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Abstract

An approximate rank revealing factorization problem wittusture constraints on the
normalized factors is considered. Examples of structuajvated by an application
in microarray data analysis, are sparsity, nonnegatipityiodicity, and smoothness.
In general, the approximate rank revealing factorizatiosbfem is nonconvex. An

alternating projections algorithm is developed, whicHabglly convergentto a locally
optimal solution. Although the algorithm is developed fosgecific application in

microarray data analysis, the approach is applicable terdyipes of structure.

Key words: rank revealing factorization; numerical rank; low-ranlpegximation;
maximum likelihood PCA, total least squares; errors-inialales; microarray data.

1. Introduction

Rank estimation

Consider arm x n real matrixXo with rankrg < min(m,n). A factorizationXy =
CoPo, whereCy is mx rg and Py is rg x n is calledrank revealing Suppose that in-
stead ofXg a matrixX := Xo + E is observed, wherk is a perturbation, e.gE can
represent rounding errors in a finite precision arithmetimeasurement errors in data
acquisition. The rank of the perturbed mat®may not be equal toy. If E is random,
generically,X is full rank, so that from a practical point of view, a nonzeerturba-
tion E makes the matrixX full rank. If, however,E is “small”, in the sense that its

Frobenius normE|[r:= /5™ 5]_; € is less than a constaat(defining the pertur-

bation size), theiX will be “close” to a rankry matrix in the sense that the distance
of X to the manifold of rankg matrices

d(X,rp) :=min X —X||r subjectto rankX) = rg 1)
X
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is less than the perturbation sizeTherefore, provided that the sizeof the perturba-
tion E is known, the distance measwteX,r), forr =1,2,..., can be used to estimate
the rank of the unperturbed matrix as follows

F=argmin{r | d(X,r) <e}.

It is well known that problem (1) has analytic solution innter of the singular
valuesos, .. ., Opin(mn) Of X

d(X,ro) == \/Gr20+1+ et ar%in(m,n)’

and therefore the rank 0§ can be estimated from the decay of the singular valu&s of
(find the largest singular value that is sufficiently smalingared to the perturbation

sizeeg). This is the standard way for rank estimation in numericeddr algebra, where

the estimaté is callednumerical rank of X The question occurs:

Given a perturbed matriX := Xo + E, is the numerical rank oK the
“best” estimate for the rank ofy, and if so, in what sense?

The answer to the above question depends on the type of thelpaionE. If E is

a random matrix with zero mean elements that are normaltyilolised, independent,
and with equal variances, then the estimételefined by (1) is a maximum likelihood
estimator ofXy, i.e., it is statistically optimal. If, however, one or maséthe above
assumptions are not satisfied, is not optimal and can be improved by modifying
problem (1). The objective of this paper is to justify thiatsment in a particular case
when there is prior information about the true matxin the form of structure in
a normalized rank-revealing factorization and the elesefthe perturbatio are
independent but possibly with different variances.

Prior knowledge in the form of structure

In applications often there is prior knowledge about thearhpbed matrixXy
(apart from the basic one th is rank deficient). Whenever available, such prior
knowledge is beneficial to use in the computation of the ditameasurel(X,r).
Using the prior knowledge amounts to modification of prob(&jn For example, com-
mon prior information in image and text classification is negativity of the elements
of Xp, see [7]. In this case, we require the approximaf(oro be nonnegative and in
order to achieve this, we impose nonnegativity of the edtiriaas an extra constraint
in (1). Similarly, in signal processing and system theory ithatrix Xo is Hankel or
Toeplitz structured [11] and the relevant modification ofi§lto constrainX to have
the same structure. In chemometrics, the measuremens ejronay have different
variancesr2v; i, which are known (up to a scaling factor) from the measurersetup
or from repeated experiments, see [17, 9]. Such prior infdion amounts to chang-
ing the cost function|X — X|| to an element-wise weighted norm of the error matrix
X—=X

m n
X = X[l = Wi (X —%ij),
2,2,



where the elements;j of the weight matrixtv € R™" are the inverses of the error
variancessj. In general, either the addition of constraintsyor the replacement of
the Frobenius norm with a weighted norm, renders the modifistéince problem (1)
difficult to solve. A globally optimal solution can no longee given in terms of the
singular values oK and the resulting optimization problem is nonconvex.

Most of the approaches to compute low-rank approximatidh wieighted cost
function and constraints are based on local optimizatiothous, and fall into one of
two main classes:

1. methods based on the variable projections [3], and
2. methods based on the alternating projections.

The alternating projections type algorithms are globatimwergent with linear local
convergence rate [6, 4]. The variable projections typerélyos, when properly im-
plemented, are globally convergent with superlinear lecalvergence rate. This im-
plies that when the initial approximation is sufficientlpse to a local minimum, the
variable projections type algorithms are faster than ttex@éditing projections type al-
gorithms. Numerical results [13], however, suggest thairgrctice, when the initial
approximation is “far” from a local minimum, the two apprb&s are comparable in
efficiency.

In this paper, we use the alternating projections approlaebause of the easier
to modify it for constrained optimization problems. We nitat certain constrained
problems can be treated also using a modification of the barjarojections, see [14,
Chapter 8]. Solving constrained low-rank approximatioolpems via the variable
projections approach will be pursued elsewhere.

Application in bioinformatics
Microarray data analysis

One motivation for our interest in structured factorizattmmes from the analysis
of high throughput gene expression data, measured withoaricy technology, where
the interest is in inferring the regulatory processes. Esgion data correspond to the
average concentrations of messenger RNA molecules in alsafgells. While most
work in the use of microarrays deals with static systemsh agcprofiles of patients
with and without a particular disease, there has been gminterest in the modelling
of time-course data, either in studying the response of garasm to a particular type
of environmental stress, or in steady state dynamical betsasuch as cell-cycle regu-
lation. What motivates us is the last of these, where theasgion data is in the form of
a matrixX, row-wise indexed by the genes in the genome of the orgaiischcolumn-
wise indexed by time. Typical datasets, where periodic biehaas been the subject of
interest, contain two or three periods of the phenomendioyiing some experimental
method to synchronize the cells in a colony. The classicsagata this domain is the
cell-cycle experiments conducted by Spellman et al. [15r&Hour different methods
were used to synchronize cells, followed by measurementiseoéxpression profiles
at a number of equally spaced intervals over two periods. Aemecent study [16]
focused on the regulation of yeast metabolic cycle, andided three periods of cyclic
behavior. Other studies of this nature include the monitpaf Circadean rhythm in
plants and cultured.



Such dynamical behavior in which a large number of genesdrotganism can be
shown to be expressed periodically is regulated by a muchesrsat of regulatory pro-
teins, known as transcription factors. In the regulatioyexst cell cycle behavior for
example, Fourier transform based estimations detect &@fugenes to be regulated
in a cyclic manner. However the number of regulators knoweotatrol this behavior
is less than 30. An important aspect of biology that justifiesneed for model based
inference in this topic is the fact that the measured mRNAilpof the regulators
is not an accurate reflection of their regulatory activitieart of the reason for this is
that transcription factors are usually found in low aburadanin cells, and hence their
measurements are subject to noise. Further, as a resuleobptena known as post-
transcriptional and post-translational regulation megeeRNA levels do not correlate
well with protein levels. This is particularly true for relgtory proteins, and there is
evidence that a significant fraction of cell cycle regulgtiranscription factors in yeast,
for example, are subject to post-transcriptional regoiati

Matrix factorization techniques have been used in the aisbf microarray data in
a number of studies [1, 5, 8, 12]. Alter and Golub [1] seek agpal component pro-
jection to visualize high dimensional gene expression dathshow that some known
biological aspects of the data are visible in a two dimeraisnbspace defined by the
first two principal components. Theetwork component analysisodel uses a factor-
ization of the formX = CP, whereC the connectivity matrix is rich in structure from
prior knowledge of which transcription factors bind to thgstream regions of which
genes. Sanguinetti et al. [12] study a variant of this madel probabilistic state space
formulation and estimate parameters using Bayesian metittithng et al. [2] has de-
veloped a fast computational algorithm to estimate whadlied a network component
analysis model.

Formulation as an approximate low-rank factorization watiuctured factors

The measurements of a microarray experiment are collentadm x n real ma-
trix X—rows correspond to genes and columns correspond to tirneniss The ele-
mentx;j is theexpression levedf theith gene at thgth moment of time. The rank-
of X is equal to the number dfanscription factorsthat regulate the gene expression
levels. In a rank revealing factorizatioh = CP, the jth column ofP is a vector of
intensities of the transcription factors at tinjeand theith row of C is a vector of
sensitivities of théth gene to the transcription factors. For examplegqual to zero
means that thgth transcription factor does not regulate ttregene.

An important problem in bioinformatics is to discover whedrtscription factors
regulate a particular gene and what the time evaluationeofrtinscription factor activ-
ities are. This problem amounts to computing an (approxifattorizatiorCP of the
gene expression level versus time maXix The need of approximation comes from:
1) inability to account for all relevant transcription facs (therefore accounting only
for a few dominant ones), and 2) measurement errors ocguirritne collection of the
data.

Often it is known a priori that certain transcription fact@o not regulate certain
genes. This implies that certain elements of the sengitiaetrix C are known to be
zeros. In addition, the transcription factor activitiee anodeled to be nonnegative,
smooth, and periodic functions of time. Where transcripfactors down regulate a



gene, the elements @f have to be negative to account for this. The constraints (11—
14) in the considered estimation problem (9) (see Sectioen2ppsulate this prior
knowledge.

A factorizationX = CPis nonunique; for any x r nonsingular matrix, we obtain
a new factorizatioiX = CP, whereC :=CT~1 andP = TP. Obviously, this imposes a
problem in estimating transcription factor intensitiesl gene sensitivities from data.
In order to resolve the nonuniqueness problem, we assurniegkaes are known to be
regulated by single transcription factors that are difiéréMloreover, the sensitivities
of these genes to the corresponding transcription facters@malized to ones. The
assumption implies that after reordering of the genes, émsigvity matrix has the

formC = ['C'/ , Wherel; is ther x r identity matrix. This assumption corresponds to
constraint (10) in the estimation problem (9).

In this paper we present an algorithm for approximate lomkractorization with
structured factors and test its performance on syntheta dapaper on its application

to yeast metabolic cycle regulation will be presented elieee.

Notation
= (=) left (right) hand side is defined by the right (left) handesi
A>0 matrix with element-wise nonnegative elements, &g.> 0

AlF = /¥ & Frobenius norm of € R™"
[Allw = /3ijwija] element-wise weighted norm with weight € R™", W > 0

w1
diag(-) form a diagonal matrix out of a vector digg) := [ ]
Wn
vec :R™MM . RMN operator vectorizing a matrix column-wise
vec t:R™— R™N  operator reconstructing the matéxback from ve¢A)
® Kronecker producA ® B := [&;;B]
1
1, = [ } vector withn elements that are all ones
i
e~ N(me,Ve) normally distributed random vector with meag and
variancéve
selector matrix amx n matrix Szeros/ones elements, such tBaf = 1,
1 -1
. . 11
difference matrix D:= [ o ]
o101

2. Statistical model and maximum likelihood estimation problem

Consider the errors-in-variables model
X=Xo+E, where Xo=CoPy, CocR™' PRyeR™" with r<min(mn)
and  ve¢E) ~ N (0,0?diagv)).
(2)
Thetrue data matrix X has rank and the measurement err@psare zero mean, nor-
mal, and uncorrelated, with covariaméva(j,l). The vectorv € R™" specifies the
element-wise variances of the measurement error nfauix to an unknown factar?.



In order to make the parametes and Py unique, we impose the normalization
constraint

o[t

In addition, the bloclC;, of Cy has elements (specified by a selector mefjirqual to
zero

SveqC)) = 0. 4)
The parameter, is periodic with a periodl € N
P=1" ®F, (5)
nonnegative
R >0, (6)

and with smooth rows in the sense that
IPoDIIE <d, (7

whered > 0 is a smoothness parameter.
Define them x n matrix

Wi=vec  (v; 72 .. Vi 2). (8)

The maximum likelihood estimator for the paramet@ssandPy in (2) under assump-
tions (3-7), with known parametersy, S, andd, is given by the following optimization
problem:

minimize overC’, P, X | X—X|3 (cost function) (9)
subject to X =CP (rank constraint)
C= ['c',} (normalization ofC) (10)
SveqC') =0 (zero elements @) (11)
P=1 oPF (periodicity of P) (12)
P>0 (nonnegativity oP) (13)
IPD|E<d (smoothness dP) (14)

The rank and measurement errors assumptions in the modiehpB) the weighted
low-rank approximation nature of the estimation problem1@) with weight matrix
given by (8). Furthermore, the assumptions (3—7) aboutrtfeedata matrix, corre-
spond to the constraints (10-14) in the estimation problem.

3. Computational algorithm

3.1. Algorithm

The alternating projections algorithm, see Algorithm hased on the observation
that the cost function (9) is quadratic and the constraib®s-14) are linear in either



Algorithm 1 Alternating projections algorithm for solving problem (88).

e Find an initial approximationC'©, P'©)),
e Fork=0,1,...till convergence do

1. 'l = argminy |[X —CP||%, subjectto (10-11) with®’ = P'(K)
2. P = argminy |X —CP||3, subjectto (12-14)witlt’ = C'(k+D)

C or P. Therefore, for a fixed value @@, (9—14) is a nonnegativity constrained least
squares problem iR and vice versa, for a fixed value Bf (9—14) is a constrained least
squares problem i6. These problems correspond to, respectively, steps 1 ahth2 o
algorithm. Geometrically they are projections. In the uigheed (i.e.W = 1,1, ) and
unconstrained case, the problem on step 1 is the orthogenjacionX (PPT)~1P"

of X on the span of the rows &, and problem on step 2 is the orthogonal projection
(CTC)~*CTX of X on the span of the column &. The algorithm iterates the two
projections, thus its name—alternating projections.

Notel (Rank deficient factor€@ andP). If the factorP is rank deficient, the indicated
inverse in the computation of the projected ma@ixdoes not exist. (This may happen
when the rank of the approximatiofiif less thanr.) The projectiorC*, however, is
still well defined by the optimization problem on step 1 of #igorithm and can be
computed in closed form by replacing the inverse with theideenverses. The same
is true when the factd? is rank deficient.

Two special cases of the estimation problem of Section 2tadéesd and alternating
projections type algorithms are proposed.

¢ Inthe weighted and unconstrained case, Algorithm 1 is edgit to the MLPCA
algorithm of [17].

¢ In the weighted case with nonnegativity constraint (13dkithm 1 is equiva-
lent to the modified MLPCA algorithm of [18].

In Appendix A we describe the implementation of Algorithmat the general case of
inhomogeneous weights and constraints (10-14). Next, ate sbnvergence proper-
ties of Algorithm 1.

3.2. Convergence properties

Theorem 2. Algorithm 1 is globally and monotonically convergent in thejw norm,
i.e., it X0 := cWpK js the approximation on the kth step of the algorithm, then

f(k):=[X=XW|G =, ask— o. (15)

Assuming that there exists a solution to the problem (9-hd)any (locally optimal)
solution is unique (i.e., it is a strict minimum), the sequesX®, C¥, and P¥ con-
verge element-wise, i.e.,

XW - x*, cW¥—c, and PY P, ask—w, (16)



where X' := C*P* is a (locally optimal) solution of (9—14).

Proof. First, we show that the sequen)?é@‘), fork=1,2,..., converges monotonically
in the || - [[w norm. On each iteration, Algorithm 1 solves two optimizatjroblems
(steps 1 and 2), which cost function and constraints coeveiith the ones of prob-
lem (9-14). Therefore, the cost functigix — X(¥||3, is monotonically nonincreas-
ing. The cost function is bounded from below, so that the eagel|X — X3, for
k=1,2,...,is convergent. This proves (15).

Although,X® converges in norm, it may not converge element-wise. A sefftc
condition for element-wise convergence is that the undeglpptimization problem
has a solution and it is unique [4, Theorem 5]. The elemesewonvergence ot
and the uniqueness (due to the normalization conditiorofajje factor<C®) andP®),
givenX ¥, implies element-wise convergence of the factor sequed®esandP® as
well. This proves (16).

In order to show that the algorithm convergence to a minimwintpof (9-14),
we need to verify that the first order optimality conditions {9—14) are satisfied at a
cluster point of the algorithm. The algorithm converges thuster point if and only if
the union of the first order optimality conditions for the plems on steps 1 and 2 are
satisfied. Then

P/(kfl) _ P/(k) — P/* and C/(kfl) _ C/(k) - C/*.

From the above conditions for a stationary point and the &magjans of the problems
of steps 1 and 2 and (9-14), it is easy to see that the unioredirtt order optimality
conditions for the problems on steps 1 and 2 coincides wetfitet order optimality
conditions of (9-14). O

4. Simulation results

In this section, we show empirically that exploiting priardwledge ((8) and as-
sumptions (3—-7)) improves the performance of the estimatoe data matrix is gen-
erated according to the errors-in-variables model (2) wahametersn= 100,n = 6,
andr = 2. The true low-rank matriXo = CoPy is random and the paramet€&sandPy
are normalized according to assumption (3) (so that theymigue). For the purpose
of validating the algorithm, the elemetimn, is set to zero but this prior knowledge is
not used in the parameter estimation.

The estimation algorithm is applied &= 100 independent noise realizations of
the dataX. The estimated parameters on itferepetition are denoted iy, P' and
X' :=C'P'. The performance of the estimator is measured by the fatiguaiverage
relative estimation errors:

10— X2 ICo — C'|I2 IPo— P12

NZI%M’ NZIMM’ NZI%M’

and e =— N Z|cmn|



For comparison the estimation errors are reported for therémk approximation
algorithm, using only the normalization constraint (3)wasdl as for the proposed al-
gorithm, exploiting the available prior knowledge. Thefeiiénce between the two
estimation errors is an indication of how important is thepknowledge in the esti-
mation.

Lack of prior knowledge is reflected by specific choice of tinedation parameters
as follows:

homogeneous errors  «— W = ones(m,n)
no periodicity — 1=1

no zeros irC’ — S=]

no sign constraint o” «+ nonneg=0

We perform the following experiments:

1. W =rand(m,n), | =1,S=[|, nonneg =0
2. W =ones(m,n),| =3,S=], nonneg=0
3. W=ones(m,n),| =1,S#]|
4. W =ones(m,n), | =1,S=], nonneg =1

]
]
|, nonneg =0
]
5. W =rand(m,n),| =3,S# [], nonneg=1

which test individually the effect of (8), assumptions @), (6), and their combined
effect on the estimation error. Figures 1-5 show the averggéve estimation errors
(solid blue lineis the estimator that exploits prior knowledge and dasteedlineis
the estimator that does not exploit prior knowledge) verttigsmeasurement noise
standard deviation, for the five experiments. The vertical bars on the plotsalige
the standard deviation of the estimates. The results itelitet main factors for the
improved performance of the estimator are:

1. assumption (5) — known zeros in t8§ and
2. (8) — known covariance structure of the measurement noise

MATLARB files reproducing the numerical results and figuresgamted in the paper are
available from:ht t p: / / users. ecs. soton. ac. uk/im factorize.tar
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Figure 1: Effect of weighting (solidlue line— exploiting prior knowledge, dasheed line— without
exploiting prior knowledge, vertical bars — standard dewizs).
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5. Conclusions

The low-rank approximation accuracy improves when therprisr knowledge
about the to-be-estimation data matrix or the perturbatemd this prior knowledge
is used in the approximation problem. Using the prior knagk changes the basic
low-rank approximation problem in the Frobenius norm to &eed constrained low-
rank approximation problem. Unfortunately, the lattertgemn is, in general, difficult
nonconvex optimization problem, while the former is soleah terms of the singular
value decomposition. We adopted a solution approach fomesighted constrained
low-rank approximation problem that is based on an alt@rgairojection algorithm.
The alternating projection algorithm is globally converg® a local solution, the con-
vergence is monotonic, and has linear local rate. An integsesearch question for
future research is to use first and second derivative infooman order to speed up
the convergence (e.g., achieve superlinear converget&e Irmthe specific estimation
problem considered in the paper, the simulation resultgesighat the improvement
in the estimation accuracy is mainly due to known zeros irctofeof the normalized
rank revealing factorization and the known covariancecstme of the measurement
noise.
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A. Implementation of Algorithm 1

Initial approximation. For initial approximationC'®,P"©) we choose the normal-
ized factors of a rank revealing factorization of the sanf of (1). LetX =U3V "
be the singular value decompositionfind define the partitioning
r n—r
rm-—r r n—r

2; 0 r
U=:[U1 Uy, z:[ol Zz] s V= V)

Furthermore, Ie{ﬂ;ﬂ :=U, withUq; € R™". Then

cO:=uyuit and PO:=uysvT

define the Frobenius-norm optimal unweighted and uncansdow-rank approxi-

mation
S |
X0 = [0 PO

More sophisticated choices for the initial approximatibatttake into account the
weight matrixW are described in [10].

Separable least squares problem for @\ the weighted case, the projection on step 1
of the algorithm is computed separately for each opaf C. Letx; be theith row of X
andw; be theith row of W. The problem

minimizez  |[X —CP||3, subjectto (10-11)
is equivalent to the problem
minimize; ||(x —ciP)diagwi)||3 subjectto (10-11) fori=1,...,m. (17)
The projection on step 2 of the algorithm is not separabletdw®nstraint (14) (see

below).
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Taking into account constraint (10)Since the first rows of C are fixed, we do not
solve (17) fori =1,...,r, but define

c:=6¢', for i=1,...,r
whereg is theith unit vector (théth column of the identity matrik).

Taking into account constraint (11).et § be a selector matrix for the zeros in tiie
row of C
SveqC)=0 <= ¢S=0,fori=r+1,....m

(Ifthere are no zeros in thth row, thenS is skipped.) Théth problemin (17) becomes
minimize;, ||(x —ciP)diagwi)||3 subjectto ¢S =0. (18)

Let the rows of the matri®; form a basis for the left null space &f. Thenc;§ =0 if
and only ifc; = zN;, for certainz, and problem (18) becomes

minimize,  ||(x —zNiP) diag(w)||3.
Therefore, the solution of (17) is
¢ =xP N (NPPTN)IN;.

Note3. Itis not necessary to explicitly construct the matri€eand compute basiy;

for their left null spaces. Sinc§ is a selector matrix, it is a submatrix of the identity
matrix|,. The rows of the complementary submatrixoform a basis for the left null
space of5. This particular matriX; is also a selector matrix, so that the prodnigd®
need not be computed explicitly.

Taking into account constraint (12\We have,

X-CP=X-C(/®P)=[X -+ X|-C[P - P]

X1 C
=|:|-|:|P=X~-(4®C)P =X"-CP.

: :
X c c

Wi

LetW' := | . |, whereW =: Wy --- Wh]. Then the problem
W

minimize || X —CP||3, subjectto (12-14)
is equivalent to the problem
minimize» | X' —C'P||2, subjectto (13-14)

Taking into account constraint (13)Adding the nonnegativity constraint changes the
least squares problem to a nonnegative least squares problech is a standard con-
vex optimization problem for which robust and efficient meth and software exist.
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Taking into account constraint (14)The problem
minimize> |[X —CP||2, subjectto ||[PD||2 <&
is equivalent to a Tychonov regularized least squares enobl
minimize>  ||X —CPJ|3, + y||PDJ2

for certain regularization parametgrThe latter problem is equivalent to the standard
least squares problem

i, [[#225) ][22

2

wherep =vecP, ¢ :=1®C,andZ :=D' ®I.

Stopping criteria. The iteration is terminated when the following stoppindesia are
satisfied

o [COFDPED P |y, /[CEFDPED |y, < gy,
o /(€Y — )Py Ok DDy < g, and
° Hc(k+1)(P(k+l) _ P(k))llw/llc(k+l)P(k+l)HW < &p.

Hereex, €p, andec are user defined relative convergence toleranceX fét, andC,
respectively.
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