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Abstract
Methods to monitor spatial patterns of disease in populations are of interest in public health practice.
The M statistic uses interpoint distances between cases to detect abnormalities in the spatial patterns
of diseases. This statistic compares the observed distribution of interpoint distances with that which
is expected when no unusual spatial patterns exist. We show the relationship of M to Pearson's Chi
Square statistic, . Both statistics require the discretization of continuous data into bins and then are
formed by creating a quadratic form, scaled by an appropriate variance covariance matrix. We seek
to choose the number and type of these bins for the M statistic so as to maximize the power to detect
spatial anomalies. By showing the relationship between M to , we argue for the extension of the
theory that has been developed for the selection of the number and type of bins for  to M. We further
show that spatial data provides a unique insight into the problem through examples with simulated
data and spatial data from a health care provider. In the spatial setting, these indicate that the optimal
number of bins depends on the size of the cluster. For large clusters, a smaller number of bins appears
to be preferrable, however for small clusters having many bins increases the power. Further, results
indicate that the number of bins does not appear to vary with m, the number of spatial locations. We
discuss the implications of this result for further work.
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1 Introduction
Syndromic surveillance and a growing interest in real time monitoring the patterns of diseases
in populations has led to increased research in novel methods for detecting spatial anomalies.
Among the methods being developed is the M statistic [1]. This statistic monitors the
distribution of the interpoint distances between cases and is designed to detect deviations from
expected behavior in this distribution. The M statistic has been shown to be effective at
detecting exogenous clusters when compared with other statistics [1,2,3] designed for this same
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purpose. It claims some advantages, including the ability to detect a broad range of deviations,
not just clusters. Additionally, it does not suffer from the curse of dimensionality and it does
not make any parametric assumptions, or impose restrictions on the format of the spatial data
(for example, exact locations, or aggregated over zip code, census tract, or some other region).
A bivariate version of this statistic, incorporating temporal information with the spatial data,
leads to greater power to detect aberrant behavior [4].

The M statistic is constructed by considering all the interpoint distances between m independent

cases. Thus there are  interpoint distances used in calculating the statistic. In order to
check for goodness-of-fit, data is discretized into the k × 1 vector of the frequency distribution
of the observed (dependent) distances and the vector is compared to the corresponding k × 1
frequency vector expected under the null hypothesis via the quadratic form,

where oN is the observed vector of the frequencies of the distances, e is the vector of expected
frequencies, and S− is the generalized inverse of the variance covariance matrix of oN. This
statistic can be described as a Mahalanobis distance between the observed and expected
distribution of the distances, once discretized through the creation of the k classes.

It is also useful to see this statistic as a generalization of Pearson's Chi Square statistic, 
[5]. Pearson's statistic does exactly the same operation as M, but assumes that the underlying
observations are independent. Thus, in that case, the observed k × 1 vector of the observed
relative frequencies is distributed as a multinomial random variable. That statistic can be
written as

where xn is a multinomial random vector and  (here, MN indicates the multinomial
distribution) is the generalized inverse of the corresponding variance covariance matrix of

xn. This variance covariance matrix has the standard form .

Both statistics have several appealing features. Among these are that they are intuitive and easy
to interpret. It is also reasonable to assume that greater power is gained to detect aberrations
from null behavior when the entire distribution is compared, as opposed to comparing a simple
summary statistic, such as the mean or maximal value, as in the Kolmogorov-Smirnov test
[6]. A challenge with  and M arises when working with continuous, or nearly continuous
data. In this case, one must aggregate the continuous data into k bins. The optimal method of
doing this has been studied for  (see references cited in the next section). This is an important
consideration, as values for the power have been shown to vary dramatically, both for M [2]
and  [7] when k varies. Intuition might suggest that we select k to be large, so as to more
closely represent the continuous distribution. However, there is a tradeoff for choosing large
values for k, as this leads to an increase in the variance and the possibility of having bins with
no observations. Further the particular anomaly to be detected in the data may dictate the
optimal number of bins, as we show below.
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In the rest of this paper, we present two main results. First, the M statistic is indeed essentially
equivalent to . This also implies that any appropriately constructed quadratic form is
equivalent to , regardless of the nature of the underlying observations. Second, we explore
the implication of this result for applying the theory that has been developed for  with regard
to the selection of k for spatial data using the M. Specifically, in the cluster detection setting
with M, we show that the optimal number of bins depends on the size of the cluster to be
detected. We discuss the implications of this result. First, however, we provide a summary of
relevant work on selecting k for .

2 Bin Selection for 
Pearson's Chi Square statistic was introduced at the beginning of the 20th century and has been
widely used since its introduction [5]. It is most suited for goodness-of-fit tests with discrete
data, but is frequently extended for use with continuous data. We assume in what follows that
the null hypothesis is of the form H0 : X ∼ f (x; θ0), with both f and θ0 fully specified. The null
distribution of the  statistic when testing for a specific distribution depends on the method
of estimation of the parameters, if any are being estimated as part of the test, for example when
testing the hypothesis that the observed data arises from a normal distribution without
specifying the mean and variance [8]. When one uses the statistic with continuous data it then
becomes necessary to categorize the data, and there are two main issues to consider in this
process: how the bins should be partitioned (for instance equiprobable, equispaced or some
other configuration) and how many bins, k, should be used. The focus of this paper addresses
the latter question, however we begin by providing some comments on the former.

An analogous process to determining the type of bins to use is performed when creating a
histogram of continuous data. In most of the popular statistical computing packages (for
instance Splus/R, Stata and SAS), the default setting for this is to use equispaced bins when
creating the histogram. One might consider this same process when using  for continuous
data. The benefit of this method is that when the aberration we wish to detect occurs in one of
the cells with a small expected count, we are more likely to detect even a small absolute change.
For instance, if only one observation is expected in each cell, then it would not take a large
increase for a strong signal to be generated. However, a major problem of this method is that
inevitable disparities in the cell counts will be created. If one cell contains a large portion of
the data, while the remaining cells are sparse, then subtle changes between the null and
alternative distributions could be masked within the large cell, and power may be compromised.
Additionally, having cells with no observations is not only inefficient, but also leads to
instability in the statistic, since  is calculated by dividing by the expected number in each
cell. If that number is approaching zero for at least one cell, then we can expect that the statistic
will behave aberrantly. For instance, [9] cites research showing that the asymptotic behavior
of  is not as expected, giving some explanation for the well-known rule of thumb of having
at least five as the expected count in each cell (though subsequent work has shown this
particular cutoff to be conservative [10]).

As an alternative to equispaced cells, [7] suggest that equiprobable cells are probably better,
unless there is a particular alternative that one is interested in detecting. In that case, it is optimal
to use equiprobable cells, except in the area closest to the anticipated aberration; in that vicinity
one should use more cells. For instance, if the type of alternative we are interested in detecting
would lead to deviations in values on the extremes of the distribution, we should consider
increasing the number of bins in the area at the extremes of the data. The use of equiprobable
binning is also recommended when using the M statistic, as work with that statistic suggests
that this is more powerful than the equispaced approach [2,3].

White et al. Page 3

Comput Stat Data Anal. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We now focus our attention on the selection of k, the number of bins. The goal is to maintain
a balance between accurately portraying the distribution by having a sufficient number of bins,
but without allowing that number to be so high as to create excessive variability. Table 1
provides a brief summary of some of the more conclusive papers addressing this topic for the

 test. Mann and Wald provide a rule that is easy to implement in this problem. They prescribe
a formula that has k increase with n2/5. However much of the subsequent work showed that
their approach often prescribes too many bins [11]. We give particular attention to the work
done by [7] and [12]. This work describes the asymptotic behavior of the power of  as both
k and n tend to infinity. We find this particularly useful for understanding how to select k with
respect to n for scenarios that have not been previously characterized, as the results are general
and can be applied to detect any alternative against a given null distribution.

In many of the cases for , research indicates that k should increase with n, though k = n is
problematic as sparse cell counts will occur. Exceptions occur when testing for normality as
shown in [13] and when the alternative has light tails compared to the hypothesized distribution
[7,12]. In these cases, small k is optimal for all values of n. The work presented here indicates
that when testing for spatial clusters with the M statistic the value of k does not appear to depend
on m, the number of independent spatial locations, as much as it depends on the size of the
cluster to be detected. In the following sections we give the theoretical underpinning for the
extension of the  results to the M statistic and then illustrate it through examples.

3 Dependent Data
The above discussion on bin selection deals with the case where the continuous observations
on which the frequencies are calculated are independent and identically distributed. We now
seek to show their applicability to the case of observations that are not independent. This is
motivated by work done in spatial statistics. [1,14] have studied a statistic designed to detect
spatial anomalies. This statistic is being used in syndromic surveillance [4], as well as genetics
research [15,16]. The statistic considers the distribution of all of the interpoint distances
between observations. For the case of syndromic surveillance, we consider the Euclidean
distances between cases with a syndrome of interest. In the genetics setting, one uses genetic

distances between, for example, viruses. In what follows,  is the number of interpoint
distances between the m independent spatial locations. The matrix S has been shown
empirically to be of rank k − 1 in most cases. We use the generalized inverse described in
[17, p. 27]. This generalized inverse is obtained by partitioning the matrix as

where the rank of A is equal to that of S. The generalized inverse is computed as

As we pointed out, the M statistic bears strong resemblance to . In what follows we show
that that these two statistics are essentially equivalent and therefore argue that the theory that
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has been developed for  can be applied to M. These results can be generalized to any quadratic
form with an appropriate variance covariance matrix. Some consideration, however, must be
given to the rate at which the asymptotic results apply. This is because with dependent data
generated from m independent observations, we observe a much larger number of dependent
observations (of order m2). We can rewrite the statistics M and  as

where a tilde represents a k − 1 dimensional vector.

We use the Cholesky decomposition and let

Then we can rewrite M as

Given the transformation , Σ1 is the variance covariance matrix of b̃N:

Therefore we see that M and  are essentially equivalent. Both are quadratic forms constructed
from vector random variables that (when normalized) converge in distribution to multivariate
normal distributions.

This equivalence motivates our use of the theory for the behavior of  to MN as k(m) (or k
(N)) → ∞. Our objective is to better understand the optimal choice for k, given m. [7] and
[12] provide useful information on the behavior of the power of  as k(n) → ∞. We can use
this information to better understand how changing k with respect to m might impact the power
for MN. One should keep in mind however that because of the dependence among distances,
the asymptotic behavior does not follow the usual iid rules (see also [1]).
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The results with  provided by [12] and [7] suggest that k should increase with m in many
cases, however there are exceptions, as we show. Simulations indicate that in fact the optimal
number of bins depends on the size of the cluster. We illustrate this point by example in the
following section. We also observe that the optimal value for k does not appear to change as
m increases.

4 Empirical Study
We provide empirical examples of the effect of varying k on the power to detect a spatial cluster.
The first examples arise from data of simulated locations based on a parametric model. A final
example comes from a real dataset composed of the locations, aggregated by census tract, of
patients with upper respiratory tract infections seeking care at an eastern Massachusetts
healthcare provider. In both examples, spatial clusters are superimposed on the data and the
power to detect these clusters with the M statistic is estimated empirically. The question that
we address is how to determine the value of k for a given value of m such that the power to
detect the cluster will be maximized.

4.1 Simulated Data
The first examples that we present arise from simulated data. There are three scenarios
considered here. First, locations are simulated on the unit line and distances are calculated as
the difference between these values. Second, data is simulated from the uniform distribution
on the unit square. The last model simulates cases according to a bivariate normal distribution,
centered at the origin with variance covariance matrix given by the identity, I2. For each of
these models, m assumes four fixed values, 50, 100, 150 and 200 and we vary k over 31 values
between two and 3000.

The bin breaks, S matrix and null distribution of the M statistic are calculated using resampling
methods. The datasets used to calculate power contain a cluster placed in a region that composes
0.1, 0.01, 0.001, and 0.0001 of the probability space (these are heretofore denoted as p0). The
number of points placed in the cluster region is pAm, where pA is the probability of being in
the cluster under the cluster model and varies depending on the scenario in order to bound the
power away from α and 1. In the case of multiple clusters, the total probability space used by
the clusters is 2p0. Diffuse clusters were also considered. In this case 0.1 was the only value
considered for p0, so that there was a detectable difference between the expected and observed
number of points in the region. The details of these clusters are provided below. An illustration
of some of the unit square and bivariate normal configurations are shown in Figure 1. Results
from all of the simulations are given in Figures 2 and 3.

Unit Line—In the first example, data are generated from a uniform distribution on the interval
[0, 1]. The cluster comes from a uniform random variable with positive probability centered
at 0.50. The probabilities of points being in the cluster region under the cluster model, pA, were
0.2253, 0.0700, 0.0600, and 0.0500 to correspond with the four values of p0. Additionally,
diffuse clusters were simulated when p0 = 0.1 with pA = 0.01. Simulations were also run with
the cluster location varying, though the results are not shown here since the location of the
cluster did not seem to impact the results for the optimal value for k. Additionally a double
cluster model was run with clusters centered at 0.1 and 0.6 and pA = 0.1510, 0.0469, 0.0300,
and 0.0335 for each of the four values of p0. Figure 2 gives the estimated powers for the dense
cluster simulations. Figure 3 shows the power for the diffuse cluster scenario. We see that as
the size of the cluster decreases, the optimal number of bins increases. Additionally, as m
increases the overall power increases, which is not surprising since we would expect the
precision to increase.
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Unit Square—The third and fourth rows of plots in Figure 2 illustrate the power to detect a
dense cluster superimposed on spatial data uniformly distributed on a unit square. Four single
cluster models were simulated with clusters centered at (0.5, 0.5), (0.25, 0.25), (0.16, 0.16) (on
the corner of the region), and (0.5, 0.25). We report only those results from the cluster being
centered at (0.5, 0.5) since the results were consistent, regardless of cluster location. The values
of pA considered were 0.2253, 0.1000, 0.0600, and 0.0500. Additionally we consider a double
cluster model with clusters centered at (0.25, 0.25) and (0.75, 0.50) and the values of pA being
0.67 the values of pA for the single cluster model. Diffuse clusters were also generated when
p0 = 0.1, with pA = 0.01 for one and two cluster models. In all scenarios, the optimal value of
k increases as the size of the cluster decreases, regardless of m and power increases with m.

Bivariate Normal—The final simulated example arises from data that are generated from a
bivariate normal distribution centered at the origin and with variance covariance matrix of
I2. The values for pA used in this scenario are 0.2253, 0.1000, 0.0600, and 0.0500. The points
of the clusters are obtained by identifying a square region centered at the origin that contains
approximately p0 of the probability space. A large number of points are sampled from the
bivariate normal distribution and (1 − pA)m of the points that fall outside the cluster region are
randomly sampled without replacement. All points that are in the cluster region are used and
additional points are generated from simulating data uniformly on the square to create pAm
points in the cluster region. Again, the optimal value of k increases with a decreasing cluster
size regardless of m and power increases with m.

From these examples the optimal value of k does not appear to be increasing with m. Also, the
best performing value of k depends on the cluster size. Figure 4 illustrates the reason for this,
which is that a key disturbance created in the distance distribution comes from the interpoint
distances within the cluster. So, clusters that are very small create a bump in the distribution
around very small distances. As the cluster size increases, the area of the distribution that is
affected increases. Power is likely to be optimized when the disturbance is contained within a
single bin. Figure 4 illustrates this phenomenon and Table 2 shows the length of the first bin
compared to the size of the cluster. The dependence of the optimal value of k on the size of the
cluster poses challenges for exploratory work and generally in surveillance settings where the
size of the cluster that one is interested in is likely not known a priori. Additionally it is not
clear how to best choose k if the spatial abnormality is not a cluster, but some other modification
in the distribution.

4.2 Biosurveillance Data
This study is based on data collected over a period of 1399 days from a large healthcare provider
in eastern Massachusetts. The data contains the locations, aggregated by census tract, of
patients with upper respiratory tract infections (URI). This information is downloaded from a
central database daily. The data has been previously analyzed in [4]. Days with case counts
less than six were excluded from the analysis. The average daily case count for the days
included in the analysis was 40.12 (sd = 22.30). We use this data to calculate the bin breaks,
S matrix and null distribution of M.

In this example, m is varying from day to day. Additionally, the location data is aggregated.
The impact of these two features on the choice of k is not clear. Therefore, these simulations
are useful for observing how k behaves in this more realistic scenario.

We consider three alternative models. The first two contain single clusters of size six. The final
model is a combination of the previous two, containing both clusters used in the previous
example simultaneously, in other words, there are 12 points that are in clusters. For each of
these three examples, k ranged over eight values between 2 and 50. The results of these
simulations are given in Figure 5. The power curves demonstrate the same basic pattern
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observed in the previous simulated examples. That is, we see a sharp initial increase in power
as k increases and then a very gradual decline as k approaches and extends beyond m.

These results are consistent with those observed for the simulated data suggesting that the
clusters comprise a relatively large part of the probability space. In fact, based on our
observations here, it is reasonable to suggest a test that is performed for varying k and the final
result chosen to be for the value of k that optimizes some criteria, analogous to the AIC criterion.
For cluster models, this appears to be a reasonable approach. Additionally, we note that the
differences in power from choosing k within a reasonably broad range of values are not
dramatic.

5 Discussion
We noted the equivalence of the M and  statistics, implying that the underlying distribution
of the observations is unimportant, as long as appropriate variance covariance matrix is used
when constructing the quadratic form. In other words, we can say that  is a special case of
a broader class of statistics composed of quadratic forms that can be constructed as

where Σ is the k × k variance covariance matrix, with rank k − 1 of the k × 1 vector a. In the
case of , the vector of data follows a multinomial distribution and the variance covariance
matrix takes on a known form. On the other hand, for the M statistic, in general, it difficult to
specify the variance covariance matrix. In practice we use resampling methods to estimate the
variance covariance matrix. In simple cases, such as the unit line, we can obtain an exact form
of the variance covariance matrix.

Pearson's Goodness-of-Fit test and the M statistic compare an observed distribution with a
hypothesized distribution, the null distribution, and quantify the differences between the two.
While these statistics are intuitive and very useful, there can be some difficulty in implementing
them with continuous data. As we have seen, the power of the test is impacted substantially by
the choice of the type and number of classes.

We confirm the recommendation of using of equiprobable binning also with M, unless there
is prior interest in detecting a particular alternative. In that case one should use a finer
probability grid in the vicinity of the expected deviation and a coarser equiprobable grid
elsewhere.

The power of the test is affected by the selection of the number of discrete categories, k. Our
simulations indicate that in the case of spatial cluster models, the best performing number of
bins depends on the size of the cluster to be detected. This would argue for a modification to
the M statistic that would allow one to search over a range of values of k. The optimal choice
of k will also be informative in indicating the size of the cluster that has been detected.
Additionally, our simulations affirm that overall power increases as m increases, regardless of
the choice of k.

We recognize that these guidelines have limitations. First, the results are based on asymptotic
theory of the behavior of the power as k increases with respect to n or m. In application, the
point where the asymptotic results provide an accurate guide may not be attained. Therefore,
it is possible that the rule of thumb given may not provide the best value of k for a practical
dataset. It is hoped that by examining simulations, we can shed some insight on finite sample
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behaviors. It should also be noted that the results obtained for  often contradict each other.
For instance, [7] and [12] approach the same problem of describing the behavior of k as n goes
to infinity and find results that mostly coincide, but do differ significantly in some cases. This,
and the large body of literature that has attempted to address this problem, lead to the conclusion
that this is clearly not a simple issue, and that to this point it has not yet been addressed in a
definitive way. We contend, however, that the literature that does exist and the results shown
in this paper are sufficient to provide guidelines that appear to be reasonable for this problem.
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Fig. 1.
Configuration for the simulations for the Unit Square and Bivariate Normal scenarios when
pA = 0.1 or pA = 0.001. The x's denote the points in the cluster and the o's denote non cluster
points.
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Fig. 2.
Power for the dense cluster model simulations. Within each plot the powers for m = 50, 100,
150, and 200 are shown. Each column represents a different value for p0, indicated by the title.
Power decreases with m. Each row of plots corresponds to a different clustering scenario. The
x axis for each plot denotes values of k, where k ranges between 2 and 100 for p0 = 0.1 and 2
and 3000 for p0 = 0.01, 0.001, and 0.0001.
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Fig. 3.
Power for the diffuse cluster model simulations. Within each plot the power for m = 50, 100,
150, and 200 are shown. Power is monotonically decreasing with m. The x axis denotes values
of k, where k ranges between 2 and 3000.
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Fig. 4.
The null (black) and alternative densities (dotted) of the distances for the unit square
simulations. The x axis represents distance. The width of the first bin for k = 5, 50, 100, and
200 are shown as vertical dotted lines with the optimal width being shown in black. The width
of the cluster is shown with the dashed line.
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Fig. 5.
Power for three cluster models with data from health care provider, as k is varied.
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Table 1

Summary of literature pertaining to cell selection for the  statistic.

Author Recommendation Comments

[18]

k = 4 2(n − 1)2

c 2

1/5
First proposal for value of k.
Oversimplifies the problem.

[13] k does not seem to vary with n. k does impact the power. Only testing for normality. Did not
consider many values of n.

[7] Large number of bins best for alternative with heavy tails. If
lighter tails or if tails are similar and there is a mean shift, then
a smaller number number of bins is better. If have one light tail
and one heavy tail, then a moderate number of bins is best.

Done by considering local alternatives
and looking at the noncentrality
parameter. Simulation results seem
consistent with theoretical results.

[12] k should always increase with n. When the non centrality
parameter converges to a finite limit, k should increase more
slowly with n.

Theory derived by considering
nonlocal alternatives. Simulations are
consistent with theory. Further
simulations show that this result is
more accurate than that of [7].

[19] If not testing for a specific alternative, allow k to increase with
n.

[20] k should increase slowly with n, so that expected cell counts
increase with n. Recommend k of seven when n is 20, 10 – 15
for n of 50 and 20 when n is 100.

Testing for normality. Results based on
simulations.
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Table 2

Best performing number of bins, the length of the cluster, and the length of the first bin.

Model p0 Best k Cluster Length Length of first bin

Unit 0.1 10 0.1 0.0513

Line 0.01 80 0.01 0.0062

0.001 700 0.001 0.0008

0.0001 3000 0.0001 0.0002

Unit 0.1 5 0.3162 0.2898

Square 0.01 40 0.1000 0.0933

0.001 200 0.0316 0.0390

0.0001 1600 0.0100 0.0151

Bivariate 0.1 10 0.8180 0.1915

Normal 0.01 70 0.2500 0.0714

0.001 500 0.0800 0.0472

0.0001 1400 0.0300 0.0395

Note that the maximal value for k was 3000 in the simulations.
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