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Abstract
Finite mixture modeling, together with the EM algorithm, have been widely used in clustering
analysis. Under such methods, the unknown group membership is usually treated as missing data.
When the “complete data” (log-)likelihood function does not have an explicit solution, the simplicity
of the EM algorithm breaks down. Authors, including Rai and Matthews (1993), Lange (1995a) and
Titterington (1984), developed modified algorithms therefore. As motivated by research in a large
neurobiological project, we propose in this paper a new variant of such modifications and show that
it is self-consistent. Moreover, simulations are conducted to demonstrate that the new variant
converges faster than its predecessors.
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1 Introduction
Finite mixture modeling is a widely used clustering technique for moderate to highly
complicated data structure (McLachlan and Basford, 1988). Such methods are model based
and generate probabilities for the unknown group membership. The EM algorithm has been
used in finding the parameter estimates for finite mixture models. It benefits in terms of stability
and simplicity from the fact that the “complete data” (log-)likelihood function has an explicit
solution. When the “complete data” (log-)likelihood function has no explicit solution, another
iterative algorithm is needed in the M-step in order to maximize the conditional log-likelihood
function given the observed data. This has been thought to be inefficient by many authors.
Therefore, authors, including Rai and Matthews (1993), Lange (1995a) and Titterington
(1984), proposed some modified algorithms which replaced the whole M-step of the EM
algorithm with just one iteration of some Newton type algorithms in maximizing the
conditional log-likelihood function. Given that the Newton type algorithms converges in a
quadratic speed, the modified algorithms were shown to converge in a linear speed.
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On the other hand, when there are both outcome variables and covariates, different names,
including “regression models for conditional normal mixtures” and “regression clustering”,
have been given to the same problem. The basic idea is to cluster the subjects according to the
discrepancy in the regression parameters or in addition the covariance parameters. DeSarbo
and Corn (1988) defined a regression model for finite normal mixtures with a univariate
outcome, while Jones and McLachlan (1992) extended the model to a multivariate setting.
Arminger et al. (1999) introduced several likelihood based strategies for parameter estimation,
including the EM algorithm and the EM-gradient algorithm (Lange, 1995a).

As motivated by research in a large neurobiological project, in this paper a new variant of the
algorithms developed by Rai and Matthews (1993) and Titterington (1984) is proposed to a
general finite mixture model. The main goal of our approach is to accelerate the algorithm
without sacrificing its numerical simplicity. The rest of this paper is organized as follows. The
motivation from the large neurobiological project is discussed in Section 2. Section 3 presents
the derivation of the new algorithm. An application to the large neurobiological project is
introduced in Section 4. Section 5 establishes the self-consistency of the new algorithm,
whereas numerical simulations in investigating the speed of convergences is given in Section
6. Section 7 is the conclusions.

2 Motivation
Schizophrenia, a severe and disabling mental disease, has received a tremendous amount of
research focus. A considerable amount of basic neurobiological research concerning
schizophrenia have been conducted in the Conte Center for the Neuroscience of Mental
Disorders in the Department of Psychiatry at the University of Pittsburgh. Differing
neurobiological measurements from post-mortem brain tissue of subjects in the Brain Bank
Core of the Center are involved in numerous studies. These studies typically attempt to identify
neurobiological markers that are differentially expressed in subjects with schizophrenia as
compared to normal controls (Konopaske et al., 2006). Consequently, it is of interest to attempt
to undertake a large neurobiological project to integrate data from multiple Center’s studies.
There is limited literature on previous attempts at such a data synthesis for post-mortem tissue
studies in schizophrenia research. Two such papers are by Knable et al. (2001, 2002). The
ultimate goal of our project is to identify possible heterogeneous groups of subjects with
schizophrenia based on the various neurobiological markers, and this requires a series of major
methodological steps. Clearly, the purpose of our long-term research is to provide new insights
into the understanding of the neurobiology of schizophrenia.

The Conte Center databases we need to use involve numerous studies with varying subject
populations and differing types of data. The main data issues include repeated measurements,
differing matched controls for the same subject with schizophrenia and scientifically important
covariates. Whenever repeated measurements occur, we plan to combine them into a single
observation appropriate to that study. Multivariate normal models with structured means and
covariance matrices have been developed by Wu and Sampson (2008) to deal with the differing
matched controls and covariates.

Although the data are usually assumed to be normally distributed in the context of post-mortem
tissue studies in schizophrenia, we derive our new procedure in a general setting with arbitrary
component distributions. An application to the data structure in the large neurobiological
project is illustrated as an example. This application uses the structured models introduced in
Wu and Sampson (2008) which are revisited in Section 4. The actual data we will eventually
combine from multiple studies show a considerable degree of missingness. To implement the
clustering algorithm for the Center’s databases will require carefully crafted multiple
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imputation schemes. And due to the high computational burden in multiple imputations, time
efficiency of the corresponding complete data clustering algorithms is of concern.

3 Derivation of the new algorithm
For a sample of n independent multivariate observations y1, ···, yn, we consider a setting of
finite mixture models with g ≥ 2 subpopulations. Let zi = (zi1, ···, zig)′, i = 1, …, n, be the

unobserved group indicators, where zik = 0 or 1 and . And zik = 1 implies that yi is
a random sample from the kth subpopulation. Marginally, z1, ···, zn are independent and
identically distributed with a multinomial(1; π1, ···, πg) distribution, where 0 ≤ πk ≤1 and

. Conditional on Z = (z1, …, zn)′, we assume y1, ···, yn having density functions
given by

for i = 1, …, n and k = 1, …, g, where fik(·; ·) depends on i through, e.g., some external covariates
of the subject or the design of the study, and the subscript k implies the kth mixture component
as identified by parts of θ. One example is fik(yi; θ) = φ(yi;Xiβk,Σi(σ)), where φ(·; μ, Σ) denotes
the multivariate normal density function with mean μ and covariance matrix Σ, Xi is the known
covariates matrix, and  is the vector of unknown parameters. In this case,
fik(yi; θ) depends on i through Xi and the design of Σi(σ). Two possible designs of Σi(σ) include
dimension changing from subject to subject and random effect covariates. The parameter vector
βk identifies the kth mixture component. Here, the covariates Xi is formed as a matrix with each
row corresponding to each component in yi. This formulation is different from the conventional
one used in multivariate linear regressions where Xi is a vector and βk is a matrix (Section 7.7,
Johnson and Wichern, 2002). However, it provides more flexibility in modeling the mean
structure of yi in the way that each component of yi can now have different covariates values.
And it made the following notation easier.

In the above settings, the likelihood function for the observed data Y = (y1, ···, yn)′ is given by

(1)

where π = (π1, ···, πg−1)′ since πg is redundant given . However, directly maximizing
(1) is intractable, even if fik(yi; θ) has a simple form. Instead, the EM algorithm introduced by
Dempster, Laird, and Rubin (1977) focuses on the complete (augmented) data (Y, Z) and its
likelihood function

Denote ϑ = (π′, θ)′ for notational ease. The observed likelihood function (1) is then maximized
though iterative maximizations of the conditional expectation
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(2)

for t = 0, 1, 2, …, where

The EM algorithm consists of iterations of an E-step which computes (2) and an M-step which
maximizes (2) with respect to its first argument. The EM algorithm takes advantage from the
fact that

(3)

has a closed form solution. If this is not the case, then the EM algorithm loses its base merit
of simplicity. In fact, it is easy to see that there is always a closed from solution for π given by

(4)

for k = 1, …, g.

When the closed form solution for θ is not available, the EM algorithm requires another iterative
algorithm, e.g., Newton-Raphson, in the M-step to solve (3). Many researchers find this second
set of iterations to be inefficient. According to McLachlan and Krishnan (2008, p. 25 and pp.
149–153), Rai and Matthews (1993) proposed an EM1 algorithm where they replaced the entire
M-step of the EM algorithm with one iteration of the Newton’s method given by

where 0 < α ≤ 1 was used to adjust the step size in each iteration to ensure the monotonicity of
L(ϑ(t)|Y) with respect to t. A special version of the EM1 algorithm with a(t) ≡ 1 was later referred
to as the EM-gradient algorithm by Lange (1995a). In addition, Lange (1995a) considered
choosing a(t) ≡ a to adjust the EM-gradient iterations and speed up convergence. This
modification then served as a basis of a quasi-Newton acceleration introduced in Lange
(1995b) where he noted that the EM-gradient actually acquired almost identical local
convergence properties as the EM algorithm.

As another approach, Titterington (1984) proposed to update θ according to
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where

is the complete data information matrix with respect to θ. For a variety of models, e.g., mixtures
with normal densities, Ic(θ) has a simpler form than ∂2Q(ϑ|ϑ(t))/∂ θ∂ θ′ in Rai and Matthews’
and Lange’s methods. In fact, it is not hard to show that under mild regularity conditions

(5)

Hence Titterington’s algorithm can be thought of as a scoring version of the EM1 or EM-
gradient algorithm. Similar as the EM1 algorithm, a fractional step achieved by a small enough
a(t) will ensure the increase of L(ϑ(t)|Y).

Now let us take a detailed look at the matrices ∂2Q(ϑ|ϑ(t))/∂ θ∂θ′ and Ic(θ) given by

and

(6)

Titterington’s algorithm is possibly superior to the EM1 algorithms in terms of their speed of
convergence when E[∂2log fik(yi; θ)/∂θ∂θ′|zik = 1] is much simpler than ∂2log fik(yi; θ)/∂θ ∂θ

′. But it also suffers from using the unconditional clustering probabilities  in (6)

instead of the conditional ones , since it is clear that  fit the data better

than  do in the current stage. Because { } is necessarily computed for (4) in every
iteration, we propose, as a variant to the above algorithms, to update θ according to

(7)

where
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As can be seen, the new modification shares the same numerical simplicity as Titterington’s
algorithm. The self-consistency of the new algorithm is shown in Section 5. In the simulations
in Section 6, the new algorithm with α(t) ≡ 1 is compared to the EM-gradient algorithm and
Titterington’s algorithm in terms of their convergence speed and clustering accuracy.

4 An example involving structured models
Although the new algorithm developed in Section 3 is applicable in more general settings, in
this section we introduce a special example involving structured models because these models
are critical in analyzing the motivating databases. And in addition, this example is suitable for
demonstrating some basic advantages of the new algorithm in analyzing complex databases.

As noted by Wu and Sampson (2008), several special considerations arise when we attempt to
combine data from multiple studies in the Conte Center. First, by December 31, 2005 about
35 separate post-mortem tissue studies have been conducted. These studies involve different
neurobiological measurements, such as neuron counts, neuron somal volume and certain
mRNA expression levels, on differing subject populations. As a result, the combined data
would involve multiple responses and a considerable degree of missingness. Carefully crafted
multiple imputation schemes will be required in dealing with missing data. In this paper, we
develop an efficient complete data clustering algorithm which will be implemented later in
conjunction with multiple imputations. Second, In order to control for both experimental and
demographical variations every subject with schizophrenia has been matched with a normal
control subject in each study based on their ages at death, gender and post-mortem intervals.
And paired differences between measurements on the subjects with schizophrenia and the
corresponding controls are typically obtained and treated as primary data in the original
analysis. This convention is adopted here. Nevertheless, the matched controls for a subject with
schizophrenia might be different in different studies. To be more explicit, let’s consider Si1,
···, Sip and Ci1, ···, Cip being p neurobiological measurements on, respectively, the ith subject
with schizophrenia and its corresponding controls for i = 1, 2, ···, n. These measurements are
obtained most possibly from more than one study. And there is a chance that Ci1, ···, Cip are
from different subjects. The pairwise differences are defined to be Si1 −Ci1, ···, Sip −Cip for i
= 1, 2, ···, n. Observations from the same subjects are assumed to be correlated, while
observations from different subjects are taken to be independent. As a result, we have

When Cij and Cik are from the same subject, Cov(Cij, Cik) ≠ 0; otherwise, Cov(Cij, Cik) = 0.
Finally, as common in studies with human subjects, covariates, such as age and gender, are
involved in the Center’s studies. The means of the multivariate responses yi = (Si1 − Ci1, ···,
Sip − Cip)′, i = 1, 2, ···, n, are then assumed to be linear in the covariates, that is

where Xi is the covariates matrix whose rows corresponding to the components in yi and β is
a vector of unknow parameters. This mean structure allows some covariates values to vary
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from measurement to measurement. Examples of such covariates include tissue quality or
solution density which are study dependent.

Wu and Sampson (2008) developed multivariate normal models with structured means and
covariance matrices to deal with the special considerations in the Center’s databases. The
structured means resulted from the covariates of the subjects with schizophrenia, whereas the
structured covariance matrices were due to the differing control subjects that were matched to
the same subjects with schizophrenia when they were involved in different studies. Consider
the responses y1, ···, yn representing the pairwise differences between the n subjects with
schizophrenia and their corresponding controls. Wu and Sampson (2008) defined fi(yi; θ) = φ
(yi; Xiβ, Σi(σ)), i = 1, …, n, as the corresponding density functions, where X1, · · ·, Xn are the
known covariates matrices and θ = (β′, σ′)′. The subscript i of fi(yi; θ) denotes its dependency
on i through Xi and Σi(σ). Each Σi(σ) was formulated to be linear in

, i.e.,

where Gjk, 1 ≤ j ≤ k ≤ p, are known matrices with all “0” entries except a “1” at both the (j, k)

th and the (k, j)th entries, and  if the controls matched to the ith subject with schizophrenia

for the jth and the kth measurements are the same; otherwise,  (Wu and Sampson,
2008). Explicitly speaking, σjj is a sum of the jth measurement variances for both the subject
with schizophrenia and the control, whereas σjk and  are the (j, k)th measurements
covariances on the subject with schizophrenia and the control, respectively. And  is added

onto the (j, k)th covariance of the pair-wise differences when , i.e., Cij and Cik are from
the same subject. For data with p dimensional responses, there are a total of 2p − p possible
matching schemes between the subjects with schizophrenia and the controls. But most

probably, not all of these matching schemes appear in one data set. In such cases,  or 1

for i = 1, 2, · · ·, n for some 1 ≤ j < k ≤ p. If , then σjk is estimable, but  is not; and If

, then  is estimable, but both summands are not. Thus, the number of parameters
in σ needs to be reduced accordingly. However, in the following discussion we assume for

simplicity that  for all 1 ≤ j < k ≤ p so that all parameters in σ are estimable.

Following the model specification in Wu and Sampson (2008), in this example we consider a
finite mixture model with component density functions fik(yi;θ) = φ(yi; Xiβk, Σi(σ)) for i = 1,
…, n and k = 1, …, g, where . The subscript k of fik(yi; θ) identifies the kth
mixture component. The purpose is to cluster the subjects with schizophrenia into possible
subpopulations. In this model, the clusters are defined only in terms of the regression
parameters β1, · · ·, βg. There is no biological reason suggesting that the value of σ should be
different over the clusters. For notational ease, we relabel the parameters in σ as σ = (σ1, · · ·,
σq). And by using some well-known matrix derivative results, we have

(8)
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(9)

where Cik = (yi − Xiβk)(yi − Xiβk)′. Continuing to take partial derivatives of (8) and (9) yields

On the other hand,

Thus, our newly proposed algorithm (7) with α(t) ≡ 1 yields an update given by

(10)

(11)

When Si is linear in the components of σ as described earlier, (11) becomes

(12)

Clearly, the quantities in (10) are the maximum likelihood estimates of the β’s when the
individual clustering probabilities and the covariance matrices are assume to be known. The
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calculation of (12) is easier than that of the corresponding update in the EM-gradient algorithm
and as easy as that of the corresponding update in Titterington’s algorithm.

5 Local convergence properties
It was shown by Dempster, Laird, and Rubin (1977) that L(ϑ(t+1)|Y) =≥ L(ϑ(t)|Y) as long as Q
(ϑ(t+1)|ϑ(t)) ≥ Q(ϑ(t)|ϑ(t)). So the convergence of the EM algorithm to a local maximum of L
(ϑ|y) is guaranteed under mild regularity condition. In addition, it can be shown that

So the negative definiteness of [∂2Q(ϑ|ϑ(t))/∂ϑ∂ϑ′]ϑ
(t) around a local maximum follows from

the negative definiteness of [∂2log L(ϑ|Y)/∂θ∂θ′]ϑ
(t). The negative definiteness of [Ic(θ)]ϑ

(t)

around a local maximum is also trivial. As a result, both Titterington’s and the EM1 algorithms
are necessarily ascent in the neighborhood of a local maximum, which means that there always
exist at least one 0 < α(t) ≤ 1 which leads to an increase in Q(ϑ|ϑ(t)).

The same ascent property can also be established for our newly proposed algorithm. First, the
negative definiteness of [H(θ)]ϑ

(t) is guaranteed, since every individual item

is negative definite. Here we can focus only on the parameter θ, because (4), as a solution to
(3), automatically leads to an increase in Q(ϑ|ϑ(t)) by the GEM theory. As a result, given the

values of , we rewrite Q(θ|θ(t)) as Q(ϑ|ϑ(t)) and consider the difference Q(θ(t+1)|
θ(t)) − Q(θ(t)|θ(t)). A Taylor’s expansion around θ(t) is given as

(13)

where θ* is between θ(t+1) and θ(t). Now plugging our new update (7) into (13), we have

The above quantity is in the quadratic form. In order to have Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t)) = 0, it
is sufficient that
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(14)

Since both [H(θ)]θ
(t)and [∂2Q(θ|θ(t))/∂θ∂θ′]θ

* are negative definite matrices. Inequality (14)
can be reduced to

(15)

where I is the identity matrix with the same dimension as H(θ). It is not hard to show that
inequality (15) is satisfied when α(t) is chosen to be smaller than the smallest eigenvalue of the
matrix on the right hand side of (15). Consequently, the value of a(t) selected such way always
lead to an increase in Q(θ|θ(t)) and so in L(ϑ|Y).

As another usage, α(t) can be adjusted to ensure that the parameter estimates fall in the parameter
space. This is usually called step-halving. For example, one concern is that the estimated
covariance matrices should be positive definite. By using a small α(t) in (7), we are actually
shrinking ϑ(t+1) toward ϑ(t). And usually the parameter space is an open set. So given that
ϑ(t) is in the parameter space, there will always be an α(t) small enough to guarantee
thatϑ(t+1) will also be in the parameter space. And the direction of the inequality in (15) enables
us to apply step-halving while guaranteeing an increase in L(ϑ|Y). However, using a small
α(t) reduces the speed of convergence.

6 Simulations
Carefully crafted multiple imputation schemes will be required in the last step of our long term
project when we attempt clustering in the presence of the substantial amount of missing data
in the database from the Center’s studies. The computational speed of the clustering component
is critical in the long term project and we intend to use our new algorithm for this purpose. In
this section, we show using simulations that our algorithm is computationally faster than both
Titterington’s and the EM-gradient algorithms. Data are simulated to be complete except the
usual missing clustering indicators. A fixed value of α(t) = 1 is used. All algorithms are coded
and running in R language.

Data with a structure conforming to the one described in Section 4 are simulated for the
clustering analysis. The dimension of the outcomes y1, · · ·, yn is assumed to be three. According
to the component density functions

for i = 1, …, n and k = 1, 2, data sets containing data from two clusters are simulated. Each
data set contains n = 500 subjects with 250 for each cluster. The covariates matrix Xi is in the
form of
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for i = 1, …, n. The constant ‘1’ in the Xi’s represents the overall difference between the subjects
with schizophrenia and the controls. The values of x1 are integers sampled uniformly from 20
to 80 to mimic the covariate age. And the values of x2 are sampled uniformly from binary {0,
1} to simulate the covariate gender. This design of Xi allows the covariates effects with respect
to the three components of yi to be different. No study dependent covariate is considered in
this simulation study. The two clusters differ only in the parameters for the mean structures,
and let

be those parameters for the two clusters, respectively. Explicitly speaking,  are
the regression parameters for the jth component of yi in the first cluster for j = 1, 2, 3, whereas

 are the regression parameters for the jth component of yi in the second cluster.
In addition, let

which creates five possible individual covariance matrices for the outcomes as follows:

In this simulation study, we assume that the five possible matching schemes between subjects
with schizophrenia and controls are equally likely. As a result, within each data set and each
cluster, each of the above covariance matrices appears to 50 subjects. Although this assumption
will most likely be violated in reality, this algorithm can be implemented in the same way.

Direct applications of both the EM-gradient algorithm and Titterington’s algorithm to our
simulated data is time consuming. The three algorithms are implemented on a random selection
of 30 out of 500 simulated data sets and shown to provide the same parameter estimates. As a
result, only our new algorithm is used for the parameter estimation for the rest 470 simulated
data sets.

First, we examine in detail their computational speed. Each of the three algorithms is then
implemented from the same starting values to find the parameter estimates. For the feasibility
of comparison, the three algorithms are stopped according to the same criterion, that is, when
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the change in the parameter estimates does not exceed a pre-defined limit. We observe that
when the algorithms are started from near the true parameter values, they converge in almost
the same number of steps. However, when the algorithms are started far from the true parameter
values, they behave differently. A typical result from one of the thirty selected data sets is
shown in Figure 1. The x-axis represents the number of iterations, while the y-axis represents
the value of the observed log-likelihood function evaluated at the parameter estimates in each
iteration. Some beginning iteration history for the three algorithms with low values (large
negative values) of the log-likelihood function is not shown in Figure 1 for the feasibility of
comparison. It can be seen that the EM-gradient algorithm converges in more than 80 steps,
while Titterington’s algorithm converges in about 65 steps. However, our new algorithm only
requires about 25 steps to converge, which is a big advantage as compared to the other two. In
addition to the results on the numbers of iterations before convergence, we also observe that
the average cost of time per iteration is 4.67 seconds for the EM-gradient algorithm and about
0.7 seconds for both Titterington’s algorithm and our new algorithm. However, we do
recognize that the average cost of time per iteration does depend on the coding of the algorithms,
the computing software and the hardware configuration. From Figure 1, the main feature of
the new algorithm is that it requires significantly fewer iterations in finding the region
containing a maximum when started far from the optimum, while its number of steps for
subsequent “local refinement” is actually comparable to the two existing algorithms. In
addition, we show in Table 1 the average numbers of steps to convergence and the mean per
iteration time, as well as their corresponding standard deviations, for the three algorithms over
the thirty selected data sets. The result confirms the above conclusion that our new algorithm
is computational more effective than both the EM-gradient and the Titterington’s algorithms.

For our current simulations, two different approaches for starting points are used for the purpose
of demonstration. One approach is to choose parameters close to the true parameter values,
and the other approach is by starting the algorithm from randomly generated clustering indices,
i.e., a random starting point. For any single simulated data set, we define the final clustering
result to be “successful” if the algorithm clusters more than 95% of its subjects correctly. For
the 500 simulated data sets, we observe that by starting from near the true parameter values
we get “successful” clustering results on 100% of the simulated data sets, while by starting
from random point we obtain “successful” clustering results for about 95% of the simulated
data sets. For the other 5% of the simulated data sets, the algorithm either does not converge
(1.4%) or converges (3.6%) to a solution resulting in a clustering in which the subjects are
clustered complete randomly. For those data sets with “successful” clustering results when
starting from random clustering indices, we summarize the results of the parameter estimation
in Table 2 as compared to the true parameter values. It can been seen that the parameter
estimation is reasonably accurate when the algorithm finds the correct clusters. In fact, these
results are surprisingly good. Typically, no one relies on one random starting point if one has
no information about where to start. In order to increase the chance of identifying the correct
clustering, we could always start the algorithm from multiple starting points and pick the
solution maximizing the likelihood function as the result.

7 Conclusions
In this paper, some special features of finite mixture models, as compared to general missing
data problems, are utilized to speed up the parameter estimation algorithms. The EM-gradient
algorithm provides updates which fit the data better in each iteration, while Titterington’s
algorithm requires less calculation in each iteration. Our new algorithm takes their both
advantages and is shown to acquire their nice local convergence properties as a heritage. In
addition, we show by simulations that our new algorithm converges in fewer iterations than
its two predecessors while providing the same parameter estimates. And the cost of time per
iteration of our new algorithm should be comparable to that of Titterington’s algorithm and
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lower than that of the EM-gradient algorithm. As discussed, the database of the Center’s studies
which our ultimated project will use involves a great degree of missing data in addition to the
unobserved clustering indicators. The next steps in our long term goal of clustering subjects
with schizophrenia are to develop specially crafted multiple imputation techniques, implement
the newly developed clustering algorithm to the multiply imputed data sets, and finally integrate
the multiple clustering results to a single clustering result.
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Fig. 1.
Iteration history of the clustering algorithms: (a) for the new algorithm; (b) for Titterington’s
(1984) algorithm; (c) for the EM gradient algorithm. The mean per iteration time, computed
as the average of the computational time required for one iteration, is also shown.
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Table 1

Average numbers of steps to convergence and mean per iteration time for the thirty simulated data sets

Algorithm Average number of steps std. Average time per iteration std.

New 41.1 15.2 0.728 sec 0.012 sec

Titterington 71.2 42.1 0.736 sec 0.008 sec

EM-gradient 75.4 31.1 4.583 sec 0.048 sec
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