
ar
X

iv
:0

90
1.

22
13

v2
  [

m
at

h.
S

T
]  

2 
S

ep
 2

00
9

appor t  
de recherche 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
67

98
--

F
R

+
E

N
G

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Data-driven neighborhood selection of a Gaussian
field

Nicolas Verzelen

N° 6798 — version 2

initial version Janvier 2009 — revised version Septembre 2009

http://arxiv.org/abs/0901.2213v2




Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Data-driven neighborhood seletion of a Gaussian �eld

Niolas Verzelen

∗ †

Thème COG � Systèmes ognitifs

Équipes-Projets Selet

Rapport de reherhe n° 6798 � version 2 � initial version Janvier 2009 � revised version

Septembre 2009 � 28 pages

Abstrat: We study the nonparametri ovariane estimation of a stationary Gaussian �eld X
observed on a lattie. To takle this issue, a neighborhood seletion proedure has been reently

introdued. This proedure amounts to seleting a neighborhood m̂ by a penalization method

and estimating the ovariane of X in the spae of Gaussian Markov random �elds (GMRFs)

with neighborhood m̂. Suh a strategy is shown to satisfy orale inequalities as well as minimax

adaptive properties. However, it su�ers several drawbaks whih make the method di�ult to apply

in pratie. On the one hand, the penalty depends on some unknown quantities. On the other hand,

the proedure is only de�ned for toroidal latties. The present ontribution is threefold. A data-

driven algorithm is proposed for tuning the penalty funtion. Moreover, the proedure is extended

to non-toroidal latties. Finally, numerial study illustrate the performanes of the method on

simulated examples. These simulations suggest that Gaussian Markov random �eld seletion is

often a good alternative to variogram estimation.

Key-words: Gaussian �eld, Gaussian Markov random �eld, Data-driven alibration, model

seletion, pseudolikelihood.
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Séletion automatique de voisinage d'un hamp gaussien

Résumé : Nous étudions l'estimation non-paramétrique d'un hamp gaussien stationnaire X
observé sur un réseau régulier. Dans e adre, nous avons préédemment introduit une proédure

de séletion de modèle [Ver09℄. Cette proédure revient à séletionner un voisinage m̂ grâe une

tehnique de pénalisation puis à estimer la ovariane du hamp X dans l'espae des hamps de

Markov gaussiens de voisinage m̂. Une telle stratégie satisfait des inégalités orales et des propriétés

d'apdaptation au sens minimax. En pratique, elle présente néanmoins quelques inonvénients.

D'une part, la pénalité dépend de quantités inonnues. D'autre part, la proédure est uniquement

dé�nie pour des réseaux toriques. La ontribution de et artile est triple. Nous proposons un

algorithme automatique pour alibrer la pénalité. De plus, nous introduisons une extension à des

réseaux non-toriques. En�n, nous étudions les performanes pratiques de la proédure sur des

données simulées. Ces simulations suggèrent que la séletion de hamps de Markov gaussiens est

souvent une bonne alternative à l'estimation de variogramme.

Mots-lés : Champ gaussien, hamp de Markov gaussien, alibration automatique, séletion de

modèle, pseudo-vraisemblane.



Neighborhood seletion 3

1 Introdution

We study the estimation of the distribution of a stationary Gaussian �eld (X [i,j])(i,j)∈Λ indexed by

the nodes of a retangular lattie Λ of size p1 × p2. This problem is often enountered in spatial

statistis or in image analysis. Classial statistial proedures allow to estimate and subtrat the

trend. Heneforth, we assume that the �eld X is entered. Given a n-sample of the �eld X , the

hallenge is to infer the orrelation. In pratie, the number n of observations often equals one.

Di�erent methods have been proposed to takle this problem.

A traditional approah amounts to omputing an empirial variogram and then �tting a suit-

able parametri variogram model suh as the exponential or Matérn model (see [Cre93℄ Ch.2 or

[Ste99℄). The main disadvantage with this method is that the pratitioner is required to selet a

good variogram model. When the �eld exhibits long range dependene, spei� proedures have

been introdued (e.g. Frías et al. [FARMA08℄). In the sequel, we fous on small range dependenes.

Most of the nonparametri (Hall et al. [HFH94℄) and semiparametri (Im et al. [ISZ07℄) methods

are based on the spetral representation of the �eld. To our knowledge, these proedures have

not yet been shown to ahieve adaptiveness, i.e. their rate of onvergene does not adapt to the

omplexity of the orrelation funtions.

In this paper, we de�ne and study a nonparametri estimation proedure relying on Gaussian

Markov random �elds (GMRF). This proedure is omputationally fast and satis�es adaptive prop-

erties. Let us �x a node (0, 0) at the enter of Λ and let m be a subset of Λ \ {(0, 0)}. The �eld

X is a GMRF with respet to the neighborhood m if onditionally to (X [k,l])(k,l)∈m, the variable

X [0,0] is independent from all the remaining variables in Λ. We refer to Rue and Held [RH05℄

for a omprehensive introdution on GMRFs. If we know that X is a GMRF with respet to the

neighborhood m, then we an estimate the ovariane by applying likelihood or pseudolikelihood

maximization. Suh parametri proedures are well understood, at least from an asymptoti point

of view (see for instane [Guy95℄ Set.4). However, we do not know in pratie what is the �good�

neighborhood m. For instane, hoosing the empty neighborhood amounts to assuming that all the

omponents of X are independent. Alternatively, if we hoose the omplete neighborhood, whih

ontains all the nodes of Λ exept (0, 0), then the number of parameters is huge and estimation

performanes are poor.

We takle in this paper the problem of neighborhood seletion from a pratial point of view.

The purpose is to de�ne a data-driven proedure that piks a suitable neighborhood m̂ and then

estimates the distribution of X in the spae of GMRFs with neighborhood m̂. This proedure

neither requires any knowledge on the orrelation of X , nor assumes that the �eld X satis�es a

Markov ondition. Indeed, the proedure selets a neighborhood m̂ that ahieves a trade-o� between

an approximation error (distane between the true orrelation and GMRFs with neighborhood m)

and an estimation error (variane of the estimator). If X is a GMRF with respet to a small

neighborhood, then the proedure ahieves a parametri rate of onvergene. Alternatively, if X is

not a GMRF then the rate of onvergene of the proedure depends on the rate of approximation of

the true ovariane by GMRFs with growing neighborhood. In short, the proedure is nonparametri

and adaptive.

Besag and Kooperberg [BK95℄, Rue and Tjelmeland [RT02℄, Song et al. [SFG08℄, and Cressie

and Verzelen [CV08℄ have onsidered the problem of approximating the orrelation of a Gaussian

�eld by a GMRF, but this approah requires the knowledge of the true distribution. Guyon and

Yao have stated in [GY99℄ neessary onditions and su�ient onditions for a model seletion pro-
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4 Verzelen

edure to hoose asymptotially the true neighborhood of a GMRF with probability one. Our

point of view is slightly di�erent. We do not assume that the �eld X is a GMRF with respet to

a sparse neighborhood. We do not aim at estimating the true neighborhood, we rather want to

selet a neighborhood that allows to estimate well the distribution of X (i.e. to minimize a risk).

The distintion between these two points of view has been niely desribed in the �rst hapter of

MaQuarrie and Tsai [MT98℄.

In [Ver09℄, we have introdued a neighborhood seletion proedure based on pseudolikelihood

maximization and penalization. Under mild assumptions, the proedure ahieves optimal neigh-

borhood seletion. More preisely, it satis�es an orale inequality and it is minimax adaptive to

the sparsity of the neighborhood. To our knowledge, these are the �rst results of neighborhood

seletion in this spatial setting.

If the proedure exhibits appealing theoretial properties, it su�ers several drawbaks from a

pratial perspetive. First, the method onstrains the largest eigenvalue of the estimated ovari-

ane to be smaller than some parameter ρ. In pratie, it is di�ult to hoose ρ sine we do not

know the largest eigenvalue of the true ovariane. Seond, the penalty funtion pen(.) introdued
in Set.3 of the previous paper depends on the largest eigenvalue of the ovariane of the �eld X .

Hene, we need a pratial method for tuning the penalty. Third, the proedure has only been

de�ned when the lattie Λ is a square torus.

Our ontribution is twofold. On the one hand, we propose pratial versions of our neighborhood

seletion proedure that overome the previously-mentioned drawbaks:

� The proedure is extended to retangular latties.

� We do not onstrain anymore the largest eigenvalue of the ovariane.

� We provide an algorithm based on the so-alled slope heuristis of Birgé and Massart [BM07℄

for tuning the penalty. Theoretial justi�ations for its use are also given.

� Finally, we extend the proedure to the ase where the lattie Λ is not a torus.

On the other hand, we illustrate the performanes of this new proedure on numerial examples.

When Λ is a torus, we ompare it with likelihood-based methods like AIC [Aka73℄ and BIC [Sh78℄,

even if they were not studied in this setting. When Λ is not toroidal, likelihood methods beome in-

tratable. Nevertheless, our proedure still applies and often outperforms variogram-basedmethods.

The paper is organized as follows. In Setion 2, we de�ne a new version of the estimation

proedure of [Ver09℄ that does not require anymore the hoie of the onstant ρ. We also disuss

the omputational omplexity of the proedure. In Setion 3, we onnet this new proedure to

the original method and we reall some theoretial results. We provide an algorithm for tuning the

penalty in pratie in Setion 4. In Setion 5, we extend our proedure for handling non-toroidal

latties. The simulation studies are provided in Setion 6. Setion 7 summarizes our �ndings, while

the proofs are postponed to Setion 8.

Let us introdue some notations. In the sequel, Xv
refers to the vetorialized version of X with

the onvention X [i,j] = Xv
[(i−1)×p2+j] for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. Using this new notation

amounts to �forgetting� the spatial struture of X and allows to get into a more lassial statistial

framework. We note X1,X2, . . . ,Xn the n observations of the �eld X . The matrix Σ stands for

INRIA



Neighborhood seletion 5

the ovariane matrix of Xv
. For any matrix A, ϕ

max

(A) and ϕ
min

(A) respetively refer the largest
eigenvalue and the smallest eigenvalues of A. Finally, Ir denotes the identity matrix of size r.

2 Neighborhood seletion on a torus

In this setion, we introdue the main onepts and notations for GMRFs on a torus. Afterwards,

we desribe our proedure based on pseudolikelihood maximization. Finally, we disuss some om-

putational aspets. Throughout this setion and the two following setions, the lattie Λ is assumed

to be toroidal. Consequently, the omponents of the matries X are taken modulo p1 and p2.

2.1 GMRFs on the torus

The notion of onditional distribution is underlying the de�nition of GMRFs. By standard Gaussian

derivations (see for instane [Lau96℄ App.C), there exists a unique p1 × p2 matrix θ suh that

θ[0,0] = 0 and

X [0,0] =
∑

(i,j)∈Λ\{(0,0)}
θ[i,j]X [i,j] + ǫ[0,0] , (1)

where the random variable ǫ[0,0] follows a zero-mean normal distribution and is independent from

the ovariates (X [i,j])(i,j)∈Λ\{(0,0)}. The linear ombination
∑

(i,j)∈Λ\{(0,0)} θ[i,j]X [i,j] is the kriging

preditor of X [0,0] given the remaining variables. In the sequel, we note σ2
the variane of ǫ[0,0] and

we all it the onditional variane of X [0,0].

Equation (1) desribes the onditional distribution of X [0,0] given the remaining variables. By

stationarity of the �eld X , it holds that that θ[i,j] = θ[−i,−j]. The ovariane matrix Σ is losely

related to θ through the following equation:

Σ = σ2 [Ip1p2
− C(θ)]

−1
, (2)

where the p1p2 × p1p2 matrix C(θ) is de�ned by C(θ)[(i1−1)p2+j1,(i2−1)p2+j2] := θ[i2−i1,j2−j1] for any

1 ≤ i1, i2 ≤ p1 and 1 ≤ j1, j2 ≤ p2. The matrix (Ip1p2
− C(θ)) is alled the partial orrelation

matrix of the �eld X . The so-de�ned matrix C(θ) is symmetri blok irulant with p2× p2 bloks.
We refer to [RH05℄ Set.2.6 or the book of Gray [Gra06℄ for de�nitions and main properties on

irulant and blok irulant matries.

Identities (1) and (2) have two main onsequenes. First, estimating the p1 × p2 matrix θ
amounts to estimating the ovariane matrix Σ up to a multipliative onstant. We shall therefore

fous on θ. Seond, by Equation (1), the �eld X is a GMRF with respet to the neighborhood

de�ned by the support θ. The adaptive estimation issue of the distribution of X by neighborhood

seletion therefore reformulates as an adaptive estimation problem of the matrix θ via support

seletion.

Let us now preise the set of possible values for θ. The set Θ denotes the vetor spae of the

p1×p2 matries that satisfy θ[0,0] = 0 and θ[i,j] = θ[−i,−j], for any (i, j) ∈ Λ. Hene, a matrix θ ∈ Θ
orresponds to the distribution of a stationary Gaussian �eld if and only if the p1p2 × p1p2 matrix

(Ip1p2
− C(θ)) is positive de�nite. This is why we de�ne the onvex subset Θ+

of Θ by

Θ+ := {θ ∈ Θ s.t. [Ip1p2
− C(θ)] is positive de�nite} . (3)

RR n° 6798



6 Verzelen

The set of ovariane matries of stationary Gaussian �elds on Λ with unit onditional variane is

in one to one orrespondene with the set Θ+
. We sometimes assume that the �eld X is isotropi.

The orresponding sets Θiso

and Θ+,iso
for isotropi �elds are introdued as:

Θiso := {θ ∈ Θ , θ[i,j] = θ[−i,j] = θ[j,i] , ∀(i, j) ∈ Λ} and Θ+,iso := Θ+ ∩Θiso .

2.2 Desription of the proedure

Let |(i, j)|t refer to the toroidal norm de�ned by

|(i, j)|2t := [i ∧ (p1 − i)]2 + [j ∧ (p2 − j)]2 ,

for any node (i, j) ∈ Λ.
In the sequel, a model m stands for a subset of Λ \ {(0, 0)}. It is also alled a neighborhood.

For the sake of simpliity, we shall only use the olletion of models M1 de�ned below.

De�nition 2.1. A subset m ⊂ Λ \ {(0, 0)} belongs to M1 if and only if there exists a number

rm > 1 suh that

m = {(i, j) ∈ Λ \ {(0, 0)} s.t. |(i, j)|t ≤ rm} . (4)

In other words, the neighborhoods m in M1 are sets of nodes lying in a dis entered at (0, 0).
Obviously, M1 is totally ordered with respet to the inlusion. Consequently, we order the models

m0 ⊂ m1 ⊂ . . . ⊂ mi . . .. For instane, m0 orresponds to the empty neighborhood, m1 stands for

the neighborhood of size 4, and m2 refers to the neighborhood with 8 neighbours. See Figure 1 for

an illustration.

a) b) )

Figure 1: (a) Model m1 with �rst order neighbors. (b) Model m2 with seond order neighbors. ()

Model m3 with third order neighbors.

For any model m ∈ M1, the vetor spae Θm is the subset of matries Θ whose support is

inluded in m. Similarly Θiso

m is the subset of Θiso

whose support is inluded in m. The dimensions

of Θm and Θiso

m are respetively noted dm and disom . Sine we aim at estimating the positive matrix

(Ip1p2
− C(θ)), we also onsider the onvex subsets of Θ+

m and Θ+,iso
m whih orrespond to non-

negative preision matries.

Θ+
m := Θm ∩Θ+

and Θ+,iso
m := Θiso

m ∩Θ+,iso . (5)

INRIA



Neighborhood seletion 7

For any θ′ ∈ Θ+
, the onditional least-squares (CLS) riterion γn,p1,p2

(θ′) [Guy87℄ is de�ned

by

γn,p1,p2
(θ′) :=

1

np1p2

n∑

i=1

∑

(j1,j2)∈Λ

(
Xi[j1,j2] −

∑

(l1,l2)∈Λ\{(0,0)}
θ′[l1,l2]Xi[j1+l1,j2+l2]

)2

. (6)

The funtion γn,p1,p2
(.) is a least-squares riterion that allows us to perform the simultaneous lin-

ear regression of all Xi[j1,j2] with respet to the ovariates (Xi[l1,l2])(l1,l2) 6=(k1,k2). This riterion is

losely onneted with the pseudolikelihood introdued by Besag [Bes75℄. The assoiated estimator

is slightly less e�ient estimator than maximum likelihood estimation ([Guy95℄ Set.4.3). Never-

theless, its omputation is muh faster sine it does not involve determinants as for the likelihood.

See [Ver09℄ Set. 7.1, for a more omplete omparison between CLS and maximum likelihood esti-

mators in this setting. For any model m ∈ M1, the estimators are de�ned as the unique minimizers

of γn,p1,p2
(.) on the sets Θ+

m and Θ+,iso
m .

θ̂m := arg min
θ′∈Θ+

m

γn,p1,p2
(θ′) and θ̂isom := arg min

θ′∈Θ+,iso
m

γn,p1,p2
(θ′) , (7)

where A stands for the losure of A. We further disuss the onnetion between θ̂m and θ̂m,ρ1
in

Setion 3.

Given a subolletion of models M of M1 and a positive funtion pen : M → R
+
alled a

penalty, we selet a model as follows:

m̂ := arg min
m∈M

[
γn,p1,p2

(
θ̂m

)
+ pen(m)

]
and m̂iso := arg min

m∈M

[
γn,p1,p2

(
θ̂isom

)
+ pen(m)

]
. (8)

For short, we write θ̃ and θ̃iso for θ̂bm and θ̂isobmiso

. We disuss the hoie of the penalty funtion in

Setion 4.

2.3 Computational aspets

Sine the lattie Λ is a torus, the omputation of the estimators θ̂m is performed e�iently thanks

to the following lemma.

Lemma 2.1. For any p× p matrix A and for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2, let λ[i,j](A) be the

(i, j)-th term of two-dimensional disrete Fourier transform of the matrix A, i.e.

λ[i,j](A) :=

p1∑

k=1

p2∑

l=1

A[i,j] exp

[
2ιπ

(
ki

p1
+

jl

p2

)]
, (9)

where ι2 = −1. The onditional least-squares riterion γn,p1,p2
(θ′) simpli�es as

γn,p1,p2
(θ′) =

1

np21p
2
2

{ p1∑

i=1

p2∑

j=1

[1− λ[i,j](θ)]
2

[ n∑

k=1

λ[i,j] (Xk)λ[i,j] (Xk)

]}
.

A proof is given in Setion 8. Optimization of γn,p1,p2
(.) over the set Θ+

m is performed fastly

using the fast Fourier transform (FFT). Nevertheless, this is not the privilege of CLS estimators,

sine maximum likelihood estimators are also omputed fastly by FFT when Λ is a torus.

In Setion 5, we mention that the omputation of the CLS estimators θ̂m remains quite easy

when Λ is not a torus whereas likelihood maximization beomes intratable.

RR n° 6798



8 Verzelen

3 Theoretial results

Throughout this setion, Λ is assumed to be a toroidal square lattie and we note p its size. Let us
mention that the restrition to square latties made in [Ver09℄ allows to simplify the proofs but is

not neessary so that the theoretial results hold. In this setion, we �rst reall the original proe-

dure and we emphasize the di�erenes with the one de�ned in the previous setion. We also mention

a result of optimality. This will provide some insights for alibrating the penalty pen(.) in Setion 4.

Given ρ > 2 be a positive onstant, we de�ne the subsets Θ+
m,ρ and Θ+,iso

m,ρ by

Θ+
m,ρ :=

{
θ ∈ Θ+

m , ϕ
max

[Ip1p2
− C(θ)] < ρ

}
(10)

Θ+,iso
m,ρ :=

{
θ ∈ Θ+,iso

m , ϕ
max

[Ip1p2
− C(θ)] < ρ

}
.

Then, the orresponding estimators θ̂m,ρ and θ̂isom,ρ are de�ned as in (7), exept that we now onsider

Θ+
m,ρ instead of Θ+

m. Let us mention that the estimator θ̂m orresponds to the estimator θ̂m,ρ1

de�ned in [Ver09℄ Set.2.2 with ρ1 = +∞.

θ̂m,ρ := arg min
θ′∈Θ+

m,ρ

γn,p,p(θ
′) and θ̂isom,ρ := arg min

θ′∈Θ+,iso
m,ρ

γn,p,p(θ
′) .

Given a subolletion M of M1 and a penalty funtion pen(.), we selet the models m̂ρ and m̂iso

ρ

as in (8) exept that we use θ̂m,ρ and θ̂isom,ρ instead of θ̂m and θ̂isom . We also note θ̃ρ and θ̃isoρ for θ̂bmρ,ρ

and θ̂isobmiso

ρ ,ρ.

The only di�erene between the estimators θ̃ and θ̃ρ is that the largest eigenvalue of the prei-

sion matrix (Ip2 − C(θ̃)) is restrited to be smaller than ρ. We make this restrition in [Ver09℄ to

failitate the analysis.

In order to assess the performane of the penalized estimator θ̃ρ and θ̃isoρ , we use the predition

loss funtion l(θ1, θ2) de�ned by

l(θ1, θ2) :=
1

p2
tr [(C(θ1)− C(θ2))Σ(C(θ1)− C(θ2))] . (11)

As explained in [Ver09℄ Set.1.3, the loss l(θ1, θ2) expresses in terms of onditional expetation

l(θ1, θ2) = Eθ

{[
Eθ1

(
X [0,0]|XΛ\{0,0}

)
− Eθ2

(
X [0,0]|XΛ\{0,0}

)]2}
, (12)

where Eθ(.) stands for the expetation with respet to the distribution N (0, σ2(Ip1p2
− C(θ))−1).

Hene, l(θ̂, θ) orresponds the mean squared predition loss of X [0,0] given the other ovariates. A

similar loss funtion is also used by Song et al. [SFG08℄, when approximation Gaussian �elds by

GMRFs. For any neighborhood m ∈ M, we de�ne the projetion θm,ρ as the losest element of θ
in Θ+

m,ρ with respet to the loss l(., .).

θm,ρ := arg min
θ′∈Θ+

m,ρ

l(θ′, θ) and θisom,ρ := arg min
θ′∈Θ+,iso

m,ρ

l(θ′, θ) .

INRIA



Neighborhood seletion 9

We all the loss l(θm,ρ, θ) the bias of the set Θ
+
m,ρ. This implies that θ̂m,ρ annot perform better

than this loss.

Theorem 3.1. Let ρ > 2, K be a positive number larger than an universal onstant K0 and M be

a subolletion of M1. If for every model m ∈ M, it holds that

pen(m) ≥ Kρ2ϕ
max

(Σ)
dm + 1

np2
, (13)

then for any θ ∈ Θ+
, the estimator θ̃ρ satis�es

Eθ[l(θ̃ρ, θ)] ≤ L(K) inf
m∈M

[l(θm,ρ, θ) + pen(m)] , (14)

where L(K) only depends on K. A similar bound holds if one replaes θ̃ρ by θ̃isoρ , Θ+
by Θ+,iso

,

θm,ρ by θisom,ρ, and dm by disom .

Although we have assumed the orrelation is non-singular, the theorem still holds if the spatial

�eld is onstant. The nonasymptoti bound is provided in a slightly di�erent version in [Ver09℄. It

states that θ̃ρ ahieves a trade-o� between the bias and a variane term if the penalty is suitable

hosen. In Theorem 3.1, we use the penalty Kρ2ϕ
max

(Σ)(dm + 1)/(np2) instead of the penalty

Kρ2ϕ
max

(Σ)dm/(np2) stated in the previous paper. This makes the bound (14) simpler. Observe

that these two penalties yield the same model seletion sine they only di�er by a onstant. Let us

further disuss two points.

� In this paper, we use the estimator θ̃ rather than θ̃ρ. Given a olletion of models M, there

exists some �nite ρ > 2, suh that these two estimators oinide. Take for instane ρ =
supm∈M supθ∈Θ+

m
ϕmax(Ip1p2

−C(θ)). Admittedly, the so-obtained ρ may be large, espeially

if there are large models in M. The upper bound (14) on the risk therefore beomes worse.

Nevertheless, we do not think that the dependeny of (14) on ρ is sharp. Indeed , we illustrate

in Setion 6 that the risk of θ̃ exhibits good statistial performanes.

� Theorem 3.1 provides a suitable form of the penalty for obtaining orale inequalities. However,

this penalty depends on ϕ
max

(Σ) whih is not known in pratie. This is why we develop a

data-driven penalization method in the next setion.

4 Slope Heuristis

Let us introdue a data-driven method for alibrating the penalty funtion pen(.). It is based on

the so-alled slope heuristi introdued by Birgé and Massart [BM07℄ in the �xed design Gaussian

regression framework (see also [Mas07℄ Set.8.5.2). This heuristi relies on the notion of minimal

penalty. In short, assume that one knows that a good penalty has a form pen(m) = NF (dm)
(where dm is the dimension of the model and N is a tuning parameter). Let us de�ne m̂(N) the

seleted model as a funtion of N . There exists a quantity N̂
min

satisfying the following property: If

N > N̂
min

, the dimension of the seleted model dbm(N) is reasonable and if N < N̂
min

, the dimension

of the seleted model is huge. The funtion pen
min

(.) := N̂
min

F (.) is alled the minimal penalty.

In fat, a dimension jump ours for dbm(N) at the point N̂min

. Thus, the quantity N̂
min

is learly
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observable for real data sets. In their Gaussian framework, Birgé and Massart have shown that

twie the minimal penalty is nearly the optimal penalty. In other words, the model m̂ := m̂(2N̂
min

)
yields an e�ient estimator.

The slope heuristi method has been suessfully applied for multiple hange-point detetion

[Leb05℄. Appliations are also being developed in other frameworks suh as mixture models [MM08℄,

lustering [BCM08℄, estimation of oil reserves [Lep02℄, and genomi [Vil07℄.

If this method was originally introdued for �xed design Gaussian regression, Arlot and Massart

[AM09℄ have proved more reently that a similar phenomenon ours in the heterosedasti random-

design ase. In the GMRF setting, we are only able to partially justify this heuristi. For the sake

of simpliity, let us assume in the next proposition that the lattie Λ is a square of size p.

Proposition 4.1. Consider ρ > 2, and η < 1 and suppose that p is larger than some numerial

onstant p0. Let m
′
be the largest model in M1 that satis�es dm′ ≤

√
np2. For any model m ∈ M1,

we assume that

pen(m′)− pen(m) ≤ K1(1− η)σ2
{
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′ − dm
np2

, (15)

where K1 is a universal (onstant de�ned in the proof). Then, for any θ ∈ Θ+
m′,ρ, it holds that

P

{
dbmρ

> L
[√

np2 ∧ p2
]}

≥ 1

2
,

where L only depends on η, ρ, ϕ
min

(
Ip2 − C(θ)

)
, and ϕ

max

(
Ip2 − C(θ)

)
.

The proof is postponed to Setion 8. Let us de�ne

N1 := K1σ
2 {ϕ

min

(Ip1p2
− C(θ)) ∧ [ρ− ϕ

max

(Ip1p2
− C(θ))]} ,

and let us onsider penalty funtions pen(m) = N dm

np1p2
for some N > 0. The proposition states

that if N is smaller than N1, then the proedure selets a model of huge dimension with large

probability, i.e dbm(N) is huge. Alternatively, let us de�ne

N2 := K0
σ2ρ2

ϕ
min

(Ip1p2
− C(θ))

dm
np1p2

,

where the numerial onstantK0 is introdued in Theorem 3.1 in [Ver09℄. By Theorem 3.1, hoosing

N > N2 ensures that the risk of θ̃ρ ahieves a type-orale inequality and the dimension dbmρ(N) is

reasonable. The quantities N1 and N2 are di�erent espeially when the eigenvalues of (Ip1p2
−C(θ))

are far from 1. Sine we do not know the behavior of the seleted model m̂ρ(N) when N is between

N1 and N2, we are not able to really prove a dimension jump as the �xed design Gaussian regression

framework. Besides, we have mentioned in the preeding setion that we are more interested in the

estimator θ̃ than θ̃ρ. Nevertheless, we learly observe in simulation studies a dimension jump for

some N between N1 and N2 even if we use the estimators θ̂m instead of θ̂m,ρ. This suggests that

the slope heuristi is still valid in the GMRF framework.

Algorithm 4.1. (Data-driven penalization with slope heuristi). Let M be a subolletion of M1.

1. Compute the seleted model m̂(N) as a funtion of N > 0

m̂(N) ∈ arg min
m∈M

{
γn,p1,p2

(
θ̂m

)
+N

dm
np1p2

}
.
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2. Find N̂
min

> 0 suh that the jump dbm
“
[ bN

min

]
−

” − dbm
“
[ bN

min

]
+

”
is maximal.

3. Selet the model m̂ = m̂(2N̂
min

).

The di�erene f(x−) − f(x+) measures the disontinuity of a funtion f at the point x. Step

2 may need to introdue huge models in the olletion M all the other ones being onsidered as

�reasonably small�. As the funtion m̂(.) is pieewise linear with at most Card(M) jumps, so that

steps 1-2 have a omplexity O (Card(M))
2
. We refer to App.A.1 of [AM09℄ for more details on the

omputational aspets of steps 1 and 2. Let us mention that there are other ways of estimating

N̂
min

than hoosing the largest jump as desribed in [AM09℄ App.A.2. Finally, the methodology

desribed in this setion straightforwardly extends to the ase of isotropi GMRFs estimation by

replaing m̂(N) by m̂iso(N) and dm by disom .

In onlusion, the neighborhood seletion proedure desribed in Algorithm 4.1 is ompletely

data-driven and does not require any prior knowledge on the matrix Σ. Moreover, its omputational

burden remains small. We illustrate its e�ieny in Setion 6.

5 Extension to non-toroidal latties

It is often arti�ial to onsider the �eld X as stationary on a torus. However, we needed this

hypothesis for deriving nonasymptoti properties of the estimator θ̃ in [Ver09℄. In many appliations,

it is more realisti to assume that we observe a small window of a Gaussian �eld de�ned on the

plane Z
2
. If we are unable to prove nonasymptoti risk bounds in this new setting. Nevertheless,

Lakshman and Derin have shown in [LD93℄ that there is no phase transition within the valid

parameter spae for GMRFs de�ned on the plane Z
2
. Let us brie�y explain what this means:

onsider a GMRF de�ned on a square lattie of size p, but only observed on a square lattie of

size p′. The absene of phase transition implies the distribution of this �eld observed on this �xed

window of size p′ does not asymptotially depend on the bound onditions when p goes to in�nity.

Consequently, it is reasonable to think that our estimation proedure still performs well to the prie

of slight modi�ations. In the sequel, we assume that the �eld X is de�ned on Z
2
, but the data X

still orrespond to n independent observations of the �eld X on the window Λ of size p1 × p2. The
onditional distribution of X [0,0] given the remaining ovariates now deomposes as

X [0,0] =
∑

(i,j)∈Z2\{(0,0)}
θ[i,j]X [i,j] + ǫ[0,0] , (16)

where θ[.,.] is an �in�nite� matrix de�ned on Z
2
and where ǫ[0,0] is a entered Gaussian variable of

variane σ2
independent of (X [i,j])(i,j)∈Λ\{(0,0)}. The distribution of the �eld X is uniquely de�ned

by the funtion θ and positive number σ2
. The set Θ+,∞

of valid parameter for θ is now de�ned

using the spetral density funtion. We refer to Rue and Held [RH05℄ Set.2.7 for more details.

De�nition 5.1. A funtion θ : Z2 → R belongs to the set Θ+,∞
if it satis�es the three following

onditions:

1. θ[0,0] = 0.

2. For any (i, j) ∈ Z
2
, θ[i,j] = θ[−i,−j].
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12 Verzelen

3. For any (ω1, ω2) ∈ [0, 2π)2, 1−∑
(i,j)∈Z2 θ[i,j] cos (iω1 + jω2) > 0.

Similarly, we de�ne the set Θ+,∞,iso
for the isotropi GMRFs on the latties. As done in Setion

2 for toroidal latties, we now introdue the parametri parameter sets. For any modelm ∈ M1, the

set Θ+,∞
m refers to the subset of matries θ in Θ+,∞

whose support is inluded in m. Analogously,

we de�ne the parameter set Θ+,∞,iso
m orresponding to isotropi GMRFs.

We annot diretly extend the CLS empirial ontrast γn,p1,p2
(.) de�ned in (6) in this new

setting beause we have to take the edge e�et into aount. Indeed, if we want to ompute

the onditional regression of Xi[j1,j2], we have to observe all its neighbors with respet to m, i.e.

{Xi[j1+l1,j2+l2], (l1, l2) ∈ m}. In this regard, we de�ne the sublattie Λm for any model m ∈ M1.

Λm := {(i1, i2) ∈ Λ , (m+ (i1, i2)) ⊂ Λ} ,

where (m + (i, j)) denotes the set m of nodes translated by (i, j). For instane, if we onsider the
model m1 with four nearest neighbors, the edge e�et size is one and Λm ontains all the nodes

that do not lie on the border. The model m3 with 12 nearest neighbors yields an edge e�et of

size 2 and Λm ontains all the nodes in Λ, exept those whih are at a (eulidean) distane stritly

smaller than 2 from the border.

For any model m ∈ M1, any θ′ ∈ Θ+,∞
m , and any sublattie Λ′ ⊂ Λm, we de�ne γ

Λ′

n,p1,p2
(.) as an

analogous of γn,p1,p2
(.) exept that it only relies on the onditional regression of the nodes in Λ′

.

γΛ′

n,p1,p2
(θ′) :=

1

nCard(Λ′)

n∑

i=1

∑

(j1,j2)∈Λ′

(
Xi[j1,j2] −

∑

(l1,l2)∈m

θ′[l1,l2]Xi[j1+l1,j2+l2]

)2

.

Then, the CLS estimators θ̂Λ
′

m and θ̂Λ
′,iso

m are de�ned by

θ̂Λ
′

m ∈ arg min
θ′∈Θ+,∞

m

γΛ′

n,p1,p2
(θ′) and θ̂Λ

′,iso
m ∈ arg min

θ′∈Θ+,∞,iso
m

γΛ′

n,p1,p2
(θ′) .

Contrary to θ̂m, the estimator θ̂Λm
m is not neessarily unique espeially if the size of Λm is smaller

than dm. Let us mention that it is quite lassial in the literature to remove nodes to take edge

e�ets or missing data into aount (see e.g. [Guy95℄ Set.4.3). We annot use anymore fast

Fourier transform for omputing the parametri estimator. Nevertheless, the estimators θ̂Λ
′

m are

still omputationally amenable, sine they minimizes a quadrati funtion on the losed onvex set

Θ+,∞
m .

Suppose we are given a subolletion M of M1. We note ΛM the smallest sublattie among

the olletion of latties Λm with m ∈ M. In order to selet the neighborhood m̂, we ompute

the estimators θ̂ΛM

m and minimize the riteria γΛM

n,p1,p2
(θ̂ΛM

m ) penalized by a quantity of the order

dm/(nCard(ΛM)). We ompute the quantities γΛM

n,p1,p2
(θ̂ΛM

m ) instead of γΛm
n,p1,p2

(θ̂Λm
m ) sine we want

to ompare the adequation of the models using the same data set.

We now desribe a data-driven model seletion proedure for hoosing the neighborhood. It is

based on the slope heuristi developed in the previous setion.

Algorithm 5.1. (Data-driven penalization for non-toroidal lattie).

1. Compute the seleted model m̂(N) as a funtion of N > 0

m̂(N) ∈ arg min
m∈M

{
γΛM

n,p1,p2
(θ̂ΛM

m ) +N
dm

nCard(ΛM)

}
.
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2. Find N̂
min

> 0 suh that the jump dbm
“
[ bN

min

]
−

” − dbm
“
[ bN

min

]
+

”
is maximal.

3. Selet the model m̂ = m̂(2N̂
min

).

4. Compute the estimator θ̂Λcm
bm .

This proedure straightforwardly extends to the ase of isotropi GMRFs estimation by replaing

m̂(N) by m̂iso(N) and dm by disom . For short, we write θ̃ (resp. θ̃iso) for θ̂Λcm
bm (resp. θ̂Λcm,iso

bm ). As for

Algorithm 4.1, it is advised to introdue huge models in the olletion M in order to better detet

the dimension jump. However, when the dimension of the models inreases the size of Λm dereases

and the estimator θ̂Λm
m may beome unreliable. The method therefore requires a reasonable number

of data. In pratie, Λ should not ontain less than 100 nodes.

6 Simulation study

In the �rst simulation experiment, we ompare the e�ieny of our proedure with penalized maxi-

mum likelihood methods when the �eld is a torus. In the seond and third studies, we onsider the

estimation of a Gaussian �eld observed on a retangle. The alulations are made with R [R D08℄.

Throughout these simulations, we only onsider isotropi estimators.

6.1 Isotropi GMRF on a torus

First, we onsider X an isotropi GMRF on the torus Λ of size p = p1 = p2 = 20. There are

therefore 400 points in the lattie. The number of observations n equals one and the onditional

variane σ2
is one. We introdue a radius r :=

√
17. Then, for any number φ > 0, we de�ne the

p× p matrix θφ as:





θφ[0,0] := 0 ,
θφ[i,j] := φ if |(i, j)|t ≤ r and (i, j) 6= (0, 0) ,
θφ[i,j] := 0 if |(i, j)|t > r .

In pratie, we set φ to 0, 0.0125, 0.015, and 0.0175. Observe that these hoies onstrain ‖θφ‖1 < 1.
The matrix θφ therefore belongs to the set Θ+,iso

m10
of dimension 10 introdued in De�nition 2.1.

First simulation experiment. In Setion 3, we have advoated the use of the estimator θ̃
instead of θ̃ρ, although theoretial results are only available for θ̃ρ with ρ < ∞. We reall that

θ̃ = θ̃ρ with ρ = ∞. We hek in this simulation study that the performanes of θ̃ and θ̃ρ with

di�erent values of ρ are similar.

We onsider the olletion of neighborhoodsM := {m0,m1, . . . ,m20} whose maximal dimension

disom20
is 21. The estimator θ̃iso is built using the CLS model seletion proedure introdued in

Algorithm 4.1. The estimators θ̃isoρ are omputed similarly, exept that they are based on the

parametri estimators θ̂isom,ρ (Set. 3) instead of θ̂isom .

The Gaussian �eld X with φ = 0.015 is simulated by using the fast Fourier transform. The

quality of the estimations is assessed by the predition loss funtion l(., .) de�ned in (11). The

experiments are repeated 1000 times. For ρ = 2, 4, 8, we evaluate the risks Eθφ [l(θ̃iso, θφ)] and

Eθφ [l(θ̃isoρ , θφ)] as well as the orresponding empirial 95% on�dene intervals by a Monte-Carlo
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method. We also estimate the risks of θ̂isom and θ̂isom,ρ for eah model m ∈ M. It then allows to eval-

uate the orale risks Eθφ [l(θ̂isom∗,ρ, θ
φ)] and the risk ratios Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ

φ)]. The risk

ratio measures how well the seleted model m̂iso

performs in omparison to the �best� model m∗
.

Moreover, the risk ratio roughly illustrates the orale type inequality presented in Theorem 3.1. In-

deed, the in�mum infm∈M[l(θm,ρ, θ)+pen(m)] in (14) is a good measure of the risk Eθφ [l(θ̂isom∗,ρ, θ
φ)]

as explained in [Ver09℄ Set.4. The results are given in Table 1. They orroborate that the esti-

mators θ̃iso and θ̃isoρ perform similarly. Moreover, the risk ratios Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)]

orrespond to the ratios

ρ 2 4 8 ∞
Eθφ [l(θ̃isoρ , θφ)]× 102 4.1± 0.1 4.2± 0.2 4.2± 0.1 4.2± 0.3

Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)] 1.3± 0.1 1.3± 0.1 1.3± 0.1 1.3± 0.2

Table 1: First simulation study. Estimates and 95% on�dene intervals of the risks Eθφ [l(θ̃iso, θφ)],

Eθφ [l(θ̃isoρ , θφ)], and of the ratios Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] and Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)]

with φ = 0.015 and ρ = 2, 4, 8.

Seond simulation experiment. We ompare the e�ieny of the method with two alter-

native model seletion proedures. For eah of them, we use the olletion M as in the previous

experiment. The two alternative proedures are based on likelihood maximization. In this regard,

we �rst de�ne the parametri maximum likelihood estimator θ̂mle

m for any model m ∈ M,

(
θ̂mle

m , σ̂mle

m

)
:= arg min

θ′∈Θ+,iso
m ,σ′

−Lp(θ
′, σ′,X) ,

where Lp(θ
′,X) stands for the log-likelihood at the parameter θ′. We then selet a modelm applying

either an AIC-type riterion [Aka73℄ or a BIC-type riterion [Sh78℄:

m̂AIC := arg min
m∈M

{
−2Lp(θ̂

mle

m , σ̂mle

m ,X) + 2disom

}
,

m̂BIC := arg min
m∈M

{
−2Lp(θ̂

mle

m , σ̂mle

m ,X) + log(p2)disom

}
.

For short, we write θ̂AIC and θ̂BIC for the two obtained estimators θ̂mle

bmAIC

and θ̂mle

bmBIC

. Although AIC

and BIC proedures are not justi�ed in this setting, we still apply them as they are widely used

in many frameworks. Their omputation is performed e�iently using the fast Fourier transform

desribed in Setion 2.3.

The experiments are repeated 1000 times. The Gaussian �eld is simulated using the fast Fourier

transform. The quality of the estimations is assessed by the predition loss funtion l(., .). For any

φ and any of these three estimators, we evaluate the risks Eθφ [l(θ̂AIC, θφ)], Eθφ [l(θ̂BIC, θφ)], and

Eθφ [l(θ̃iso, θφ)] as well as the orresponding empirial 95% on�dene intervals by a Monte-Carlo

method. We also estimate the risk ratios Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] The results are given in

Table 2.
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φ× 102 0 1.25 1.5 1.75

Eθφ [l(θ̂AIC, θφ)]× 102 1.2± 0.2 3.1± 0.2 4.3± 0.2 6.4± 0.2

Eθφ [l(θ̂BIC, θφ)]× 102 0.01± 0.01 1.9± 0.1 3.7± 0.1 9.7± 0.3

Eθφ [l(θ̃iso, θφ)]× 102 1.6± 0.2 3.2± 0.2 4.2± 0.1 7.2± 0.3

Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] +∞ 1.9± 0.7 1.3± 0.2 1.5± 0.3

Table 2: Seond simulation study. Estimates and 95% on�dene intervals of the risks

Eθφ [l(θ̂AIC, θφ)], Eθφ [l(θ̂BIC, θφ)], and Eθφ [l(θ̃iso, θφ)] and of the ratio Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)].

The BIC riterion outperforms the other proedures when φ = 0, 0.0125, or 0.015 but behaves

bad for a large φ. Indeed, the BIC riterion has a tendeny to overpenalize the models. For the

two �rst values of φ the orale model in M is m0. Hene, overpenalizing inreases the performane

of estimation in this ase. However, when φ inreases, the dimension of the orale model is larger

and BIC therefore selets too small models.

In ontrast, AIC and the CLS estimator exhibit similar behaviors. If we forget the ase φ = 0
for whih the orale risk is 0, the risk of θ̃iso is lose to the risk of the orale model (the ratio is

lose to one). Hene, the neighborhood hoie for θ̃iso is almost optimal.

In onlusion, θ̃iso or θ̂AIC both exhibit good performanes for estimating the distribution of a

regular Gaussian �eld on a torus. The strength of our neighborhood seletion proedure lies in the

fat it easily generalizes to non-toroidal latties as illustrated in the next setion.

6.2 Isotropi Gaussian �elds on Z
2

First simulation experiment. We now onsider X an isotropi Gaussian �eld de�ned on Z
2
but

only observed on a square Λ of sizes p = p1 = p2 = 20 or p = p1 = p2 = 100. This orresponds to
the setting desribed in Setion 5. The variane of X [0,0] is set to one and the distribution of the

�eld is therefore uniquely de�ned by its orrelation funtion ρ(k, l) := orr(X [k,l], X [0,0]). Again, the
number of repliations n is hosen to be one. In the �rst experiment, we use four lassial orrelation

funtions: exponential, spherial, irular, and Matérn (e.g. [Cre93℄ Set.2.3.1 and [Mat86℄).

Exponential: ρ(k, l) = exp

(
−d(k, l)

r

)

Cirular: ρ(k, l) =





1− 2
π

[
d(k,l)

r

√
1−

(
d(k,l)

r

)2

+ sin−1

(√
d(k,l)

r

)]
if d(k, l) ≤ r

0 else

Spherial: ρ(k, l) =

{
1− 1.5 d(k,l)

r + 0.5
(
d(k,l)

r

)3

if d(k, l) ≤ r

0 else

Matérn: ρ(k, l) =
1

2κ−1Γ(κ)

(
d(k, l)

r

)κ

Kκ

(
d(k, l)

r

)
,

where d(k, l) denotes the eulidean distane from (k, l) to (0, 0) and Kκ(.) is the modi�ed Bessel

funtion of order κ. In a nutshell, the parameter r represents the range of orrelation, whereas κ
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may be regarded as a smoothness parameter for the Matérn funtion. In this simulation experiment,

we set r to 3. When onsidering the Matérn model, we take κ equal to 0.05, 0.25, 0.5, 1, 2, and 4.
The Gaussian �elds are simulated using the funtionGaussRF in the libraryRandomFields [Sh09℄.

For eah of experiments, we ompute the estimator θ̃iso based on Algorithm 5.1 with the olletion

M := {m ∈ M1 , d
iso

m ≤ 18}. Sine the lattie Λ is not a torus, methods based on likelihood

maximization exhibit a prohibitive omputational burden. Consequently, we do not use MLE in

this experiment. We shall ompare the e�ieny of θ̃iso with a variogram-based estimation method.

We reall that the linear ombination

∑
(i,j)∈Λ\{(0,0)} θ[i,j]X [i,j] is the kriging preditor of X [0,0]

given the remaining variables (Equation (1)). A natural method to estimate θ in this spatial setting

amounts to estimating the variogram of the observed Gaussian �eld and then performing ordinary

kriging at the node (0, 0). More preisely, we �rst estimate the empirial variogram by applying

the modulus estimator of Hawkes and Cressie (e.g. [Cre93℄ Eq.(2.2.8)) to the observed �eld of 400
points. Afterwards, we �t this empirial variogram to a variogram model using the reweighted least-

squares suggested by Cressie [Cre85℄. This proedure therefore requires the hoie of a partiular

variogram model. In the �rst simulation study, we hoose the model that has generated the data.

Observe that this method is not adaptive sine it requires the knowledge of the variogram model.

In pratie, we use Library geoR [RJD01℄ implemented in R [R D08℄ to estimate the parameters

r, var(X [0,0]) and eventually κ of the variogram model. Then, we ompute the estimator θ̂V by

performing ordinary kriging at the enter node of Λ. For eah of these estimations, we assume

that the variogram model is known. For omputational reasons, we use a kriging neighborhood of

size 11× 11 that ontains 120 points. Previous simulations have indiated that this neighborhood

hoie does not derease the preision of the estimation. For the Matèrn model with κ = 2 and 4,
the ovariane is almost singular. There are sometimes inversion di�ulties and we therefore use

kriging neighborhood of respetive size 7× 7 and 3× 3.
We again assess the performanes of the proedures using the loss l(., .). Even if this loss is de-

�ned in (11) for a torus, the alternative de�nition (12) learly extends to this non-toroidal setting.

Consequently, the loss l(θ̂, θ) measures the di�erene between the predition error of X [0,0] when

using

∑
(i,j)∈Λ\{(0,0)} θ̂[i,j]X [i,j] and the predition error of X [0,0] when using the best preditor

E[X [0,0]|(X [i,j])(i,j)∈Λ\{(0,0)}]. In other words, l(θ̂, θ) is the di�erene of the kriging error made with

the estimated parameters θ̂ and the kriging error made with the true parameter θ.

The experiments are repeated 1000 times. For any of the four orrelation models previously

mentioned, we evaluate the risks Eθ[l(θ̃
iso, θ)] and Eθ[l(θ̂

V , θ)] by Monte-Carlo. In order to assess

the e�ieny of the seletion proedure, we also evaluate the risk ratio

Risk.ratio =
Eθ[l(θ̂

ΛM,iso
bm , θ)]

Eθ[l(θ̂
ΛM,iso
m∗ , θ)]

.

As in Setion 6.1, the orale risk E[l(θ̂ΛM,iso
m∗ , θ)] is evaluated by taking the minimum of the evalua-

tions of the risks E[l(θ̂ΛM,iso
m , θ)] over all models m ∈ M. Results of the simulation experiment are

given in Table 3 and 4.

Observe that none of the �elds onsidered in this study are GMRFs. Here, the GMRF models

should only be viewed as a olletion of approximation sets of the true distribution. This simulation

experiment is in the spirit of Rue and Tjelmeland's study [RT02℄. However, there are some major

di�erenes. Contrary to them, we perform estimation and not only approximation. Moreover, our
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lattie is not a torus. Finally, we use our predition loss l(., .) to assess the performane, whereas

they ompare the orrelation funtions.

Model Exponential Cirular Spherial

Eθ[l(θ̂
V , θ]× 102 0.08± 0.01 9.1± 0.5 2.9± 0.1

Eθ[l(θ̃
iso, θ)]× 102 1.08± 0.01 6.5± 0.1 3.4± 0.1

Risk.ratio 3.6± 0.4 1.4± 0.1 1.6± 0.1

Table 3: Estimates and 95% on�dene intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃

iso, θ)] and of

Risk.ratio for the exponential, irular and spherial models with p = 20.

κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 103 91.8± 0.7 80.0± 0.2 18.0± 0.1 2.5± 0.1

Eθ[l(θ̃
iso, θ)]× 103 2.24± 0.01 0.62± 0.01 0.33± 0.01 0.08± 0.01

Risk.ratio 1.3± 0.1 1.7± 0.2 1.5± 0.2 1.3± 0.1

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 6.3± 1.1 0.011± 0.001

Eθ[l(θ̃
iso, θ)]× 104 1.9± 0.1 0.17± 0.01

Risk.ratio 2.6± 0.2 1.1± 0.1

Table 4: Estimates and 95% on�dene intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃

iso, θ)] and of

Risk.ratio for Matérn model with p = 100.

Comments on Tables 3 and 4. In both tables, the ratio Eθ[l(θ̂
ΛM,iso
bm , θ)]/Eθ[l(θ̂

ΛM,iso
m∗ , θ)] stays

lose to one. Hene, the model seletion is almost optimal from an e�ieny point of view. In most

of the ases, the estimator θ̃iso outperforms the estimator θ̂V based on geostatistial methods. This

is partiularly striking for the Matérn orrelation model beause in that ase the omputation of

θ̂V requires the estimation of the additional parameter κ. Indeed, let us reall that the exponential
model and the Matérn model with κ = 0.5 are equivalent. For κ = 0.5, the risk of θ̂V is 100 times

higher when κ has to be estimated than when κ is known.

Seond simulation experiment. The kriging estimator θ̂V requires the knowledge or the

hoie of a orrelation model. In the seond simulation experiment, the orrelation of X is the

Matèrn funtion with range r = 3 and κ = 0.05. The size p of the lattie is hosen to be 100. We

now estimate θ using di�erent variogram models, namely the exponential, the irular, the spherial

and the Matèrn model. The estimator θ̃iso for suh a �eld was already onsidered in Table 4. The

experiment is repeated 1000 times.

Comments on Table 5. One observes that irular and spherial models yield worse perfor-

manes than Matèrn model. In ontrast, the exponential model behaves better. The hoie of the

variogram model therefore seems ritial to get good performanes. The model seletion estimator

θ̃iso (Table 4) exhibits a smaller risk than the exponential model.
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Model Exponential Cirular Spherial Matèrn

Eθ[l(θ̂
V , θ)]× 103 48.3± 0.4 461± 16 293± 7 91.8± 0.7

Table 5: Estimates and 95% on�dene intervals of the risks Eθ[l(θ̂
V , θ)] for Matérn model with

κ = 0.05 when using the exponential, irular, spherial, and Matèrn models with p = 100.

6.3 Anisotropi Gaussian �elds on Z
2

We still onsider X a Gaussian �eld observed on a square Λ of size 100 × 100. Contrary to the

previous study, the �eld is not assumed to be isotropi. To model the geometri anisotropy, we

suppose that X is an isotropi �eld on a deformed lattie Λ′
. The transformation onsists in multi-

plying the original oordinates by a rotation R and a shrinking matrix T . For the sake of simpliity,

we take the identity for R. The shrinking matrix T is de�ned by the anisotropy ratio (Ani.ratio).

It orresponds to the ratio between the diretions with smaller and greater ontinuity in the �eld

X , i.e the ratio between maximum and minimum ranges. In this experiment, X follows a Matèrn

orrelation with range r = 3, κ = 0.05, 0.25, 0.5, 1, 2, and 4 and Ani.ratio=2 or 5. We ompute the

anisotropi estimator θ̃ based on Algorithm 5.1 with the olletion M := {m ∈ M1, dm ≤ 28}. As
a benhmark, we also ompute the variogram-based estimator θ̂V based on the Matèrn model. In

order to ompute θ̂V , we assume that we know the anisotropy ratio and the anisotropy diretions.

Observe that the estimator θ̃ does not require any assumption on the form of anisotropy, while θ̂V

uses the geometri parameters of the anisotropy.

The experiments are repeated 1000 times. We evaluate the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and

the risk ratio de�ned by

Risk.ratio =
Eθ[l(θ̂

ΛM

bm , θ)]

Eθ[l(θ̂
ΛM

m∗ , θ)]
.

κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 102 15.8± 0.1 13.9± 0.1 3.3± 0.1 0.30± 0.01

Eθ[l(θ̃, θ)]× 102 0.65± 0.01 0.20± 0.01 0.089± 0.001 0.17± 0.01
Risk.ratio 1.2± 0.1 1.1± 0.1 1.1± 0.1 1.7± 0.2

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 9.8± 0.1 0.020± 0.001

Eθ[l(θ̃
iso, θ)]× 104 45.0± 0.1 4.3± 0.1

Risk.ratio 2.9± 0.2 22.3± 1.7

Table 6: Estimates and 95% on�dene intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and of

Risk.ratio for Matérn model and Ani.ratio= 2.

Comments on Tables 6 and 7. Exept for the ases κ = 2, 4, the estimator θ̃ performs better

than the variogram-based estimator θ̂V , although θ̂V uses the true anisotropy parameters. For

κ = 4, the neighborhood seletion is no performed e�iently (the risk ratio is large).

INRIA



Neighborhood seletion 19

κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 102 11.2± 0.1 14.9± 0.1 3.7± 0.1 2.9± 0.1

Eθ[l(θ̃, θ)]× 102 0.66± 0.1 0.40± 0.01 0.081± 0.001 0.14± 0.01
Risk.ratio 1.1± 0.1 1.1± 0.1 1.2± 0.1 3.4± 0.8

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 30.6± 0.1 0.22± 0.01

Eθ[l(θ̃
iso, θ)]× 104 38.0± 0.1 39.6± 0.1

Risk.ratio 2.1± 0.1 9.0± 1.4

Table 7: Estimates and 95% on�dene intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and of

Risk.ratio for Matérn model and Ani.ratio= 5.

7 Disussion

In this paper, we have extended a neighborhood seletion proedure introdued in [Ver09℄. On the

one hand, an algorithm is provided for tuning the penalty in pratie. On the other hand, the new

method also handles non-toroidal latties. The omputational omplexity remains reasonable even

when the size of the lattie is large.

In the ase of stationary �elds on a torus, our neighborhood seletion proedure exhibits a

omputational burden and statistial performanes analogous to the AIC proedure. Even if AIC

has not been analyzed from an e�ieny point of view, this suggests that AIC may ahieve an

orale inequality in this setting. Moreover, we have empirially heked that θ̃ performs almost as

well as the orale model sine the orale ratio E[l(θ̃, θ)]/E[l(θ̂m∗ , θ)] remains lose to one.

The strength of this neighborhood seletion proedure lies in the fat it easily extends to non-

toroidal latties. We have illustrated that our method often outperforms variogram-based estimation

methods in terms of the mean-squared predition error. Moreover, the proedure behaves almost as

well as the orale. In ontrast, variogram-based proedures may perform well for some ovarianes

struture but also yield terrible results for other ovariane strutures. These results illustrate the

adaptivity of the neighborhood seletion proedure.

In many statistial appliations, Gaussian �elds (or Gaussian Markov random �elds) are not

diretly observed. For instane, Aykroyd [Ayk98℄ or Dass and Nair [DN03℄ use ompound Gaussian

Markov random �elds to aount for non stationarity and steep variations. The wavelet transform

has emerged as a powerful tool in image analysis. The wavelet oe�ients of an image are sometimes

modeled using hidden Markov models [CNB98, PSWS03℄. More generally, the suess of the GMRFs

is mainly due to the use of hierarhial models involving latent GMRFs [RMC09℄. The study and the

implementation of our penalization strategy for seleting the omplexity of latent Markov models

is an interesting diretion of researh.

8 Proofs

Let us introdue some notations that shall be used throughout the proofs. For any 1 ≤ k ≤ n, the
vetor X

v
k denotes the vetorialized version of the k-th sample of X . Moreover, X

v
is the matrix
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of size p1p2 × n of the n realisations of the vetor X
v
k. Throughout these proofs, L,L1, L2 denote

onstants that may vary from line to line. The notation L(.) spei�es the dependeny on some

quantities. Finally, the γ(.) funtion stands for an in�nite sampled version of the CLS riterion

γn,p1,p2
(.): γ(.) := E[γn,p1,p2

(.)].

8.1 Proof of Lemma 2.1

Let us provide an alternative expression of γn,p1,p2
(θ′) in term of the fator C(θ′) and the empirial

ovariane matrix XvXv∗
.

γn,p1,p2
(θ′) =

1

np1p2
tr

[
(Ip1p2

− C(θ′))XvXv∗(Ip1p2
− C(θ′))

]
. (17)

This is justi�ed in [Ver09℄ Set.2.2.

Lemma 8.1. There exists an orthogonal matrix P whih simultaneously diagonalizes every p1p2 ×
p1p2 symmetri blok irulant matries with p2 × p2 bloks. Let θ be a matrix of size p1 × p2 suh

that C(θ) is symmetri. The matrix D(θ) = P ∗C(θ)P is diagonal and satis�es

D(θ)[(i−1)p2+j,(i−1)p2+j] =

p1∑

k=1

p2∑

l=1

θ[k,l] cos [2π(ki/p1 + lj/p2)] , (18)

for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2.

This lemma is proved as in [RH05℄ Set.2.6.2 to the prie of a slight modi�ation that takes

into aount the fat that P is orthogonal and not unitary. The di�erene omes from the fat

that ontrary to Rue and Held we also assume that C(θ) is symmetri. Lemma 8.1 states that

all symmetri blok irulant matries are simultaneously diagonalizable. Observe that for any

1 ≤ i ≤ p1 and 1 ≤ j ≤ p2, it holds that D(θ)[(i−1)p2+j,(i−1)p2+j] = λ[i,j](θ) sine θ[k,l] = θ[p1−k,p2−l].

Hene, Expression (17) beomes

γn,p1,p2
(θ′) =

1

np1p2

{ p1∑

i=1

p2∑

j=1

[1− λ[i,j](θ)]
2

[ n∑

k=1

[P ∗
X

v
k(X

v
k)

∗P ] [(i−1)p2+j,(i−1)p2+j]

]}
,

where X
v
k is the vetorialized version of the k-th observation of the �eld X . Straightforward

omputations allow us to prove that the quantities

(P ∗
X

v
k(X

v
k)

∗P ) [(i−1)p2+j,(i−1)p2+j] + (P ∗
X

v
k(X

v
k)

∗P ) [(p1−i−1)p2+p2−j,(p1−i−1)p2+p2−j]

and

1√
p1p2

λ[i,j](Xv
k)λ[i,j](Xv

k) +
1√
p1p2

λ[p1−i,p2−j](Xv
k)λ[p1−i,p2−j](Xv

k)

are equal for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. Here, the entries of the matrix λ(.) are taken

modulo p1 and p2 and the entries of [P ∗
X

v
k(X

v
k)

∗P ] are taken modulo p1p2. The result of Lemma

2.1 follows.
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8.2 Proof of Proposition 4.1

Proof of Proposition 4.1. We only onsider the anisotropi ase, sine the proof for isotropi esti-

mation is analogous. For any model m ∈ M1, we de�ne

∆(m,m′) := γn,p,p

(
θ̂m,ρ

)
+ pen(m)− γn,p,p

(
θ̂m′,ρ

)
− pen(m′) .

We aim at showing that with large probability, the quantity ∆(m,m′) is positive for all small

dimensional models m. Hene, we would onlude that the dimension of m̂ is large. In this regard,

we bound the deviations of the di�erenes

γn,p,p

(
θ̂m,ρ

)
− γn,p,p

(
θ̂m′,ρ

)
=

[
γn,p,p

(
θ̂m,ρ

)
− γn,p,p (θm,ρ)

]
+

[
γn,p,p (θm,ρ)− γn,p,p (θ)

]

+
[
γn,p,p(θ) − γn,p,p

(
θ̂m′,ρ

)]
.

Lemma 8.2. Let K2 be some universal onstant that we shall de�ne in the proof. With probability

larger than 3/4,

γn,p,p(θ)− γn,p,p(θm,ρ) ≤
K2

2
ρ2ϕ

max

(Σ)
dm ∨ 1

np2

and

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ K2

2
ρ2ϕ

max

(Σ)
dm
np2

for all models m ∈ M1.

Lemma 8.3. Assume that p is larger than some numerial onstant p0. With probability larger

than 3/4, it holds that

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ K3σ
2
{
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′

np2
,

where K3 is a universal onstant de�ned in the proof.

Let us take K1 to be exatly K3. Gathering the two last lemma with Assumption (15), there

exists an event Ω of probability larger than 1/2 suh that

∆(m,m′) ≥
σ2

np2

{
K1ηdm′

[
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]]
−K2

(dm∨1)ρ2

ϕ
min

(Ip2−C(θ))

}
,

for all models m ∈ M1. Thus, onditionally to Ω, ∆(m,m′) is positive for all models m ∈ M1 that

satisfy

dm ∨ 1

dm′

≤ K3η

K2ρ2
ϕ
min

(
Ip2 − C(θ)

) {
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]}
.

By Lemma 8.7 in [Ver09℄, the dimension dm′
is larger than 0.5[

√
np2 ∧ (p2 − 1)]. We onlude that

dbmρ
∨1 ≥

[√
np2 ∧ p2 − 1

] K3η

K2ρ2
ϕ
min

(
Ip2 − C(θ)

) {
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]}
,

with probability larger than 1/2.
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Proof of Lemma 8.2. In the sequel, γn,p,p(.) denotes the di�erene γn,p,p(.) -γ(.). Given a model

m, we onsider the di�erene

γn,p,p (θ)− γn,p,p (θm,ρ) = γn,p,p (θ)− γn,p,p (θm,ρ)− l(θm,ρ, θ) .

Upper bounding the di�erene of γn,p,p therefore amounts to bounding the di�erene of γn,p,p. By

de�nition of γn,p,p and γ, it expresses as

γn,p,p (θ)− γn,p,p (θm,ρ) =
1

p2
tr
{[
(Ip2 − C(θ))2 − (Ip2 − C(θm,ρ))

2
] (

XvXv∗ − Σ
)}

.

The matries Σ, (Ip2 − C(θ)), and (Ip2 − C(θm,ρ)) are symmetri blok irulant. By Lemma 8.1,

they are jointly diagonalizable in the same orthogonal basis. If we note P an orthogonal matrix

assoiated to this basis, then C(θm,ρ), C(θ), and Σ respetively deompose in

C(θm,ρ) = P ∗D(θm,ρ)P , C(θ) = P ∗D(θ)P and Σ = P ∗D(Σ)P ,

where the matries D(θm,ρ), D(θ), and D(Σ) are diagonal.

γn,p,p (θ) − γn,p,p (θm,ρ) =

1

p2
tr

{
(D(θm,ρ)−D(θ))

[
2Ip2 −D(θ)−D(θm,ρ)

]
DΣ

(
YY∗ − Ip2

)}
, (19)

where the matrix Y is de�ned as P
√
Σ−1X

vP ∗
. Its omponents follow independent standard

Gaussian distributions. Sine the matries involved in (19) are diagonal, Expression (19) is a

linear ombination of entered χ2
random variables. We apply the following lemma to bound its

deviations.

Lemma 8.4. Let (Y1, . . . , YD) be i.i.d. standard Gaussian variables. Let a1, . . . , aD be �xed num-

bers. We set

‖a‖∞ := sup
i=1,...,D

|ai|, ‖a‖22 :=
D∑

i=1

a2i

Let T be the random variable de�ned by

T :=

D∑

i=1

ai
(
Y 2
i − 1

)
.

Then, the following deviation inequality holds for any positive x

P
[
T ≥ 2‖a‖2

√
x+ 2‖a‖∞x

]
≤ e−x .

This result is very lose to Lemma 1 of Laurent and Massart in [LM00℄. The only di�erene

lies in the fat that they onstrain the oe�ients ai to be non-negative. Nevertheless, their proof

easily extends to our situation. Let us de�ne the matrix a of size n× p2 as

ai[j] :=
DΣ[i,i] (D(θm,ρ)[i,i] −D(θ)[i,i]) (2−D(θ[i, i]−D(θm,ρ)[i, i])

np2
,
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for any 1 ≤ i ≤ n and any 1 ≤ j ≤ p2. Sine the matries I − C(θ) and I − C(θm,ρ) belong to

the set Θ+
ρ , their largest eigenvalue is smaller than ρ. By De�nition (11) of the loss funtion l(., .),

‖a‖2 ≤ 2ρ
√
ϕ
max

(Σ)l(θm,ρ, θ)/(np2) and ‖a‖∞ ≤ 4ρ2ϕ
max

(Σ)/(np2). By Applying Lemma 8.4 to

Expression (19), we onlude that

P

[
γn,p,p (θ)− γn,p,p (θm,ρ) ≥ l(θm,ρ, θ) + 12ρ2

ϕ
max

(Σ)

np2
x

]
≤ e−x ,

for any x > 0. Consequently, for any K > 0, the di�erene of γn,p,p(.) satis�es

γn,p,p(θ) − γn,p,p(θm,ρ) ≤
K

2
ρ2ϕ

max

(Σ)
dm ∨ 1

np2
,

simultaneously for all models m ∈ M1 with probability larger than 1−∑
m∈M1\∅ e

−K(dm∨1)/24
. If

K is hosen large enough, the previous upper bound holds on an event of probability larger than

7/8. Let us all K ′
2 suh a value.

Let us now turn to the seond part of the result. As previously, we deompose the di�erene of

empirial ontrasts

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
= γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
− l

(
θ̂m,ρ, θm,ρ

)

Arguing as in the proof of Theorem 3.1 in [Ver09℄, we obtain an upper bound analogous to Eq.(49)

in [Ver09℄

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ l(θ̂m,ρ, θm,ρ) + ρ2

{
sup

R∈BH′

m2,m2

1

p2
tr

[
RDΣ

(
YY∗ − Ip2

)]}2

.

The set BH′

m2,m2 is de�ned in the proof of Lemma 8.2 in [Ver09℄. Its preise de�nition is not really

of interest in this proof. Coming bak to the di�erene of γn,p,p(.), we get

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ ρ2



 sup

R∈BH′

m2,m2

1

p2
tr
[
RDΣ

(
YY∗ − Ip2

)]




2

.

We onseutively apply Lemma 8.3 and 8.4 in [Ver09℄ to bound the deviation of this supremum.

Hene, for any positive number α,

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ L1(1 + α/2)ρ2ϕ

max

(Σ)
dm
np2

. (20)

with probability larger than 1−exp[−L2

√
dm( α√

1+α/2
∧ α2

1+α/2 )]. Thus, there exists some numerial

onstant α0 suh that the upper bound (20) with α = α0 holds simultaneously for all models

m ∈ M1 \ ∅ with probability larger than 7/8. Choosing K2 to be the supremum of K ′
2 and

2L1(1 + α0/2) allows to onlude.
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Proof of Lemma 8.3. Thanks to the de�nition (17) of γn,p,p(.) we obtain

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) =
1

p2
sup

θ′∈Θ+

m′,ρ

tr
[
(C(θ′)− C(θ))

(
2Ip2 − C(θ)− C(θ′)

)
ΣZZ∗] ,

where the p2 × n matrix Z is de�ned by Z :=
√
Σ

−1
X

v
. We reall that the matries Σ, C(θ) and

C(θ′) ommute sine they are jointly diagonalizable by Lemma 8.1. Let (Θ+
m′,ρ − θ) be the set

Θ+
m′,ρ translated by θ. Sine C(θ) +C(θ′) = C(θ+ θ′), we lower bound the di�erene of γn,p,p(.) as

follows

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) =
1

p2
sup

θ′∈
“
Θ+

m′,ρ
−θ

” 2σ
2tr

[
C(θ′)ZZ∗]− tr

[
C(θ′)2ΣZZ∗]

≥ σ2

p2
sup

θ′∈
“
Θ+

m′,ρ
−θ

”
{
2tr

[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr

[
C(θ′)2ZZ∗]} .

Let us onsider Ψi1,j1 , . . . ,Ψid
m′

,jd
m′

a basis of the spae Θm′
de�ned in Eq.(14) of [Ver09℄. Let α

be a positive number that we shall de�ne later. We then introdue θ′ as

θ′ := ϕ
min

[
Ip2 − C(θ)

] α

p2

dm′∑

k=1

tr
[
C (Ψik,jk)ZZ

∗]Ψik,jk .

Sine θ is assumed to belong to Θ+
m′,ρ, the parameter θ′ belongs to (Θ+

m′,ρ − θ) if

ϕ
max

[C(θ′)] ≤ ϕ
min

(
Ip2 − C(θ)

)
and ϕ

min

[C(θ′)] ≥ −ρ+ ϕ
max

(
Ip2 − C(θ)

)
.

. The largest eigenvalue of C(θ′) is smaller than ‖θ′‖1 whereas its smallest eigenvalue is larger than

−‖θ′‖1. Let us upper bound the l1 norm of θ′:

‖θ′‖1 = 2ϕ
min

[
Ip2 − C(θ)

] α

p2

dm′∑

k=1

∣∣tr
[
C (Ψik,jk)ZZ

∗]∣∣

≤ 2

√
α

p2
ϕ
min

[
Ip2 − C(θ)

]
dm′tr

[
C(θ′)ZZ∗] . (21)

Hene, θ′ belongs to (Θ+
m′,ρ − θ) if

‖θ′‖1 ≤ ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]
. (22)

Thus, we get the lower bound

γn,p,p(θ) − γn,p,p(θ̂m′,ρ) ≥ σ2

p2
{
2tr

[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr
[
C(θ′)2ZZ∗]} , (23)

as soon as Condition (22) is satis�ed.

Let us now bound the deviations of the two random variables involved in (21) and (23) by

applying Markov's and Thebyhev's inequality. For the sake of simpliity, we assume that dm′
is
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smaller than (p2 − 2p)/2. In suh a ase, all the nodes in m′
are di�erent from their symmetri in

Λ. We omit the proof for dm′
larger than (p2 − 2p)/2 beause the approah is analogous but the

omputations are slightly more involved. Straightforwardly, we get

E
[
tr

(
C(θ′)ZZ∗)] = 4αϕ

min

[
Ip2 − C(θ)

] dm′

n
,

sine the neighborhood m′
only ontains points (i, j) whose symmetri (−i,−j) is di�erent. A

umbersome but pedestrian omputation leads to the upper bound

var

[
tr

(
C(θ′)ZZ∗)] ≤ L1α

2ϕ2
min

[
Ip2 − C(θ)

] dm′

n2
,

where L1 is a numerial onstant. Similarly, we upper bound the expetation of tr
[
C(θ′)2ZZ∗]

E
[
tr
(
C(θ′)2ZZ∗)] ≤ L2α

2ϕ2
min

[
Ip2 − C(θ)

] dm′

n
.

Let us respetively apply Thebyhev's inequality andMarkov's inequality to the variables tr
[
C(θ′)ZZ∗]

and tr
[
C(θ′)2ZZ∗]

. Hene, there exists an event Ω of probability larger than 3/4 suh that

2tr
[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr
[
C(θ′)2ZZ∗] ≥

ϕ
min

[
Ip2 − C(θ)

] dm′

n

{
8α

(
1−

√
L′
1

dm′

)
− α2L′

2

}

and

tr
[
C(θ′)ZZ∗] ≤ 4αϕ

min

[
Ip2 − C(θ)

] dm′

n

(
1 +

√
L′
1

dm′

)
.

In the sequel, we assume that p is larger than some universal onstant p0, whih ensures the

dimension dm′
to be larger than 4L′

1. Gathering (21) with the upper bound on tr
[
C(θ′)ZZ∗]

yields

‖θ′‖1 ≤ 2
√
2αϕ

min

[
Ip2 − C(θ)

] dm′√
np2

≤ 2
√
2αϕ

min

[
Ip2 − C(θ)

]
,

sine dm′ ≤ p
√
n. If 2

√
2α is smaller than 1 ∧

{[
ρ− ϕ

max

(
Ip2 − C(θ)

)}
ϕ−1
min

[
Ip2 − C(θ)

]]
, then

Condition (22) is ful�lled on the event Ω and it follows from (23) that

P

{
γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ 4σ2ϕ

min

[
Ip2 − C(θ)

] dm′

np2
[
α− α2L′

2/4
]}

≥ 3

4
.

Choosing α = 2
L′

2

∧
√
2
4 ∧

√
2
ρ−ϕ

max

(Ip2−C(θ))
4ϕ

min

(Ip2−C(θ))
, we get

P

{
γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ K3σ

2
{
ϕ
min

[
Ip2 − C(θ)

]
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′

np2

}
≥ 3

4
,

where K3 is an universal onstant.
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