of thousands of variables in a single assay, so,
in this field at least, this low acceptance rate is a real obstacle to the use of graphical model
based inference.

This problem could be avoided by characterizing and enumerating the set of pairs of vertices
whose connection or disconnection results in a decomposable model, and then sampling a
proposed perturbation with uniform probability from this set. Identifying the pairs whose
disconnection results in a decomposable graph is easily done using Giudici and Green’s result,
and we illustrate this below. Identifying pairs which can be connected while preserving
decomposability is more involved, but we develop here a framework that allows this and again
provide an illustrative example.

2 Definitions and preliminary results
We begin by reviewing some definitions and standard properties of decomposable graphs and
junction trees. A complete treatment of the topic is given by [9].

Consider a graph G = G(V,E) with vertices V and edges E. A subset of vertices U ⊆ V defines
an induced subgraph of G which contains all the vertices U and any edges in E that connect
vertices in U. A subgraph induced by U ⊆ V is complete if all pairs of vertices in U are connected
in G. A clique is a complete subgraph that is maximal, that is, it is not a subgraph of any other
complete subgraph.

Definition 1
A graph G is decomposable if and only if the set of cliques of G can be ordered as (C1,C2,
…,Cc) so that for each i = 1, 2,…, c − 1

(1)
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This is called the running intersection property. Note that decomposable graphs are also known
as triangulated or chordal graphs and that the running intersection property is equivalent to
the requirement that every cycle of length 4 or more in G is chorded. The sets S1,…Sc−1 are
called the separators of the graph. The set of cliques {C1, …Cc} and the collection of separators
{S1, …Sc−1} are uniquely determined from the structure of G, however, there may be many
orderings that have the running intersection property. The cliques of G are distinct sets, but the
separators are generally not all distinct. Let S[1], …S[s] be the distinct sets contained in the
collection of separators.

Definition 2
The junction graph of a decomposable graph has nodes {C1, …,Cc} and every pair of nodes
is connected. Each link is associated with the intersection of the two cliques that it connects.

Note that for clarity we will reserve the terms vertices and edges for the elements of G, and
call those of the junction graph and its subgraphs nodes and links.

Definition 3
Let J be any spanning tree of the junction graph. J has the junction property if for any two
cliques C and D of G, every node on the unique path between C and D in J contains C ∩ D. In
this case J is said to be a junction tree.

For illustration, Figure 1 gives an example of a decomposable graph while Figure 2 shows one
of its possible junction trees. Some authors first partition a graph into its disjoint components
before making a junction tree for each component, combining the result into a junction
forest. The above definition, however, will allow us to state results more simply without having
to make special provision for nodes in separate components. In effect, we have taken a
conventional junction forest and connected it into a tree by adding links between the
components. Each of these new links will be associated with the empty set and have zero
weight. Clearly, this tree has the junction property. Results for junction forests can easily be
recovered from the results we present below for junction trees. A junction tree for G will exist
if and only if G is decomposable, and algorithms such as the maximal cardinality search of
[11] allow a junction tree representation to be found in time of order |V | + |E|. The collection
of clique intersections associated with the c − 1 links of any junction tree of G is equal to the
collection of separators of G. The junction property ensures that the subgraph of a junction tree
induced by the set of cliques that contain any set U ⊆ V is a single connected tree.

3 Enumerating allowable perturbations
[3] and [4] gave efficient methods for checking that G′ is decomposable, given that G is, when
the perturbation scheme involves respectively disconnecting or connecting a random pair of
vertices. Using our definition of a junction tree, we can restate their results as follows.

• Removing an edge (x, y) from G will result in a decomposable graph if and only if
x and y are contained in exactly one clique.

• Adding an edge (x, y) to G will result in a decomposable graph if and only if x and
y are unconnected and contained in cliques that are adjacent in some junction tree of
G.

Thus, enumerating the disconnectible pairs of vertices is easy to do. Having found the cliques
of G, we simply visit each in turn and count the number of edges that appear only in that clique.
If C is the unique clique containing (x, y), we say that the disconnection of (x, y) is allowed by
C.

Thomas and Green Page 3

Comput Stat Data Anal. Author manuscript; available in PMC 2010 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Characterizing connectible pairs of vertices, however, is more complicated. If we keep track
of the junction tree J representing our incumbent graph in the course of a sampling scheme, it
is not enough to check the links of J to see whether x and y are in adjacent cliques. We also
have to, in effect, consider all possible junction trees equivalent to J. To achieve this we first
show that the set of connectible pairs can be partitioned over the distinct separators of G. We
then give a method for identifying the pairs corresponding to each distinct separator.

Let x and y be unconnected vertices of decomposable G whose connection results in a new
decomposable graph G′. Giudici and Green’s condition ensures that G must have cliques Cx∋
x and Cy ∋ y that are linked in some junction tree J of G. Let S = Cx ∩ Cy be the intersection
associated with the link. Under this assumption the two following results hold.

Proposition 4

There are no cliques  and  with either  or  that are adjacent in J.

Proof—Assume for the sake of contradiction that such  and  do exist. By the junction
property there is a path from  to Cx in J through nodes that all contain x, and similarly one
from  to Cy through nodes containing y. Since Cx and Cy are not both equal to  and , at
least one of these paths has length greater than 0. Also, since x and y are not connected they
cannot appear in the same clique so these paths do not intersect. Thus, since Cx and Cy are
adjacent, a link between  and  creates a cycle of at least 3 nodes violating J’s tree property.

Proposition 5

Let  and  be cliques of G that are adjacent in some junction tree J′ ≠ J. Let
. Then S′ = S.

Proof—Consider the positions of  and  in J. Again we construct the unique path in J from
 to Cx, Cx to Cy and Cy to , although it is possible now that  and  in which

case the path has length 1. By the junction property S′ must be contained in each node along
the path, and in particular S′ ⊆ Cx and S′ ⊆ Cy. Hence S′ ⊆ Cx ∩ Cy = S. By similarly considering
the path from Cx to Cy in J′ we also have that S ⊆ S′, and so S′ = S.

These two results immediately give us the following.

Theorem 6
The set of all possible connectible pairs of vertices of a decomposable graph G can be
partitioned according to the distinct separators of G. The subset of connectible pairs for a
particular distinct separator S are those that appear in cliques adjacent in some junction tree
and whose intersection is equal to S. We say that these pairs are allowed by S.

Let TS be the subtree of J induced by the cliques that contain the distinct separator S. The
junction property ensures that TS is a single connected subtree. For example, Figure 3 shows
T{3}, the subtree of the junction tree in Figure 2 defined by the separator {3}. Then, let FS be
the forest obtained from TS by deleting all the links associated with S. For example, Figure 4
shows the forest obtained by deleting links associated with the separator {3} from T{3}. If we
now reconnect the subtrees of FS by inserting copies of the separator S to make a new tree 
say, and then replace TS in J by  to make a new spanning tree J′, J′ will also be a junction
tree of G because it spans all the cliques of G and has the same collection of separators
associated with the links. Moreover, since FS contains the only cliques of G that contain S, this
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represents all the ways in which the edges associated with S can be rearranged to make a new
junction tree. We can then characterize the pairs allowed by S as follows.

Theorem 7
A connection (x, y) is allowed by a distinct separator S if and only if x ∉ S, y ∉ S and x and y
are in cliques that are nodes of different subtrees of FS.

Proof—We have established that the set of equivalent junction trees consists precisely of those
obtained by inserting links associated with S into the gaps in FS so as to form a tree. Then by
Theorem 6, we only have to look at the cliques (A ∪ S,B ∪ S) at either end of those links
associated with S, and by Giudici and Green’s result S allows connecting (x, y) if and only if
x ∈ A and y ∈ B or vice versa.

4 Method summary
It is already established that the set of disconnectible pairs of G can be partitioned among the
cliques of G [4]. Theorem 6 now establishes a corresponding result for the connectible pairs:
that they can be partitioned among the distinct separators of G. However, not all the edges in
any given clique are disconnectible, only those that appear in no other cliques. The junction
property makes this easy to check: if a pair of vertices (x, y) contained in clique C is also
contained in another clique, they must appear in a neighbour of C in the junction tree, thus only
the neighbours of C in J need to be checked. Let the number of pairs of disconnectible vertices
allowed by C be β(C). Theorem 7 allows us to similarly find the disconnectible pairs allowed
by any distinct separator S. These are pairs of vertices that do not appear in S and which do not
appear in cliques in the same subtree of FS. If we let mS be the number of times a distinct
separator S appears in the collection of all separators {S1, …, Sc−1}, since FS is obtained by
deleting ms links from TS, it must comprise mS + 1 subtrees. Let Aj be the union of the sets of
vertices in the cliques of the jth subtree of FS. Let aj = |Aj − S|, or aj = |Aj | − |S| since S must

be contained in each Aj, and let . The number of connectible pairs allowed by S
must therefore be

Hence, an outline of a method to enumerate the neighbourhood of a decomposable graph G is
as follows:

• Given a decomposable graph G find any junction tree representation J.

• For each clique Ci of G:

– – For each pair of vertices (x, y) in Ci check that {x, y} is not a subset of any
neighbouring clique of Ci in J.

– – β(Ci) is the number of such pairs.

• The number of disconnectible edges in G is Σi β(Ci).

• For each distinct separator S[i] of G:

– – Identify TS[i] the connected subtree of J induced by the cliques containing
S[i].
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– – Find JS[i] by deleting from TS[i] the links corresponding to the separator
S[i].

– – Calculate aj for each of the mS + 1 components of FS[i].

– – Hence find α(S[i]) = 1/2Σj aj(b − aj).

• The number of connectible edges in G is Σi α(S[i])

5 Illustration
As most of the above steps are either standard, such as finding a junction tree, or
straightforward, such as checking that edges appear in only 1 clique, we illustrate only the
novel enumeration of connectible edges. As an example, consider enumerating the connectible
edges allowed in the graph in Figure 1 by the separator {3}. The forest, F{3}, shown in Figure
4 has 4 components. The vertices in the cliques in each component, excluding vertex 3 are
{20}, {7, 17, 22}, {5} and {1, 2, 16, 18, 19}. Any pair of vertices selected from any two of
these sets are connectible making

connections allowed by separator {3}. Note that the result of connecting the vertices 16 and
18 that appear in cliques in Figure 4 is also a decomposable graph, however, this is allowed
by the separator {2, 3}, not by {3}, so we do not count this possibility at this stage.

The other distinct separators are dealt with in the same way and the final results are presented
in Table 2 which enumerates all the pairs of vertices in Figure 1 whose connection makes a
new decomposable graph. Table 1 shows an enumeration of the edges in Figure 1 that are
disconnectible. Of the 23C2 = 253 possible pairs only 26 + 169 = 195 can be changed to give
a new decomposable graph.

6 Discussion
As noted above, a junction tree for a decomposable G can be found in time of order |V | + |E|.
Letting n = |V|, this is at worst O(n2), and for the sparser graphs likely to be encountered in
model estimation is closer to linear in n. As we build the junction tree, J, we can, at no extra
cost, note for any distinct separator S[i] a clique in which it is contained. Thus, by searching
out from that clique we can find TS[i] in time proportional to the number of nodes in TS[i]. Since
J can have at most n vertices, finding all the TS[i] can be done in at most O(n2) time. While it
is possible to construct examples where this bound is attained, for graphs encountered in model
estimation actual performance is again likely to be far faster. Given TS[i], with appropriate
indexing of vertices, JS[i] and α(S[i]) can be found in O(n) time. Hence, overall, enumerating
the connectible vertex pairs by our method allows an O(n2) worst case implementation.

The method previously described by [1] also solves this problem in O(n2) time and is in many
ways similar. It too, in essence, relies on an understanding of the result of [4] when stated as:
two unconnected vertices of G are connectible if and only if they are contained in cliques that
are adjacent in some junction tree J of G. In order to exploit this they require two auxiliary
data structures that are both of order O(n2) in size. One of these, the clique graph, can be
thought of as the union of all possible junction trees of G. It is here that our method has a
significant advantage as it requires only a single, arbitrary, junction tree representation J of
G. As J is of O(n) size this represents a considerable saving of space. Moreover, as [4] showed,
if G is updated to a decomposable G′ by either the connection or disconnection of a pair of
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vertices, the corresponding junction tree J′ can be found from J in O(1) time. The update will
depend on the context, but involves changes to 4 cliques or separators where a change may be
the addition or deletion of the clique or separator. This compares very favourably with the O
(n2) method for correspondingly updating the clique graph given by [1].

Furthermore, adjustments to the probability of G to obtain that of proposed G′ requires only
the calculation of the clique marginals of the same 4 cliques or separators which is again quick
and independent of the size of the graph. We also note that this does not require construction
of G′ so that both the proposal and acceptance/rejection steps of the Metropolis sampling
process can be carried out using only the junction tree representation.

If we accept a proposal G′, we could, at worst, then enumerate the allowable perturbations
anew and select another random update. However, the structure of the junction tree enables
the new enumeration to be made as a modification of the previous. Once more, counting the
number of allowable disconnections is easy. We simply decrease the count by the number
allowed in any clique removed, and increase by the number in any clique created.

When a link of J, associated with separator S, is added or removed, this will affect not only
TS but also TU for any other separator U ⊂ S, so we need to track the partial ordering of the
distinct separators defined by inclusion. The junction property can again help here as it ensures
that if U ⊂ S then TS is a connected subgraph of FU. Thus, the effect of changes to TS on FU,
and hence the number of connections allowed by U, can be evaluated by searching in J starting
at the changed link S and ending when, in each direction, a link associated with U is found.

There remains some challenge in developing specific algorithms and data structures to
implement efficiently the methods outlined above. However, it is clear that the junction tree
has very strong properties that can be exploited to make this possible.
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Figure 1.
A decomposable graph containing 23 vertices in 4 disjoint components.
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Figure 2.
One possible junction tree for the graph shown in Figure 1. The 16 cliques are the vertices of
the junction tree and are shown as ovals. The 15 clique separators are represented by the edges
of the graph and each edge is associated with the intersection of its incident vertices. These
intersections are shown as rectangles. Note that some of these intersections are empty.
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Figure 3.
T{3}, the connected subtree of the junction graph shown in Figure 2 induced by the cliques that
contain the separator {3}.
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Figure 4.
F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges associated with
the separator {3}.
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Table 1

An enumeration of the disconnectible pairs for the graph in Figure 1.

Clique C Edges only in C Count

{4} - 0

{6} - 0

{13,14,15} (13,15) (14,15) 2

{13,14,23} (13,23) (14,23) 2

{3,5} (3,5) 1

{1,2,3} (1,2) (1,3) 2

{2,3,18} (2,18) 1

{2,3,16} (2,16) (3,16) 2

{3,20} (3, 20) 1

{3,18,19} (3,19) (18,19) 2

{17,21} (17,21) 1

{8, 17} (8,17) 1

{9,10} (9,10) 1

{11,12} (11,12) 1

{9,12,17} (9,12) (9,17) (12,17) 3

{3,7,17,22} (3,7) (3,17) (3,2) (7,17) (7,22) (17,22) 6

Total number of disconnectible pairs 26

Comput Stat Data Anal. Author manuscript; available in PMC 2010 February 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thomas and Green Page 14

Table 2

An enumeration of the connectible pairs for the graph in Figure 1.

Distinct separator S ms

Variables in cliques of
components of Fs Sizes α (S)

∅ 4 {4} {6} {13, 14, 15, 23} 1, 1, 4, 17 111

{1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 16,
17, 18, 19, 20, 21, 22}

{13, 14} 1 {15} {23} 1,1 1

{3} 3 {20} {5} {7, 17, 22} {1, 2, 16,
18, 19}

1, 1, 3, 5 32

{2,3} 2 {1} {16} {18} 1,1,1 3

{3,18} 1 {2} {19} 1, 1 1

{9} 1 {10} {12, 17} 1,2 2

{12} 1 {11} {9, 17} 1,2 2

{17} 3 {8} {21} {9, 12} {3, 7, 22} 1, 1, 2, 3 17

Total number of connectible pairs 169
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