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Abstract
Measurement error occurs in many biomedical fields. The challenges arise when errors are
heteroscedastic since we literally have only one observation for each error distribution. This paper
concerns the estimation of smooth distribution function when data are contaminated with
heteroscedastic errors. We study two types of methods to recover the unknown distribution function:
a Fourier-type deconvolution method and a simulation extrapolation (SIMEX) method. The
asymptotics of the two estimators are explored and the asymptotic pointwise confidence bands of
the SIMEX estimator are obtained. The finite sample performances of the two estimators are
evaluated through a simulation study. Finally, we illustrate the methods with medical rehabilitation
data from a neuro-muscular electrical stimulation experiment.
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1. Introduction
Many practical problems involve estimation of distribution functions or density functions from
indirect observations. For example, in low level microarray data from either the complementary
DNA (cDNA) microarray or the Affymetrix GeneChip system, each observation is an original
signal coupled with a background noise. To obtain an expression measure, the goals often
include developing better statistical tools or enhancing algorithms for background correction
so that the disease genes can be detected accurately and efficiently. In medical image analysis,
observable outputs are often blurred images. In astronomy, due to great astronomical distances
and atmospheric noise, most data are subject to measurement errors. Statistical analyses that
ignore measurement errors could be misleading. Measurement error model is an active, rich
research field in statistics. There is an enormous literature on this topic in linear regression, as
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summarized by Fuller (1987) and in nonlinear models, as summarized by Carroll et al.
(2006). In this paper, we investigate estimation methods of smooth distribution function from
data contaminated with heteroscedastic measurement errors.

Nonparametric kernel type methods have been widely used in estimating density functions and
their derivatives or in regression. Kernel smoothing is also an important tool for distribution
function estimation. The kernel estimate of a distribution function, first introduced by Nadaraya
(1964), has been investigated by many authors (Azzalini, 1981; Reiss, 1981; Sarda, 1993;
Bowman et al., 1998). The kernel smooth estimator, which has good statistical properties, can
be expressed as

(1)

where X1, X2, …, Xn are independent random variables with the common distribution function
FX and the density function fX. The function L is defined from a kernel K as ,
where K(·) is some bounded density function with K(t) = K(−t) for all t ∈ ℝ and hn > 0 is the
smoothing parameter with hn → 0 and nhn → ∞ as n → ∞. The conventional empirical
distribution function (EDF) can be obtained by letting hn → 0, when L(·) is replaced by an
indictor function I(Xi ≤ x). It is noted that F̂ in (1) can be written as

where f̂ is the well-known kernel density estimator.

In real data applications, there are many examples where observable data are contaminated
with measurement errors and it is not realistic to assume that the errors are homoscedastic. The
measurement process might be subjective and differs among all individuals. Fuller (1987) had
an early consideration of this problem. Cheng and Riu (2006) discussed the point estimation
of the parameters in a linear measurement error (heteroscedastic errors in variables) model.
Kulathinal et al. (2002) considered estimation problem of an errors-in-variables regression
model when the variances of the measurement errors vary between observations in the analysis
of aggregate data in epidemiology. Sun et al. (2002) studied a measurement error model with
application to astronomical data that came with information on their heteroscedastic errors. In
the research of density estimation with measurement errors, the literature is vast; see for
example, Fan (1991); Zhang (1990); Stefanski and Carroll (1990); Carroll and Hall (1989);
Delaigle and Gijbels (2004). They focused on the study of the deconvoluting kernel density
estimation through an inverse Fourier transform with the case of homoscedastic errors. Until
very recently, Delaigle and Meister (2008) studied the deconvoluting kernel estimator under
the heteroscedastic setting. Staudenmayer et al. (2008) addressed a different type of model,
where the observable data with heteroscedastic measurement errors were assumed normally
distributed. A Monte Carlo Markov chain and a random-walk Metropolis-Hastings algorithm
were proposed to estimate the unknown density.

Estimating cumulative distribution functions with measurement errors was also of interest. The
sample cumulative distribution function is a nonlinear function of data and is biased when it
is estimated ignoring measurement errors. Stefanski and Bay (1996) studied the estimation of
a discrete population cumulative distribution function when data were contaminated with
measurement errors. Using the method of simulation extrapolation (SIMEX) (Cook and
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Stefanski, 1994; Stefanski and Cook, 1995), they proposed a bias-adjusted estimator that
reduced much of the bias. Later, Cordy and Thomas (1996) considered an expectation-
maximization algorithm for estimating a distribution function when data were from a mixture
of a finite number of known distribution. Nusser et al. (1996) presented a method for estimating
distributions with additive normal errors with application to a study of daily dietary intakes.
Their approach differed from the kernel estimators in that they assumed that a transformation
existed such that both the original observations and the measurement errors were normally
distributed. Most recently, Hall and Lahiri (2008) studied Fourier-type estimation of
distributions, moments, and quantiles with homoscedastic errors.

Challenges of estimation problems arise when errors are heteroscedastic where we literally
have only one observation for each error distribution. In this paper, we study two types of
methods to recover the unknown smooth distribution function: a Fourier-type deconvolution
method and a SIMEX method, when data are contaminated with heteroscedastic errors. In
section 2, we first extend Hall and Lahiri’s (2008) Fourier-type estimator to the case of
heteroscedastic errors and then generalize the work of Stefanski and Bay (1996) to estimate
the smooth distribution function with heteroscedastic errors using SIMEX. The asymptotics
of the two estimators are studied and the asymptotic pointwise confidence bands of the SIMEX
estimator are obtained. In section 3, we conduct a simulation study to compare the finite sample
performances of the two estimators. In section 4, we apply our proposed method to real data
in a medical rehabilitation study. In section 5, we close this paper with a discussion.

2. Estimation methods
To investigate the estimation of the smooth distribution function for data contaminated with
heteroscedastic errors, we first consider a general heteroscedastic measurement error model.
Let Y1, ···, Yn be an observed random sample such that

(2)

with the measurement error Uj independent of Xj. Each Uj has its own density fUj, j = 1, ···, n,
where fU1, ···, fUn are from a same distributional family, but the measurement error
distribution’s parameters vary with the observation index. If fU1 = ··· = fUn = fU, the errors are
said to be homoscedastic; otherwise, the errors are heteroscedastic. One is to recover the
unknown distribution function  of the unobserved continuous random
variable X, where fX is the density function of X.

2.1. Fourier-type Deconvolution
Denote the characteristic functions of X and Uj by φX and φUj (j = 1, ···, n), respectively. Through
an inverse Fourier transform, Delaigle and Meister’s (2008) deconvolution estimator for the
density with heteroscedastic errors can be written as a form of a kernel-type density estimator,

(3)

where
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and φK is the characteristic function of a symmetric probability kernel, K(·), with a finite
variance. It is noted that f̂X,Fourier in (3) becomes the conventional deconvoluting kernel
estimator (Stefanski and Carroll, 1990) for homoscedastic errors when fU1= ··· = fUn = fU.

Similarly to Hall and Lahiri (2008), our distribution estimator F̂X,Fourier in the case of
heteroscedastic errors is defined as simply the integral of f̂X,Fourier over (−∞, x]. Let

By integrating f̂X,Fourier in (3), we have

(4)

We now study asymptotic properties of our estimator. Due to the nature of the deconvolution
kernel estimation, similarly as defined in Fan (1991), we consider a slightly different definition
of the distribution function estimator as in the following form to derive the asymptotics. For a
sequence of positive numbers Mn → ∞ as n → ∞,

Here we included the terms about Mn in the uniform bound. Conventionally, Mn can be selected
to be proportional to , similar to that discussed in Fan (1991). Note that the bandwidth hn
depends on n when studying the asymptotics. We assume the following conditions:

1. For an integer m ≥ 0, 0 < α ≤ 1,

2. K(x) < D · |x|−m−2 for all x;

3. φK(t) has support [−1, 1];

4. Condition C of Delaigle and Meister (2008).
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The asymptotic behavior of the estimator is described in the next theorem.

Theorem 1—Assume Conditions (1) – (4). Then, for x0 ∈ ℝ with specifically chosen
sequence of numbers Mn → ∞ and bandwidth hn → 0, we have

Remark 1—The last term of the upper bound reflects the effect of the heteroscedastic
measurement errors to the estimation of the unknown distribution function. The smoothness
of the measurement error distributions influence the convergence rate of the distribution
function estimation, as discussed in Fan (1991). In the above theorem, we present a general
asymptotic result of our estimator. The specific convergence rate could be obtained similar as
in Hall and Lahiri (2008), where they classified the distribution functions of the unobservable
random variable and the measurement errors into eight classes.

2.2. SIMEX
SIMEX is a “jackknife”-type bias-adjusted method that has been widely applied in regression
problems with measurement errors. Stefanski and Cook (1995) applied the SIMEX algorithm
to parametric regression problems. Staudenmayer and Ruppert (2004), Carroll et al. (1999)
discussed the nonparametric regression in the presence of measurement errors using SIMEX
method. Stefanski and Bay (1996) studied SIMEX estimation of a finite population cumulative
distribution function when sample units are measured with errors. Now we generalize Stefanski
and Bay’s (1996) method to estimate the smooth distribution function with heteroscedastic
Gaussian errors.

Under the model setting (2), we further assume , for j = 1, ···, n. Typically, σj can
be obtained from auxiliary data. By the general SIMEX algorithm, estimators are re-computed
from a large number B of measurement error-inflated pseudo data sets, , b = 1, ···,
B, with

where Zjb are independent, standard normal pseudo-random variables, and λ ≥ 0 is a constant
controlling the amount of added errors.

The smooth distribution function estimator from the bth variance-inflated data  is
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where L(·) is defined from a kernel K(·) as  and K(·) is a symmetric kernel with
a finite variance such that ∫ K(t)dt = 1, ∫ tK(t)dt = 0, and ∫ t2K(t)dt < ∞.

In the general SIMEX algorithm, the simulation and estimation steps are repeated a large
number of times, and the average value of the estimators for each level of contamination is
calculated by,

(5)

However, it is noted that Ujb = σjZjb, where Zjb are independent, standard normal random
variables. With a fixed j (j = 1, ···, n), let h̃j = h/(σjλ1/2), we have

Notice that the smooth distribution estimator is asymptotically unbiased and has the same
variance as the EDF. It uniformly converges to the true distribution function with probability
one (Nadaraya, 1964). Hence, with a fixed j, conditional on Yj,

where Φ(·) denotes the distribution function of the standard normal distribution.

Therefore, the simulation step can be bypassed in the SIMEX algorithm for the distribution
estimation. We use Ĝ* in (6) to replace Ĝ in (5) for our estimation,

(6)

The above equation has some similarity with equation (3) in Stefanski and Bay (1996). We
further calculate the quantity in (6) for a pre-determined sequence of λ, i.e. 0 ≤ λ1 < λ2 < ··· <
λl. The success of SIMEX technique depends on the fact that the expectation of Ĝ* is well-
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approximated by a nonlinear function of λ (Carroll et al., 2006). Here we consider the
conventional quadratic function of λ, i.e.

It is indeed a good approximation when  is not very large. The SIMEX estimator for
the unknown distribution function FX without measurement error can be obtained by the
extrapolation step, i.e. letting λ → −1,

(7)

The following proposition shows that, in the case of heteroscedastic Gaussian errors, our
estimator (7) is an asymptotically unbiased estimator for the unknown distribution function
FX, if the extrapolant is exact.

Proposition 1—Assume (a) the polynomial extrapolant is exact, (b) the distribution function

FX(x) of unobserved X1, ···, Xn has continuous fourth derivative, and (c)  for all j and
C0 < ∞. Then, the estimator (7) is an asymptotically unbiased estimator of FX(x). The
corresponding asymptotic variance is FX(x)(1 − FX(x))/n, which can be consistently estimated
by F ̂X,SIMEX(x)(1 − F ̂X,SIMEX(x))/n.

Remark 2—Under realistic applications, the assumption (a) in proposition 1 will only be
approximately true. See for instance Carroll et al. (1999); Staudenmayer and Ruppert (2004).
As we show in the equation (8) in Appendix, the expectation of Ĝ*(x, λ) is a quadratic function

of λ at a given x plus the approximation error term, . The success of the SIMEX
method in practice depends on the fact that E[Ĝ*(x, λ)] can well-approximated by a quadratic
function of λ.

From proposition 1, the estimated asymptotic pointwise confidence bands when data are
contaminated with heteroscedastic Gaussian errors have the form

where c is chosen as the (1− α/2) quantile of the standard normal distribution.

Remark 3—Due to the heterogeneity of measurement errors, the variance estimation method
in Stefanski and Bay (1996) can not be applied to our proposed estimator F̂X,SIMEX(x).
However, the variance of F̂X,SIMEX(x) can be well approximated by the variance of Ĝ*(x, λ)
as λ → −1. The latter can then be approximately consistently estimated. The naive confidence
bands therefore can be constructed. The confidence bands based on the aforementioned
variance estimation are simulated. It almost coincides the nonparametric bootstrap confidence
band. This variance estimation of the distribution function can also be applied to the case of
homoscedastic measurement errors.
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Remark 4—In the SIMEX distribution estimation, it is possible that the estimated values are
out of [0, 1] in tail regions. This situation is similar to many classes of kernel methods, such
as wavelet density estimators, sinc kernel estimators, and spline estimators. The disadvantage
will not affect the global performance of our estimation. A simple correction version of our
SIMEX estimator in practice is

3. Numerical Study
3.1. Empirical choice of smoothing parameters

In the Fourier-type method, we consider a modified “plug-in” approach to select the bandwidth
hn. Fan (1992) proposed a plug-in asymptotical bandwidth for the density estimation with
homoscedastic errors. Delaigle and Gijbels (2004) suggested a “normal reference” approach
and Hall and Lahiri (2008) discussed it for distribution estimation with homoscedastic errors.
Here we adopt Hall and Lahiri’s (2008) “normal reference” bandwidth approach for the case
of heteroscedastic errors. Specifically, we shall temporarily take fX be a normal 
density; and calculate an estimator  of  as the variance of the data Y minus , where

.

The SIMEX estimator requires specification of λ1, ···, λl. They are not the smoothing parameters
in the sense of the conventional kernel estimation. They act as “design points” of our estimator,
which is similar to the knots in a spline (Kooperberg and Stone, 1992). So, the choice of λ1,
···, λl is not as sensitive as the bandwidth in density estimation is. Based on our extensive
simulations, our experience suggests that the number of values, l, is not critical and neither is
that of λl if λ1 is determined. Note that σjλ1/2 in (6) has some similarity to a bandwidth. Our
proposed rule-of-thumb choice of λ1 can be obtained by solving the equation

where ĥrot,Y is the Silverman’s rule-of-thumb bandwidth (Silverman, 1986) based on the

observed data Y and  is a coefficient to adjust the effect of measurement
errors. The sequence λ1, ···, λl is then taking equally-spaced values over the interval [λ1, 3 +
λ1] with l = 50.

3.2. Finite-sample performance
We now investigate the finite sample performances of the Fourier-type estimator and the
SIMEX estimator via a simulation study. Our study involves three types of target distributions:
(1) X ~ N(0, 1), (2) X ~ 0.5 N(−3, 1) + 0.5 N(3, 1), and (3) X ~ Γ(2, 1). From each of these
distributions, 500 samples of size n = 50, 100, and 500 are generated, each of which is then
contaminated by heteroscedastic errors. The measurement errors are generated from
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, where σj (j = 1, ···, n) are generated from U(a, b) and (a, b) are chosen to be (0.4, 0.6),
(0.8, 1), respectively.

To assess the quality of the smooth distribution function estimators, we use the integrated
squared error (ISE) criterion:

We compare four estimators in the study: the Fourier-type estimator; the SIMEX estimator;
the naive estimator, i.e. the smooth distribution estimator of Y where measurement errors are
ignored; and the smooth distribution estimator from the uncontaminated sample X.

Table 1 summarizes the results of the average of the 500 ISEs for different estimators under
different simulation conditions. The simulation results show that both the Fourier-type
estimator and the SIMEX estimator perform much better than the naive estimator in terms of
the ISE criterion. The ISEs for the Fourier-type method and the ISEs for the SIMEX method
become smaller and closer to the ISEs from the uncontaminated sample when sample sizes
become larger. We also note that the ISEs are larger at the case of σU ~ U(0.8, 1) than those at
the case of σU ~ U(0.4, 0.6) under the same simulation conditions. This is due to the level of
difficulty of deconvolution. Comparing the Fourier method and the SIMEX method, we find
that SIMEX estimator performs better than the Fourier method when the sample sizes are small
and error variances are large. They become very close as sample size is sufficiently large. This
is not surprising because the converge rate is slow for the Fourier method while the SIMEX
method is fast when the polynomial extrapolant is accurate.

Figure 1 allows us to display and compare estimated curves visually. In the upper plot, the true

distribution is standard normal, N(0, 1). The measurement errors are generated from 
and σj ~ U(0.4, 0.6), j = 1, ···, n with sample size n = 500. The solid line is the smooth distribution
estimator from X; the dashed line is the SIMEX estimator; the dotted line is the Fourier
estimator; and the dot-dashed line is the naive estimator. Both the Fourier estimator and the
SIMEX estimator give very close results. They recover the true distribution accurately from
the sample Y, while the naive estimator is far from the true distribution functions. In the lower
plot, the true distribution is a normal mixture 0.5 N(−3, 1) + 0.5 N(3, 1). The measurement

errors are generated from  and θi ~ U(0.8, 1), j = 1, ···, n with sample size n = 500.
Despite of the complexity of the true distribution and measurement errors, we see that both the
Fourier method and the SIMEX method perform well in recovering the true distribution
function.

To investigate the performance of the estimated asymptotic confidence bands with the SIMEX
method derived in the last section, we compare them with the nonparametric bootstrap
confidence bands and the estimated confidence bands from the uncontaminated sample X.
Figure 2 shows a simulated example of the SIMEX estimate and three different confidence
bands of the distribution function F(x). The true distribution is a normal mixture 0.5N(−3, 1)

+ 0.5N(3, 1) and the measurement errors are generated from  and σj ~ U(0.8, 0.9), j =
1, ···, n with sample size n = 500. The solid lines are the SIMEX estimate and its 95% associated
asymptotic confidence bands from contaminated sample Y. The dashed lines are the
nonparametric bootstrap confidence bands from Y. The number of bootstrap replicates is 1000.
The dotted lines are the estimated confidence bands from the uncontaminated sample X. The
estimated asymptotic confidence bands are nearly identical with the nonparametric bootstrap
confidence bands and are very close to the the estimated confidence bands from
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uncontaminated sample except in the tail areas. The asymptotic estimates of confidence bands,
hence, are recommended due to their simplicity and computational easiness.

4. A real data application
Spinal cord injury (SCI) is damage to the spinal cord often due to traumatic accident, resulting
in upper and lower motor neuron lesions. It typically leads to paralysis and loss of sensation
in parts of the body controlled through the spinal cord below the level where the injury occurred.
All individuals with SCI, and particularly those with complete lesions, are considered to be at
high risk of pressure ulcer development throughout their lifetime. Pressure ulcers are areas of
damaged skin and tissue that develop when sustained pressure occurs. Traditionally, techniques
to reduce pressure ulcer incidence have focused on reducing extrinsic risk factors. These
techniques include providing cushions to improve pressure distribution. Another approach is
educating individuals on the importance of regular pressure relief procedures. Neuro-muscular
electrical stimulation (NMES) is the application of electrical stimuli to a group of muscles,
which is a new clinic tool for pressure ulcers to produce beneficial changes at the user/support
system interface by altering the intrinsic characteristics of the user’s paralyzed tissue itself
(Bogie et al., 2006, 2008).

The primary goal of the NMES study at Cleveland FES center was to investigate the distribution
of pressure intensities for each patient under different clinical conditions such as before and
after NMES treatment. Pressure intensity data at the seating interface for each patient were
recorded by using the Tekscan advanced clinseat pressure mapping system (Tekscan, Inc.).
The seating interface was divided as a 48 × 42 matrix. The pressure intensity of each element
was measured simultaneously. Figure 3 displays an example of pressure intensity data in the
NMES study. Pressure intensities at the seating area for one subject correspond to color-scale
rectangular segments in the image. The color bar indicates the mapping from data values to
colors. However, the outcomes of pressure intensities are subject to measurement errors.
Measurements were taken at several different times for a patient, resulting in replicate
measurements of pressure intensity maps. It is reasonable to assume that the observable
intensities are contaminated with heteroscedastic Gaussian errors at the seating area. From the
replicate measurement data, we are able to estimate the heteroscedastic variances of
measurement errors for each active location. Hence, the fundamental statistical question is how
to estimate the unobserved distribution of pressure intensities from the data contaminated with
errors. In this example, our pressure data contain total 1518 activated observations. The
pressure intensities with measurement errors have mean 42.99 and standard deviation 16.73.
The range of the observed intensities is from 11.0 to 120.0. The heteroscedastic standard
deviations of measurement errors vary from 6.32 to 8.01.

We conduct the analysis using both the Fourier-type and the SIMEX methods for the data from
the NMES study. Figure 4 displays the smooth distribution estimation of pressure intensities
in the single case study. The solid line is the estimated distribution function by the SIMEX
method and the dotted line is the estimate by the Fourier-type method, while the dashed line
is the estimated distribution function by the naive method where measurement errors are
ignored. The recovered function shows asymmetric features. Both the Fourier-type estimator
and the SIMEX estimator obtain coincident results and there is only a slight difference at the
left tails. The curve for the naive estimator does not fall within the confidence region of the
SIMEX estimator. The example demonstrates that correcting the measurement errors is critical
in the statistical analysis. After recovering the distribution function, we will be able to make
further statistical inferences, such as comparing two recovered distribution functions under
different clinical treatments.
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5. Discussion
We studied two bias-correction methods to estimate smooth distribution function for the data
contaminated with heteroscedastic errors. The Fourier-type method was generalized from the
conventional deconvolution kernel method (Hall and Lahiri, 2008), which can be applied to
any arbitrary error distributions. The SIMEX method, extending the Stefanski and Bay’s
(1996) work, was easy to be implemented and computationally fast due to the fact that the
simulation step was bypassed. As shown in the simulation results, both methods allowed us to
recover accurately the true distribution function from a contaminated sample when the sample
size was large. However, the SIMEX method worked better than the Fourier-type method when
sample size was small and the variances of measurement errors were large. The asymptotic
variance of the SIMEX estimator was obtained and the simulation showed that the native
estimate of the asymptotic confidence bands performed very well. Thus, applying the SIMEX
method in real applications would be attractive.

We addressed in section 2 that the success of the SIMEX method depended on the fact that the
expectation of Ĝ*(x, λ) was well-approximated by a quadratic function of λ for a small

. How large should the error level be for the SIMEX method to be feasible? With a
moderate sample size, our simulations suggested that max(σj) < 1 could work adequately well
for the three special cases considered here. For other cases, more simulations and study would
be needed in order to answer the above question.

The SIMEX method we discussed only dealt with the case of the Gaussian errors, while the
Fourier-type method could work with a large classes of errors including both super-smoothed
errors and ordinary-smoothed errors as defined by Fan (1991). Indeed, the SIMEX method
could also be applied to the case of exponential errors. Sometimes, measurement errors only
could be positive in medical applications. An exponential distribution, as a non-zero mean,
skewed distribution, was a common assumption in those studies (Ballico, 2001; Savin, 2000).
We noticed that, however, the SIMEX estimator in the case of exponential errors was not
asymptotically unbiased even if the polynomial extrapolant was exact. A natural idea was to
apply an extra smoothing step (i.e. smoothing splines) on F̂X,SIMEX(x) to reduce the bias in the
estimation. Our extended simulation study showed that the extra smoothing step made the
SIMEX estimator for exponential errors surprisingly well to recover the true distribution.

As one of reviewers pointed out, it would be interesting to compare the performances of our
estimators with (homoscedastic) estimators that heteroscedastic measurement error variances
were replaced by a constant measurement error variance (the average of heteroscedastic
variances). Our preliminary simulation showed that the degree of variation of heteroscedastic
measurement error variances affected the estimators using the constant variance. A more
comprehensive study of the model misspecification problem for both density and distribution
estimation could be done in our future research.

The research of the confidence bands for the Fourier-type method remained as an open problem.
Bissantz et al.’s (2007) nonparametric confidence intervals in deconvolution density estimation
was relevant where they only focused on the homoscedastic and ordinary-smoothed errors.
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Appendix

Proof of Theorem 1
Under the regularity conditions (1) ~ (4), for x0 ∈ (−∞,∞) with specifically chosen sequence
of numbers Mn → ∞ and bandwidth hn → 0, the bias of F̂n,Fourier(x0) is

The norm of the bias is then

It is uniformly bounded from above by

On the other hand, the variance of F̂n,Fourier(x0) is
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which is uniformly bounded from above by

Thus, the conclusion follows.

Proof of Proposition 1
Under the conditions (a) ~ (c),

where Z is a standard normal random variable. By Lebesgue dominated convergence theorem,
limλ→−1 E [Ĝ*(x, λ)]= F(x).

Using Taylor expansion, if,  is small, the above expectation can be written as

(8)

Wang et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hence the expectation of Ĝ*(x, λ) is well-approximated by a quadratic function of λ at a given

x with the approximation error . i.e. E[Ĝ*(x, λ)] ≈ β0 + β1λ + β2λ2.

Therefore,

By analogous argument as above, the variance of Ĝ*(x, λ) is

where V is a standard normal random variable,

which has standard normal distribution. W is a standard normal random variable, independent
of V.

By Lebesgue dominated convergence theorem,

thus, it can then be estimated by F̂X,SIMEX(x)(1 − F̂X,SIMEX(x))/n. The proof is complete.
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Figure 1.
Distribution estimation for data contaminated with heteroscedastic errors: In the upper plot,

the true distribution is standard normal, N(0, 1). The measurement errors are from  and
σj ~ U(0.4, 0.6), j = 1, ···, n with sample size n = 500. In the lower plot, the true distribution is

a normal mixture 0.5N(−3, 1) + 0.5N(3, 1). The measurement errors are from  and σj
~ U(0.8, 1), j = 1, ···, n with sample size n = 500. Solid line – the smooth distribution estimator
from X; dashed line – the SIMEX estimator; dotted line – the Fourier estimator; dot-dashed
line – the naive estimator.
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Figure 2.
The SIMEX estimator and its associated 95% confidence bands of the distribution function:
the true distribution is normal mixture 0.5N(−3, 1) + 0.5N(3, 1). The measurement errors are

from  and σj ~ U(0.8, 0.9), i = 1, ···, n with sample size n = 500. Solid line – the SIMEX
estimator and its associated asymptotic confidence bands; dashed line – the nonparametric
bootstrap confidence bands; dotted line – the estimated confidence bands from uncontaminated
sample X.
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Figure 3.
An example of pressure intensity data at the seating interface for one subject: each pressure
intensity at the seating area corresponds to a color-scale rectangular segment in the image. The
color bar indicates the mapping from intensity values to colors.
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Figure 4.
Smooth distribution estimation of pressure intensities in the NMES study. Three estimators
are considered here: the SIMEX estimator (solid line); the Fourier-type estimator (dotted line);
the Naive estimator, i.e. ignoring the measurement errors (dashed line). The gray region is the
95% confidence region of the SIMEX estimator.
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