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Abstract

We introduce robust regression-based online filters for multivariate time series and
discuss their performance in real time signal extraction settings. We focus on methods
that can deal with time series exhibiting patterns such as trends, level changes, outliers
and a high level of noise as well as periods of a rather steady state. In particular, the
data may be measured on a discrete scale which often occurs in practice. Our new filter
is based on a robust two-step online procedure. We investigate its relevant properties
and its performance by means of simulations and a medical application.

Key words: Multivariate time series, signal extraction, robust regression, online
methods

1 Introduction

In industrial and medical process control but also in economics often multivariate
variables are recorded over time, where the univariate components may be dy-
namically dependent. Such time series are often non-stationary and they might
exhibit patterns such as trends, level changes, spikes and periods of steadiness.
Furthermore, the measurements may be overlaid with a high level of noise.
A typical example is a time series of online observations of vital parameters, i.e.
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physiological variables, such as blood pressures and heart rate, measured by a
clinical information system for critically ill patients and stored at least every
minute. Reliable automatic monitoring of the hemodynamic system in real time
is important in order to to support decision making at the bedside in time crit-
ical situations and thus for intensive care therapy.
The challenge is to develop methods that allow a fast and reliable filtering of such
multivariate time series. Structural patterns of relevance are to be preserved, and
noise and irrelevant artifacts should be removed.

For this purpose we derive regression-based filters for robust online extraction
of signals from noisy and contaminated multivariate time series. In section 2 we
describe the task more formally and review recent work on robust online signal
extraction for univariate time series.
Section 3 deals with robust regression-based online filters for multivariate time
series. Just generalizing robust univariate regression techniques to the multivari-
ate setting leads to methods that are not affine equivariant. This yields a loss of
efficiency if the error terms of the variables are highly correlated. We will there-
fore discuss multivariate regression methods in Subsection 3.1. Affine equivariant
methods possibly do not possess a high breakdown point if the data is not in
general position, i.e. when a number of datapoints larger than the dimension of
the dataspace is located on lower dimensional hyperplanes. Intensive care data
and financial time series, that exhibit the so-called compass rose pattern, (Crack
and Ledoit, 1996) are often not in general position, especially not within short
time windows. This is due to the fact that the data are often measured on a
discrete scale. A compass rose pattern appears if (1) the changes in the time
series from one timepoint to the next are small relative to the level of the time
series, (2) these changes come in discrete jumps of a small number of measure-
ment units and (3) the time series varies over a relatively wide range of values.
Financial time series and also time series from intensive care often exhibit such
a compass rose pattern (Lanius, 2005); an increasing amount of observations lies
on the same hyperplane and thus the data is not in general position. There is
thus a need for fast and robust online methods that can deal with such data.
This will be further discussed in Subsection 3.2.
The aim of this paper is to extract multivariate signals in real time. The method
which we will present in Subsection 3.3 is not affine equivariant but it has good
efficiency properties and can also be applied to data that is not in general posi-
tion. By means of a simulation study we will compare the relative efficiencies of
this and some further regression-based multivariate online filters in Subsection
3.4.
The new method will be applied to a time series from intensive care in
Subsection 3.5. We will summarize our findings and give some conclusions in
Section 4.
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2 Univariate Online Filters

Denote by y(t) = (y1(t), . . . , yk(t))
T ∈ Rk, t ∈ Z, observations of a multivariate

time series. As working model we choose the following simple additive model

y(t) = µ(t) + ε(t) + η(t), t ∈ Z, (1)

where µ(t) = (µ1(t), . . . , µk(t))
T ∈ Rk represents the time-varying level of the

components of y(t), while ε(t) = (ε1(t), . . . , εk(t))
T ∈ Rk is observational noise

with E(ε(t)) = 0 and smoothly varying covariance matrix Var(ε(t)) = Σ(t). An
outlier generating mechanism described by η(t) ∈ Rk produces impulsive noise,
which can affect more than one component at different time points. The signals
µj(t), j = 1, . . . , k, t ∈ Z, are assumed to be smooth with some trends and few
abrupt level shifts. To allow for correlations between the error components εi(t)
and εj(t), i 6= j, the local covariance matrices Σ(t) can be non-diagonal. The
actual observations may be on a discrete scale.

Online extraction of the k-dimensional signal vector µ(t) can be achieved, e.g. by
recursive filtering or moving window techniques. In the following, the focus is on
filtering methods that rely on moving a time window {y(t−w), . . . ,y(t), . . . y(t+
w)} of width N = 2w + 1 through the series. For each time sequence the signal
values µ(t) in the center of the time window are approximated. A short time
delay is achieved by choosing w small, though there is a trade-off with smooth-
ness, which comes with longer time windows.

Online procedures for univariate robust signal extraction have been derived and
discussed in the literature (see e.g. Gather et al., 2006a,b; Davies et al., 2004,
among others). Assuming that the level of a univariate time series y(t) ∈ R
is almost constant within each time window, location based filters have been
suggested to approximate the signal. Efficient denoising is achieved by means of
moving averages or other linear filters. However, such methods are easily affected
by outliers. Robust methods, like running medians (Tukey, 1977) resist outliers,
but have shortcomings in trend periods. A compromise are modified trimmed
means (MTM; Lee and Kassam, 1985). Compared to running medians, they are
more efficient under Gaussian noise and they also resist a few spikes successfully.
In trend periods, however, the location model is not appropriate. To overcome
the drawback of location based filters, Davies et al. (2004) propose to fit a lin-
ear trend y(t + s) = µ(t) + β(t)s, s = −w, . . . , w, within each time window.
Here, regression estimators with high breakdown point can be applied, such as
L1 regression (Edgeworth, 1887), the least median of squares (Hampel, 1975;
Rousseeuw, 1984), the least-trimmed squares (Rousseeuw, 1983), the repeated
median (RM; Siegel, 1982) or deepest regression (Rousseeuw and Hubert, 1999).
Davies et al. (2004) and Gather et al. (2006b) compare these methods with
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respect to properties such as computation time, robustness and the ability to
preserve trends and level changes in the presence of outliers. Based on the re-
sults of various simulation studies therein as well as for computational reasons,
for univariate online signal extraction the RM has been recommended as best
compromise procedure.

Similar to location based MTM filters the RM estimator under the trend model
has been modified by trimming observations with large regression residuals.
Bernholt et al. (2006), Fried (2004) and Gather and Fried (2004) apply linear re-
gression repeatedly within cascading windows. In the following this procedure is
referred to as TRM regression. For identical inner and outer windows this filter is
location- and scale equivariant, trend invariant (Fried et al., 2006), slightly more
efficient, and almost as robust as the RM-filter with a finite sample breakdown
point of bN/2c/N (Bernholt et al., 2006).

If one is interested in the level of the time series at the most recent time point
t+w, one can derive online estimates µonline(t+w) = µ̃RM(t)+ β̃RM(t)w (Gather
et al., 2006b).

3 Multivariate Online Filters

Assuming the simple model (1) for k-variate time series y(t) ∈ Rk, k ≥ 1, the
goal is to robustly extract the k-dimensional signal in real time. Under the lo-
cation model a multivariate running mean is equivalent to univariate running
means applied to each component of the response vector y(t). Robustification of
location based filters in higher dimensions is not straightforward. A component-
wise univariate signal extraction for y(t) could neglect correlations between the
error components. There is no canonical extension of the univariate median to
the multivariate case which is affine equivariant. Eg., a highly robust and affine
equivariant location functional is based on the minimum covariance determinant
estimator (MCD; Rousseeuw, 1984, 1985), and Koivunen (1996) constructs a
robust MCD-based location filter in higher dimensions.
In this paper we deal with time series data for which the location model is not
adequate. Instead, we will assume that the time series can be approximated
locally by k linear trends, that is

y(t + s)− ε(t + s) = µ(t) + β(t)s, s = −w, . . . , w. (2)

Thus, in each time window {t − w, . . . , t, . . . , t + w} a multivariate regression
problem with a k-variate response and a univariate regressor (m = 1), namely the
equidistant time points, has to be solved. Compared to k univariate regression
models for each component, model (2) accounts for correlations between the
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errors of the k response variables. In the following we review some procedures
for robust parameter estimation in multivariate linear regression models.

3.1 Robust multivariate linear regression

Let a multivariate, multiple regression model with response y ∈ Rk and regressor
x ∈ Rm be given by

y = α + BTx + ε, (3)

where the errors ε ∈ Rk are i.i.d. with mean vector 0 and positive definite
covariance matrix Σεε ∈ Rk×k; α ∈ Rk and B ∈ Rm×k are the unknown inter-
cept and slope parameters. Denoting the joint location of the random variables
z = (xT, yT)T by µ and and their scatter matrix by Σ, we write

µ =

µx

µy

 and Σ =

Σxx Σxy

Σyx Σyy

 .

Then, the least squares estimator TLS = (α̃, B̃T
)T of (α, B) can be expressed as

B̃ = Σ̃
−1

xx Σ̃xy, and α̃ = µ̃y − B̃T
µ̃x, (4)

where the corresponding components of µ and Σ are estimated by the subvectors
and submatrices of the sample mean vector µ̃ = z̄ and the empirical covariance
matrix Σ̃ = Szz. The estimate given by the multivariate LS functional TLS is
identical to the matrix resulting from k corresponding marginal univariate LS
estimate vectors. It is affine equivariant and optimal under a multinormal error
distribution. However, by possessing a breakdown point of zero, it is very sensi-
tive to outliers, which yields a need for robust alternatives.
In most cases applying robust univariate regression methods to each response
component leads to estimates that are not affine equivariant. This drawback oc-
curs e.g. for generalizations of the univariate LMS or RM functional, as well as
for other robust regression techniques discussed in the literature including L1

regression (Rao, 1988; Bai et al., 1990) and M-estimation (Koenker and Port-
noy, 1990). Giving up affine equivariance implies a loss of efficiency if the error
components are correlated (Chakraborty, 1999; Bickel, 1964). In the following,
we firstly consider multivariate regression techniques that are both affine equiv-
ariant as well as highly robust. Estimators based on either quantile regression
or multivariate ranks have been proposed, e.g. by Chakraborty and Chaudhuri
(1997); Chakraborty (1999, 2003) and Ollila et al. (2003). Rousseeuw et al. (2004)

have suggested the use of a regression functional Treg = (α̃, B̃T
)T based on (4).

5



Regression-, x- and y-equivariance of Treg are gained if µ and Σ are replaced
by affine equivariant estimators. Also, the regression functional Treg inherits the
minimal breakdown point of the corresponding functionals for multivariate lo-
cation and scatter. Many highly robust estimators of these quantities have been
discussed in the literature, including, for example, the Stahel-Donoho estimator
(Stahel, 1981; Donoho, 1982), the MCD estimator (Rousseeuw, 1983, 1984), S-
estimators (Davies, 1987; Lopuhaä, 1989), and CM estimators (Kent and Tyler,
1996). Rousseeuw et al. (2004) suggest to estimate location and scatter of the
random vector (xT, yT)T by means of the MCD. They call the resulting regres-
sion method MCD regression.
A different approach has been pursued by Agulló et al. (2006), who construct
regression estimates based on the covariance matrix of the residuals. Denote

for any matrix (α̃, B̃T
)T = B ∈ R(m+1)×k of regression coefficients the corre-

sponding residuals by ri(B) = yi − BTxi and for each positive definite and
symmetric matrix Σ ∈ Rk×k the squared distances of the residuals with respect
to B and Σ by d2

i (B,Σ) = ri(B)TΣ−1ri(B). The multivariate least-trimmed
squares (MLTS) estimator is then defined as

argmin

B, Σ;|Σ|=1

h∑
j=1

d2
(j)(B,Σ),

(5)

where d2
(j), j = 1, . . . , n, denote the ordered squared distances. Jung (2005) pro-

posed a similar ”least-trimmed Mahalanobis squares regression estimator”.
Agulló et al. (2006) have shown further that any B which minimizes the de-
terminant of the MCD scatter estimate of its regression residuals is a solution
of (5). For k > 1 the finite sample replacement breakdown point of the MLTS
estimator is equal to min(N−h+1, h−g(ZN))/N , where g(ZN) is the maximal
number of observations in the sample ZN lying on the same hyperplane through
the origin of Rk+m+1 and h > g(ZN) (Agulló et al., 2006).
Both, the MLTS and the MCD regression estimator have a maximal breakdown
point of b(N − (k + m) + 1)/2c/N . However, these optimal breakdown points
can only be attained if the data is in general position.
Additionally, for both of the above MCD-based regression methods reweighting
steps are recommended as the raw estimators suffer from low efficiency.

3.2 Regression-based multivariate online filters

The routine application of procedures for online signal extraction affords the
existence of a unique solution, to be found within short computation time, and a
high robustness with respect to outliers. Additionally, a satisfactory finite sample
efficiency under the Gaussian and under some other distributions is important.
Although the application of robust univariate regression techniques to the com-
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ponents in the multivariate model leads to a loss of efficiency if the error com-
ponents are correlated, this is an appealing approach due to resulting high finite
sample breakdown points and fast computability.
Within the class of affine equivariant multivariate regression methods only the
MCD-based methods possess high breakdown points. Note, that for MCD re-
gression the common distribution of the response and regressor variables must
be elliptical in order to get Fisher consistent estimates of (µ, β). However, in
model (2) the only regressor is time, i.e. we have equally spaced design points.

Computational aspects
A disadvantage of MCD-based regression methods is that an exact algorithm for
computing the MCD needs O(Nk(k+3)/2) time (Bernholt and Fischer, 2004). An
online application of MCD-based filters is therefore only possible when based
on the fast but heuristic Fast-MCD algorithm by Rousseeuw and Van Driessen
(1999), which yields approximative solutions.

Sample size versus efficiency and breakdown point
Online procedures are most effective if the time delay of the estimate is as small
as possible while also ensuring that the signal is sufficiently smooth and robust.
A short delay is achieved by choosing the window width small. This means that
within a time window for the multivariate regression the sample size N might
only be slightly larger than the dimension k. However, for small sample sizes
MCD-based estimators are known to be not very efficient. Also, the optimal
finite sample breakdown point of the affine equivariant MCD-based regression
functionals is close to 0.5 for large N if the data is in general position, but for
small sample sizes it can be much lower.

General position of the data
In model (3) it is typically assumed that the covariance matrix of the error terms
has full rank k. The finite sample breakdown point of the MLTS functional de-
pends on the maximal number of observations within a smaller subspace of
Rk+m+1. If h ≥ [(N + k + m + 1)/2] is the size of the optimal subsample used
for the calculation of the MCD estimate and if h or more observations lie in
the same hyperplane, the regularity condition g(ZN) < h is violated and the
MLTS estimator is not well defined. The MCD estimate then degenerates to a
singular matrix. At least one dimension of the response variable is lost and the
link between response and regressor can be described on a space with dimension
less than k.
In practice, the assumption that the data is in general position is often not ful-
filled if the observations of a time series are measured on a discrete scale. If the
error covariance matrix in model (2) is allowed to have rank r ≤ k, a robust
and affine equivariant estimation of the regression parameters could be achieved
by first estimating the rank r and then transforming the observations into the
corresponding r−dimensional subspace, possibly by means of a robust PCA (Li
and Chen, 1985; Croux and Ruiz-Gazen, 1996, 2005; Hubert et al., 2005). MCD-
based regression can thereafter be performed based on the principal components.
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However, this approach needs too much computation time to be applicable in
the online situation.
An ad-hoc solution, often used in data mining is to add negligible noise to the
observations. In order to avoid inliers, Koivunen (1996) applies a MCD-based
location filter to discrete data with added noise. Simulations even show the
paradox effect of a lower mean squared error of MCD estimates if additional
random noise has been added to the data. This is due to the resulting higher
dimension: The relative efficiency of the MCD estimator increases with increas-
ing dimension (Croux and Haesbroeck, 1999) and this property is inherited by
MCD-based regression estimators (Croux et al., 2001; Rousseeuw et al., 2004;
Agulló et al., 2006) even if the additional variables are completely random. How-
ever, as thereby the choice of the optimal subsample for the MCD estimator may
change this is not always appropriate.

The above discussion shows, that there is no multivariate regression procedure
for signal extraction with all desirable properties: high robustness, high relative
efficiency due to affine equivariance, fast computation, unique solution, and the
ability to cope with data that are not in general position.

3.3 A new multivariate robust online filter

In this section, we present an alternative procedure for multivariate online signal
extraction which is based on the idea of univariate TRM filters (Bernholt et al.,
2006).
First, we will weaken the requirement of affine equivariance. Applying the uni-
variate TRM filters to multivariate time series completely neglects the possibility
of high correlations among the error components such that separate componen-
twise trimming procedures may not be able to detect outliers related to the
multivariate dependence structure. We suggest the following multivariate gener-
alization:

1. Within each time window {t − w, . . . , t, . . . , t + w} use the RM functional
TRM = (µ̃(t), β̃(t)) in order to estimate the local level µj(t) and the local slope
βj(t) for each component yj(·), j = 1, . . . , k, that is

β̃RM
j (t) = meds∈{−w,...,w}

(
medv 6=s,v∈{−w,...,w}

yj(t + s)− yj(t + v)

s− v

)
,

µ̃RM
j (t) = meds∈{−w,...,w}

(
yj(t + s)− β̃RM(t)s

)
.

Combine these estimates to initial multivariate estimators

β̃
RM

(t) = (β̃RM
1 (t), . . . , β̃RM

k (t))T and µ̃RM(t) = (µ̃RM
1 (t), . . . , µ̃RM

k (t))T.
2. Compute multivariate residuals of the regression lines within the current time

window: r(t + s) = y(t + s)− µ̃RM(t)− sβ̃
RM

(t), s = −w, . . . , w.
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3. Obtain robust estimates of the local covariance matrix Σ̃(t) of the error terms
based on the residuals r(t + s), s = −w, . . . , w.

4. Find the subset of time points within the time window corresponding to
residuals, whose squared Mahalanobis distance w.r.t. the local covariance
structure is lower than a given value aN , that is St = {s = −w, . . . , w :
r(t + s)TΣ̂(t)−1r(t + s) ≤ aN}.

5. Obtain estimates of the local level µ̃TRM−LS(t) and slope β̃
TRM−LS

(t) by
means of multivariate LS regression from the trimmed observations {(t +
s, y(t + s)), s ∈ St} within the actual time window.

The filter based on this procedure is called multivariate TRM-LS filter.
In step 3 a robust estimation of the local covariance matrix Σ(t) based on
a small sample is needed. From the discussion in subsection 3.2 affine equiv-
ariant estimators may not be appropriate here. A robust estimator of the co-
variance matrix, that is fast to compute although not affine equivariant, is the
orthogonalized Gnanadesikan-Kettenring estimator (OGK estimator; Maronna
and Zamar, 2002). In order to estimate the covariance between a pair of ran-
dom variables X and Y (Gnanadesikan and Kettenring, 1972) use the fact that
Cov(X, Y ) = (σ(X + Y )2 − σ(X − Y )2)/4, where σ(·) denotes the standard de-
viation. Maronna and Zamar (2002) have modified the covariance matrix result-
ing from the estimated pairwise Gnanadesikan-Kettenring covariances, based on
some robust scale estimate σ(·), such that a positive definite and approximately
affine equivariant matrix is achieved. The computation of the OGKσ estimator
for sample variables X1, . . . ,XN ∈ Rk, and a robust univariate scale functional
σ(·) requires the following steps

i. Scale the sample variables via Y =XD−1, where D=diag(σ(X1), . . . , σ(Xk)).
ii. Apply the Gnanadesikan-Kettenring estimator to the columns of the scaled

variables Y and obtain a robust correlation matrix R of X with Rjj = 1 and
Rij = (σ(Yi + Yj)

2 − σ(Yi − Yj)
2)/4, i 6= j.

iii. Perform a spectral decomposition R = EΛET, where Λ = diag(λ1, . . . , λk)
contains the ordered eigenvalues and E contains the corresponding eigenvec-
tors of R.

iv. Define A = DE and Z = X(AT)−1. With Γ = diag(σ(Z1)
2, . . . , σ(Zk)

2) the
OGKσ estimator is defined as OGKσ(X) = AΓAT.

If, due to inliers, for some variables Xj, j = 1, . . . , k, or Zj, j = 1, . . . , k, the
univariate scale estimate become zero in step i. or iv., the estimated covariance
matrix becomes singular. As the estimate of the covariance matrix is only used
to trim the residuals, we can replace values of zero by a small lower threshold
ϑ in order to ensure invertibility of the matrix. The OGKσ estimator is found
based on σ(·) = max(σ̃(·), ϑ), where σ̃(·) is a univariate scale functional with
optimal finite sample breakdown point of 50% and ϑ is an appropriate lower
threshold for the variability in each direction, e. g. ϑ = 0.02.
Various highly robust univariate scale functionals are discussed in Gather and

9



Fried (2003) w.r.t. application in online filtering methods. For the computation
of the OGK estimator we will only consider the well known MAD estimator
σMAD = cMAD

N med(|x1 − µ̃|, . . . , |xN − µ̃|) and the QN estimator (Rousseeuw

and Croux, 1993) σQN
= cQN

N {|xi − xj| : 1 ≤ i < j ≤ N}(h), h =
(

[N/2]+1
2

)
. The

constants cMAD
N and cQN

N are correction factors, chosen to achieve unbiasedness
under Gaussian noise. An advantage of the MAD estimator is the existence of
an update algorithm, that affords only O(log N) time. Ma and Genton (2001)
recommend to use the QN estimator for the computation of the OGK estimator
and Gather and Fried (2003) also describe a good performance of the QN esti-
mator in the presence of inliers and level shifts.

In step 4 of the procedure above an upper trimming threshold aN is required.
Typical choices are aN = χ2

k(β), where χ2
k(β) is the β−quantile of a χ2−distribu-

tion with k degrees of freedom or aN = χ2
k(β) med(d(−w), . . . , d(w))/χ2

k(0.5),
where d(s) = r(t + s)TΣ̂(t)−1r(t + s), s = −w, . . . , w, (Maronna and Zamar,
2002). As the maximum possible finite-sample explosion breakdown point of the
OGK estimator is equal to that of the univariate scale estimator σ(·), the OGKσ

estimator based on the MAD or the QN estimator has a maximal breakdown
point of 50%, if the data does not show ties within the windows.

3.3.1 Performance of the OGK estimator in small samples

The OGKσ estimator is highly robust, flexible and fast to compute, but not
affine equivariant. To get an idea of its performance when applied to small sam-
ples we compare the OGKσ estimator based on the MAD and the QN estimator
to the empirical covariance matrix and the Fast-MCD estimator. We evaluate
a measure of the sphericity of Ψ = Σ−1/2Σ̂Σ−1/2 which is chosen as condition
number ϕ = cond(Ψ) = ||Ψ||2||Ψ−1||2 of Ψ, where Σ̂ is an estimate of Σ. This
quantity measures the mean deviation of the estimation by Σ̂ and is invariant
under affine transformations.
In the simulation study we will consider rather small sample sizes N = 31, 51
and 101 which for instance occur as window widths in intensive care settings.
The observations are generated from a 10-variate normal distribution with ex-
pectation 0 and covariance matrices Σj = (1 − cj) · I10 + cj · 1101

T
10, where

cj = j
10

, j = 0, 5, 9. Additionally, samples are contaminated as follows: (1−ε)N,,
fixed ε = 0.2, observations are drawn from the above normal distributions and
the remaining εN observations are generated from a normal distribution with
N (lΣ

1/2
j vj, τ

2Σj), j = 0, 5, 9, where vj is the scaled eigenvector of the smallest
eigenvalue of Σj. We further choose τ = 0.1, such that the contaminated observa-
tions are close to each other. The amount l is varied, with l ∈ {5, 7, 10, 15, 20, 40}.
For each sample the logarithm of the condition number of Σ−1/2Σ̂Σ−1/2 is ob-
tained, where Σ̂ is the corresponding estimator. Ideally, the logarithm of the
condition number is 0. Note, that the condition numbers of affine equivariant
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covariance estimators, such as the empirical covariance and the Fast-MCD, do
not depend on the correlation structure.
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(a) with εε=20% contamination (b) plus random transformation

Fig. 1. Median of log condition numbers for covariance estimators at normal dis-
tributions with different covariance structures without (triangles) and with (circles)
contamination and under additional random transformations, sample size N = 31
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Fig. 2. Median of log condition numbers for covariance estimators at normal dis-
tributions with different covariance structures without (triangles) and with (circles)
contamination and under random transformations, sample size N = 101

Figure 1 shows the median of the logarithm of the condition numbers for each of
the estimators and the different distributions for a sample size of N = 31. Tri-
angles represent results for the non-contaminated observations, circles represent
results from samples with ε = 20% contamination, where l varies.
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Without contamination, the OGKσ estimators perform almost as well as the
empirical covariance matrix S, though increasing the correlation between the
variables reduces their performance. As expected, the Fast-MCD estimator per-
forms worst for small sample sizes. While the empirical covariance matrix is
highly affected by the contaminated observations, the influence on the spheric-
ity of the OGKσ estimator is small, and the OGKQN

performs slightly better
than the OGKMAD.
We get similar results for sample sizes of N = 51 (not shown) and N = 101 (cf.
Figure 2). The Fast-MCD estimator yields better results with increasing sample
size.
In order to investigate how much the OGKσ suffers from the lack of equivari-
ance, the samples were additionally transformed by randomly generated orthog-
onal matrices (Maronna and Zamar, 2002). The performance of OGKσ under
transformation is then measured by the condition numbers. The medians of the
logarithm of the condition numbers are also shown in Figures 1, and 2, respec-
tively. As expected, the condition numbers increase for the estimation under
transformations due to the lack of affine equivariance. However, for the sample
size N = 31 the OGKσ under transformation is still better than the Fast-MCD.
This advantage gets lost for larger sample sizes.

3.4 Simulation study

We have conducted a simulation study to compare some robust regression esti-
mators with respect to their finite sample efficiency under different distributions
and dependence structures of the error terms and their use for online signal ex-
traction.
The following methods are included: the univariate trimmed repeated median
TTRM estimator with scale estimation based on the QN estimator, the MCD
and MLTS regression estimators TMCD and TMLTS with reweighting steps, and
the proposed method based on LS estimation after multivariate trimming of
the repeated median residuals TTRM−LS. To guarantee a high finite sample
breakdown point, we calculate the MCD estimator based on a subsample of
size h = [(N + k + 2)/2]. The trimming constant δ for the reweighting step is
chosen as δ = 0.975. For the multivariate TRM-LS signal extraction procedure
the OGKQN

estimator is used for trimming with a trimming threshold dN =

χ2
10(0.95) med(d(−w), . . . , d(w))/χ2

10(0.5), where d(s) = r(t + s)TΣ̂(t)−1r(t +
s), s = −w, . . . , w. The observations are generated via

X(t) = µ + βt + ε(t), t = −w, . . . , w, (6)

with response X(t) ∈ Rk and k = 10. As all regression functionals are regres-
sion equivariant, we set the regression coefficients to µ = β = 0 ∈ R10. The
errors ε(t) ∈ R10 are generated from a 10−dimensional normal distribution with

12



expectation 0 and from a t−distribution with three degrees of freedom (t3),
while the covariance matrices are chosen according to the following schemes:
Σj = (1 − cj) · I10 + cj · 1101

T
10, where cj = j

10
, j = 0, 2, 4, 6, 8, 9. Thus, Σ0 de-

scribes independently distributed random variables of a 10−dimensional normal
or t−distribution while the other covariance matrices are chosen according to
uniform correlation models with stepwise increasing correlation. The sample
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Fig. 3. Relative efficiencies of the regression estimators compared to the LS estimator
for different sample sizes and correlation structures at a normal distribution

sizes are chosen as N = 31 (N = 51, 101, 501). For each model and sample size,
5,000 samples are generated. As performance criterion we calculate the relative
efficiency of the respective estimators to the LS estimator, which is here defined
as 20th square root (2 × k = 20) of the estimated ratio of Wilk’s generalized
variances of the two estimators (Chakraborty, 1999, 2003; Ollila et al., 2003).

The results in Figures 3 and 4 show that for fixed sample size N the empir-
ical relative finite sample efficiencies of the MCD-based regression functionals
do not depend on the dependence structure of the error components due to
their affine equivariance. As expected, the relative efficiencies of the MCD-based
methods are rather low for small sample sizes. For t3−distributed error terms
with heavy tails the MCD-based estimates are more efficient compared to the
very sensitive LS estimator.
Also, the relative efficiency of the univariate TRM estimator decreases rapidly
with increasing correlation between the error components. However, for low to
moderately high correlation between the error components we find similar finite
sample efficiencies for the MCD-based estimators and the univariate TRM esti-
mator.
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Fig. 4. Relative efficiencies of the regression estimators to the LS estimator for different
sample sizes and correlation structures at a t3 distribution

The new multivariate TRM-LS estimator performs best in all situations. Al-
though it is not affine equivariant the relative efficiency remains large even in
situations where the correlation between the error components is high, in partic-
ular, for small sample sizes . For larger sample sizes (here: N=501) the relative
efficiency is comparable to that of the MCD-based regression estimators.

Summarizing it can be concluded that the TRM-LS two-step procedure offers a
fast, highly robust, and highly efficient online signal extraction even if window
widths, and thus sample sizes are small and the data is not necessarily in general
position.

3.5 Application

In this subsection the new multivariate TRM-LS filter is applied to a time se-
ries of highly correlated physiological variables, such as blood pressures and
heart rate, that has been recorded for a patient on an intensive care unit at the
Klinikum Dortmund. The aim is to preserve clinically relevant patterns such as
sudden level shifts and trends, while noise and irrelevant artifacts are removed.
Figure 5 shows such a time series with variables of the hemodynamic system. We
apply the TRM-LS filter to this time series in order to extract the underlying
signal. In practice, this signal extraction has to be performed in real time. Figure
6 shows a part of the data together with the extracted signal.
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As can be seen, the approximated signal preserves clinically relevant patterns of
the hemodynamic data without being influenced by spikes and noise.

time
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Fig. 5. Time series with nine hemodynamic variables of a patient in intensive care:
arterial blood pressures (grey), heart rate, pulse (black), pulmonary artery blood pres-
sures and central venous blood pressure (dashed)
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Fig. 6. Extract of the hemodynamic time series (dotted) from figure 5 with extracted
signals: arterial blood pressures, heart rate, pulse, pulmonary artery blood pressures
and central venous blood pressure
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4 Discussion and conclusion

We have proposed a new two-step procedure for multivariate signal extraction,
which is fast and highly robust. Our method uses a moving outer window and
is based on least squares regression estimates, that are obtained from trimmed
observations after a componentwise RM regression in an inner time window.
The correlation structure between the error components is taken into account
by means of orthogonalized Gnanadesikan-Kettenring covariance estimates, that
are fast to compute and highly robust. The resulting method for online signal
extraction is not affine equivariant but has very good efficiency properties if short
time windows are used. Moreover, it can be used for discretely measured data
with low variability as well as in situations with many outliers.
Further ongoing research will investigate the estimation of the signal at the end
of the respective time windows and the possibility to adjust the window widths
according to the structure of the time series. This is especially important for an
improved preservation and detection of level shifts.
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