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and Institute of Statistics
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Abstract

Suppose the random vector (X, Y ) satisfies the regression model Y = m(X) +
σ(X)ε, where m(·) is the conditional mean, σ2(·) is the conditional variance, and ε
is independent of X. The covariate X is d-dimensional (d ≥ 1), the response Y is
one-dimensional, and m and σ are unknown but smooth functions. Goodness-of-fit
tests for the parametric form of the error distribution are studied under this model,
without assuming any parametric form for m or σ. The proposed tests are based
on the difference between a nonparametric estimator of the error distribution and
an estimator obtained under the null hypothesis of a parametric model. The large
sample properties of the proposed test statistics are obtained, as well as those of
the estimator of the parameter vector under the null hypothesis. Finally, the finite
sample behavior of the proposed statistics, and the selection of the bandwidths for
estimating m and σ are extensively studied via simulations.
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1 Introduction

Suppose the d-dimensional random vector X and the random variable Y satisfy the fol-

lowing heteroscedastic regression model :

Y = m(X) + σ(X)ε, (1.1)

where ε is independent of the random vector X, E(ε) = 0 and Var(ε) = 1. Hence,

m(X) = E[Y |X] and σ2(X) = Var[Y |X].

In the literature, many papers have been devoted to testing the form of m(·) and

σ(·). Goodness-of-fit tests for m(·) were studied by e.g. Härdle and Mammen (1993),

Stute (1997), Dette and Munk (1998), Alcalá, Cristóbal and González Manteiga (1999),

Dette (1999), Fan, Zhang and Zhang (2001), Deschepper, Thas and Ottoy (2006) and Van

Keilegom, González Manteiga and Sánchez Sellero (2008), among many others. Testing

parametric models for σ(·) has also been investigated, see e.g., among others, Dette,

Neumeyer and Van Keilegom (2007). In the above papers the form of the error distribution

is left unspecified.

In this paper, we are interested in testing hypotheses concerning the form of this error

distribution, without making any assumption regarding the form of the regression function

m(·) and the variance function σ2(·), except for smoothness assumptions. Knowing that ε

follows a certain parametric distribution offers important advantages when doing inference

for the functions m(·) and σ2(·).
Consider the parametric class F = {Fεθ : θ ∈ Θ} of distribution functions, where Θ

is a compact subset of IRκ and κ is a positive integer. We denote the true value of θ by

θ0, when H0 is true, and the distribution of the error ε by Fε(y) = P (ε ≤ y). The aim of

this paper is to test the hypothesis

H0 : Fε ∈ F versus H1 : Fε /∈ F . (1.2)

This testing problem has been studied by Jiménez Gamero, Muñoz Garćıa and Pino

Mej́ıas (2005) for linear regression models and by Neumeyer, Dette and Nagel (2006) for

linear and nonparametric regression models. See also Huskova and Meintanis (2007, 2009),

where this problem is considered for nonparametric models using an approach based on the

comparison of characteristic functions, and Mora and Pérez-Alonso (2009) for an approach

based on martingale transformations. In Neumeyer, Dette and Nagel (2006), the authors

work with a generic estimator for θ0 that satisfies a certain asymptotic representation, and

they obtain the asymptotic theory for their proposed test statistic under the assumption
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that such an estimator of θ0 exists (see their assumption B5). In this paper, we work

with a specific estimator for θ0, obtained by using a maximum likelihood approach, and

we work out in detail the asymptotic properties of this estimator, and of the proposed

test statistics. Another important difference between both procedures lies in the fact that

heteroscedastic models are considered in the present paper. Hence, this leads to a local

estimator of the variance function and to bandwidth selection procedures that depend

on this local estimator. These procedures can clearly be adapted to the homoscedastic

case by replacing the local estimator of the variance function by a global estimator. The

bandwidth could be chosen by (2.4) and the obtained results should in that case be

very similar to those in Neumeyer, Dette and Nagel (2006). Besides the fact that our

methodology extends to the heteroscedastic case, the multiple regression case is also

investigated and a formal study of the bandwidth selection procedure is achieved.

The test statistics we propose in this paper are based on a Kolmogorov-Smirnov and a

Cramér-von Mises distance between an estimator of the error distribution obtained under

H0 and a completely nonparametric estimator. Under the null hypothesis H0, we show

that the estimator of θ0 and the test statistics reach the same rate of convergence as in

the usual case where m(·) and σ(·) are parametric functions. The asymptotic results are

largely based on the work of Neumeyer and Van Keilegom (2009) regarding the estimation

of the error distribution under model (1.1), and on the results obtained by Chen, Linton

and Van Keilegom (2003) regarding inference for general semiparametric models involving

non-smooth criterion functions.

In practice, the power of the tests are somewhat sensitive to the choice of the band-

widths used to estimate m(·) and σ(·). We therefore study six different procedures to

select these bandwidths. As it turns out, the power seems to be higher when loss func-

tions using (a cross validation version of) the residuals themselves are involved.

The paper is organized as follows. In the next section, the estimator of θ0 and the

test statistic are described in detail. Section 3 summarizes the main asymptotic results

including the asymptotic normality of the estimator of θ0 and the weak convergence of the

proposed test statistics under H0. In Section 4, we study the finite sample behavior of the

test procedure and the selection of the smoothing parameters for m(·) and σ(·) through

extended simulations, while the Appendix contains the assumptions and the proofs of the

asymptotic results of Section 3.

3



2 Description of the method

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. random sample generated from model (1.1), where

the components of Xi are denoted by (Xi1, . . . , Xid) (i = 1, . . . , n). The distributions of ε

and X are assumed to be absolutely continuous (with respect to the Lebesgue measure).

We denote them by Fε and FX respectively, and their probability density functions by fε

and fX . We start by estimating the regression function m(x) and the variance function

σ2(x) at an arbitrary point x = (x1, . . . , xd) in the support RX of X, which we suppose to

be a compact subset of IRd. We estimate m(x) by a local polynomial estimator of degree

p, i.e. m̂(x) = β̂0, where β̂0 is the first component of β̂, which is the solution of the local

minimization problem

min
β

n∑
i=1

{Yi − Pi(β, x, p)}2Kh(Xi − x), (2.1)

where Pi(β, x, p) is a polynomial of order p built up with all 0 ≤ s ≤ p products of factors

of the form Xij−xj (j = 1, . . . , d), and β is the vector of all coefficients of this polynomial.

Here, for u = (u1, . . . , ud) ∈ IRd, K(u) =
∏d

j=1 k(uj) is a d−dimensional product kernel,

k is a univariate kernel function, h = (h1, . . . , hd) is a d−dimensional bandwidth vector

converging to zero when n tends to infinity and Kh(u) =
∏d

j=1 k(uj/hj)/hj. In the same

way, σ̂2(x) = γ̂0 is the first component of γ̂, which is the solution of the local minimization

problem

min
γ

n∑
i=1

{(Yi − m̂l(Xi))
2 − Pi(γ, x, q)}2Kg(Xi − x), (2.2)

where m̂l(Xi), i = 1, . . . , n, is a local polynomial estimator obtained from (2.1) (except

that h is replaced by l, which will be specified in Remark 2.1 below) and Pi(γ, x, q), γ,

Kg(u) and g = (g1, . . . , gd) are defined in a similar way as Pi(β, x, p), β, Kh(u) and h. An

estimator for σ(x), σ̂(x), will be simply obtained by taking the square root of γ̂0.

The nonparametric residuals can then be introduced into the likelihood function which

will provide a vector of parameter estimators θn for θ0 by solving the maximization prob-

lem

max
θ∈Θ

n∑
i=1

log fεθ(ε̂i), (2.3)

where ε̂i = (Yi − m̂(Xi))/σ̂(Xi) (i = 1, . . . , n), where fεθ(y) = d
dy

Fεθ(y).
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Remark 2.1 (Choice of the smoothing parameters) The objective is to provide

an easy and data-driven way to select the smoothing parameters in (2.1) and (2.2). To

this end, we propose to compare six procedures in Section 4. Four are based on different

least squares cross-validation ideas and two on maximum likelihood cross-validation ideas.

More precisely, let

hn = argminh

n∑
j=1

(Yj − m̂h,−j(Xj))
2, (2.4)

gn1 = argming

n∑
j=1

{(Yj − m̂g,−j(Xj))
2 − σ̂2

g,−j(Xj)}2, (2.5)

and

gn2 = argming

n∑
j=1

{(Yj − m̂hn(Xj))
2 − σ̂2

g,h,−j(Xj)}2. (2.6)

Here, m̂l,−j(Xj) is a local polynomial estimator obtained by an expression of the type

(2.1) for x = Xj and h replaced by l = g or h, but based on a sample for which the

jth data point has been removed. Moreover, σ̂2
g,−j(Xj) is a local polynomial estimator

obtained from an expression of the type (2.2) for x = Xj, but based on the couples

(Xi, (Yi − m̂g,−i(Xi))
2) (i = 1, . . . , j − 1, j + 1, . . . , n). Similarly, σ̂2

g,h,−j(Xj) is obtained

from the pairs (Xi, (Yi−m̂hn(Xi))
2) (i = 1, . . . , j−1, j+1, . . . , n). The two first procedures

that we will consider in detail in Section 4 are based on choosing hn for h, gn1 (resp. hn)

for l and gn1 (resp. gn2) for g.

An alternative idea for choosing h, g and l is to transform (2.3) in a joint maximization

problem over θ, h, g and l. This could be simply achieved by jointly maximizing a cross-

validation version of (2.3) with respect to θ, h, g and l. More precisely, we propose to

obtain hns (for h = g = l) by solving

max
θ,h

n∑
j=1

log fεθ(ε̂j,−j,h,s), (2.7)

for s = 1, 2, and where

ε̂j,−j,h,s =
Yj − m̂h,−j(Xj)

σ̂h,s(Xj)
, (2.8)

with σ̂h,2(Xj) = σ̂h,−j(Xj), and with σ̂h,1(Xj) a local polynomial estimator obtained from

an expression of the form (2.2) for x = Xj and g = h, but based on the couples (Xi, (Yi−
m̂h,−i(Xi))

2) (i = 1, . . . , n).
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Finally, an intermediate idea consists in directly using the residuals in cross-validation

least squares minimization problems. That leads to choose h′ns (for h = g = l) by solving

min
h

n∑
i=1

ε̂2
j,−j,h,s, (2.9)

for s = 1, 2.

To summarize, the six selection procedures that we propose for the bandwidths h and

g are: (a) (h, l, g) = (hn, gn1, gn1), (b) (h, l, g) = (hn, hn, gn2), (c) h = g = l = hn1, (d)

h = g = l = hn2, (e) h = g = l = h′n1 and (f) h = g = l = h′n2. Their practical performance

will be studied in Section 4.

Remark 2.2 (Order of local polynomials) Apart from the practical choices for h, l

and g discussed above, it is important to mention here the dependency between h (l and

g) and the dimension d of X required by condition (C4) in the Appendix. Indeed, p and

q have to increase when d increases in order that all bandwidth conditions in (C4) are

simultaneously satisfied. This can also be interpreted as follows. The sample size n should

increase exponentially with d to preserve the convergence rates (curse of dimensionality).

Consequently, for fixed sample size n, in order to compensate for this curse of dimension-

ality, the bandwidths hj, lj and gj (j = 1, . . . , d) should increase exponentially with 1/d.

In (C4), this implies that the degree of the polynomials Pi(β, x, p) and Pi(γ, x, q) should

increase when d increases. For example, we will have to choose p and q at least equal to

2 when d = 2 (local quadratic estimators), and at least equal to 4 when d = 3 (order 4

local polynomial estimators).

Next, the test statistics are constructed from the difference between Fεθn(y) and the

nonparametric estimator of Fε(y) :

F̂ε(y) =
1

n

n∑
i=1

I(ε̂i ≤ y). (2.10)

This estimator was first studied by Akritas and Van Keilegom (2001) and then extended

to the case where X is d−dimensional by Neumeyer and Van Keilegom (2009). Consider

the process

Wn(y) = n1/2(F̂ε(y)− Fεθn(y)), −∞ < y < ∞, (2.11)

and define the following test statistics of the Kolmogorov-Smirnov and Cramér-von Mises

types :

TKS = n1/2 sup
−∞<y<∞

|F̂ε(y)− Fεθn(y)|, (2.12)
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and

TCM = n
∫

(F̂ε(y)− Fεθn(y))2dF̂ε(y). (2.13)

3 Asymptotic results

We now turn to the analysis of the asymptotic properties of the estimator θn and of

the test statistics TKS and TCM . The assumptions under which these properties are

valid, are given in the Appendix. The following notations will be used. Let ḟεθ(y) =

( ∂
∂θ1

fεθ(y), . . . , ∂
∂θk

fεθ(y))t and f ′εθ(y) = d
dy

fεθ(y). Moreover, we will use the abbreviated

notation fε ≡ fεθ0 , f ′ε ≡ f ′εθ0
, ḟε ≡ ḟεθ0 , and similarly for Fε and Ḟε.

Theorem 3.1 Assume (C1)-(C7). Then, under H0,

θn − θ0 = −Ω−1 n−1
n∑

i=1

ξ(εi) + oP (n−1/2),

where

ξ(t) =
ḟε(t)

fε(t)
+

∫ ḟε(y)f ′ε(y)

fε(y)

{
t +

y

2
(t2 − 1)

}
dy,

and

Ω = E
[ ḟε(ε)ḟ

t
ε(ε)

f 2
ε (ε)

]
.

Moreover,

n1/2(θn − θ0)
d→ N(0, Ω−1V Ω−1),

where V = E[ξ(ε)ξt(ε)].

Theorem 3.2 Assume (C1)-(C7). Then, under H0,

F̂ε(y)− Fεθn(y)

= n−1
n∑

i=1

[
I(εi ≤ y)− Fε(y) + ϕ(εi, y) + Ḟ t

ε(y) Ω−1 ξ(εi)
]
+ Rn(y),

where sup−∞<y<∞ |Rn(y)| = oP (n−1/2), and

ϕ(z, y) = fε(y)
{
z +

y

2
(z2 − 1)

}
.

Moreover, the process n1/2(F̂ε(y) − Fεθn(y)) (−∞ < y < ∞) converges weakly to a zero-

mean Gaussian process W (y) with covariance function

Cov(W (y1), W (y2)) = E
[{

I(ε ≤ y1)− Fε(y1) + ϕ(ε, y1) + Ḟ t
ε(y1) Ω−1 ξ(ε)

}
×

{
I(ε ≤ y2)− Fε(y2) + ϕ(ε, y2) + Ḟ t

ε(y2) Ω−1 ξ(ε)
}]

.
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As a consequence of the above result, we now obtain the asymptotic limit of the test

statistics TKS and TCM under H0.

Corollary 3.3 Assume (C1)-(C7). Then, under H0,

TKS
d→ sup

−∞<y<∞
|W (y)|,

and

TCM
d→

∫
W 2(y)dFε(y).

Remark 3.4 (Convergence under fixed alternatives) Note that if the error distri-

bution Fε is a fixed distribution (independent of the sample size n) that does not belong

to the class F , it can be easily seen that the test statistics TKS and TCM converge to

infinity. In fact, the estimators F̂ε and Fεθn do not converge to the same distribution in

that case, and hence the process n1/2(F̂ε(y)− Fεθn(y)), −∞ < y < ∞, diverges.

Remark 3.5 (Bootstrap approximation) To estimate the distributions of the statistics

TKS and TCM under H0, the asymptotic result given in Corollary 3.3 could in principle

be used, although in practice the estimation of the unknown quantities in the asymptotic

limit could be cumbersome. Alternatively, resampling techniques can provide very good

precision. Here, the method we propose to use is as follows. For B fixed and for b =

1, . . . , B,

1. Let {ε∗1,b, . . . , ε
∗
n,b} be an i.i.d. random sample from the distribution Fεθn(·).

2. Define new responses

Y ∗
i,b = m̂(Xi) + σ̂(Xi)ε

∗
i,b, i = 1, . . . , n.

3. Let T ∗
KS,b and T ∗

CM,b be the test statistics obtained from the bootstrap sample

{(X1, Y
∗
1,b), . . . , (Xn, Y

∗
n,b)}.

Then, if we denote T ∗
KS,(b) for the b-th order statistic of T ∗

KS,1, . . . , T
∗
KS,B and analogously

for T ∗
CM,(b), then T ∗

KS,([(1−α)B]+1) and T ∗
CM,([(1−α)B]+1) approximate the (1 − α)−quantiles

of the distributions of TKS and TCM respectively (where [·] denotes the integer part).

See also Neumeyer, Dette and Nagel (2006) and Neumeyer (2009), where respectively

specific parametric and smooth residual bootstrap (for estimating error distribution pro-

cesses similar to (2.11)) are considered, and their consistency is proved. The proof of the

8



consistency of the bootstrap procedure we propose above can be studied by using these

two papers as starting point. Although this is an important theoretical open question, we

do not investigate it in this paper. The proofs are in fact expected to be quite lengthy

and technical, making them more appropriate for a separate publication in a theoretical

journal.

4 Practical implementation and simulations

In this section, we study the finite sample behavior of the proposed test statistics focusing

on some main practical aspects of the implementation and the resulting recommendations.

4.1 Practical implementation

In the one-dimensional case (d = 1), we generate i.i.d. data from the model

Y = α0 + α1X + α2X
2 + α3X

3 + (β0 + β1X)ε, (4.1)

where X ∼ U [0, 1], β0 and β1 are such that min(β0, β0 + β1) > 0, and ε is independent

of X and is a mixture of two normal random variables, i.e. Fε(y) = p1P (Z1 ≤ y) + (1 −
p1)P (Z2 ≤ y), where Zj is normal with mean µj and variance σ2

j (j = 1, 2). Clearly, the

parameters p1, µ1, σ
2
1, µ2 and σ2

2 need to satisfy p1µ1+(1−p1)µ2 = 0 and p1(σ
2
1 +µ2

1)+(1−
p1)(σ

2
2 + µ2

2) = 1, since ε has zero mean and unit variance. Hence, µ2 = −µ1p1/(1− p1),

and σ2
2 = {σ2

1p
2
1− (1 + σ2

1 + µ2
1)p1 + 1}/(1− p1)

2. We consider several values of p1, µ1 and

σ2
1.

In the two-dimensional case, we generate i.i.d. data from the model

Y = α10X1 + α01X2 + α11X1X2 + α20X
2
1 + α30X

3
1

+(β0 + β11X1X2)ε, (4.2)

where X1 ∼ U [0, 1],

X2|X1 ∼

 β(0.5, 0.5) if X1 ≤ 0.1 or X1 ≥ 0.9,

U [0, 1] if 0.1 < X1 < 0.9,

and for any a, b > 0, β(a, b) is the beta-distribution with parameters a and b. The

parameters β0 and β11 satisfy min(β0, β11) > 0, the error ε is independent of X = (X1, X2)

and has the same distribution as for model (4.1).
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For each model, we simulate 500 samples of size n = 100 or 200. For the estimation

of m(·) and σ(·), we use the biweight kernel k(u) = (15/16)(1 − u2)2I(−1 ≤ u ≤ 1)

when d = 1 and the product kernel k(u1)k(u2) when d = 2. The smoothing parameters

h, l and g and the estimator θn are obtained from one of the six procedures described in

Remark 2.1, namely by solving either (2.4), (2.5) and (2.3) (hereafter abbreviated by (a)),

or (2.4), (2.6) and (2.3) (method (b)), or (2.7) and (2.8) for s = 1 (method (c)), or for

s = 2 (method (d)), or (2.9) and (2.3) for s = 1 (method (e)), or for s = 2 (method (f)).

When d = 2, both components of each bandwidth vector are chosen to be equal. The

number of bootstrap replications is 200 and the level of the tests is 5%. Following Remark

2.2, we take p = q = 1, respectively p = q = 2 when X is one-dimensional, respectively

two-dimensional.

We consider three different tests for Fε:

1. H01 : ε ∼ Φ(0, 1),

2. H02 : ε ∼ p1Φ(0.9, 0.49) + (1− p1)Φ(−0.9p1

1−p1
,

0.49p2
1−2.3p1+1

(1−p1)2
),

3. H03 : ε ∼ p1Φ(µ1, 0.49) + (1− p1)Φ(−µ1p1

1−p1
,

0.49p2
1−(1.49+µ2

1)p1+1

(1−p1)2
),

where Φ(µ, σ2) stands for a normal distribution with mean µ and variance σ2. Clearly,

hypothesis H01 is satisfied for p1 = 0, µ1 = 0 and σ1 = 1, hypothesis H02 is satisfied for

any value of p1 and for µ1 = 0.9 and σ1 = 0.7, and hypothesis H03 is satisfied for any p1

and µ1 and for σ1 = 0.7.

Tables 1 to 6 present the rejection proportions for the above three null hypotheses. In

order to illustrate the results in a more complete way, we added a test based on a statistic

of the Anderson-Darling type given by

TAD = n
∫ (F̂ε(y)− Fεθn(y))2

F̂ε(y)(1− F̂ε(y−))
dF̂ε(y). (4.3)

A ‘parametric’ version of this statistic, obtained by replacing dF̂ε(y) by dFεθn(y) and

F̂ε(y)(1− F̂ε(y−)) by Fεθn(y)(1−Fεθn(y−)) in the expression above, was also studied but

its results were slightly worse than those of TAD. In the same way, the ‘parametric’ version

of TCM lead to quite similar results as TCM . Rejection proportions for those ‘parametric’

statistics are therefore not reported here.

In general, (a), (b), (c) and (e) often seem to overfit more or less the data inducing

more variability of the distributions of the corresponding test statistics and their bootstrap

estimators. In (d) and (f), extrema of (2.7) and (2.9) are obtained for larger values of
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the bandwidth parameters than in (c) and (e) (and (a) and (b)). Indeed, adding globally

increasing values of (Yi − m̂h,−i(Xi))
2 to the weighted average σ̂2

h,2(Xj) (for increasing

values of h) is more likely to increase the likelihood function (or decrease the least squares),

since it does not consider the value of (Yj − m̂h,−j(Xj))
2. Under the null, (c) seems to

provide the closest resamples to the true model, leading to good bootstrap approximations

(and also suggesting that (c) is a good estimation procedure for the parameters of Fεθ).

Under H1, the best results are usually obtained by (f) since h′n2 is obtained independently

of θn and without assuming H0.

When κ increases (so when we move from H01 to H02 and H03), the above consid-

erations stay true, but obviously the bootstrap approximations are based on samples

generated closer and closer to the original samples and the distances between Fε and F
become considerably smaller, inducing less and less rejections. However, as it turns out,

(c) globally seems to keep results closer to 0.05 under H0 and (f) looses less power under

H1.

In Tables 4 to 6 we study the behavior of the different statistics for d = 2. Only the

results for (f) are displayed. Indeed, the same characteristics as in the one-dimensional

case apply. As can be expected, the power is smaller than for the one-dimensional case,

but the results stay reasonably good. An increase of κ seems to affect the results more

than the same increase of d, and a small increase of n (from 100 to 200 in Table 6) already

improves the results significantly.

4.2 Conclusions

In general, method (f) can be recommended in practice. However, there are as always

exceptions on this general rule. For example, if strongly different behaviors of m(·) and

σ(·) are detected (e.g. if m(·) is much more wiggly than σ(·)), it seems better to use

method (b). Moreover, method (c) behaves well under the null hypothesis suggesting it

would be interesting to investigate its estimation behavior, i.e., the study of θn obtained

with method (c) when a parametric distribution is assumed for ε. We like to note here

that the above recommendations are only based on simulations for small samples and not

on any theoretical argument. The theoretical investigation of the proposed bandwidth

selection procedures is a challenging problem, which the authors plan to study in the

future. Finally, since the different statistics are based on a difference of distributions,

we think that the Cramér-von Mises statistic should be recommended or possibly the

Anderson-Darling statistic if discrepancies in the tails are suspected.
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p1 µ1 σ1 (a) (b) (c)-(e) (d)-(f)

0 0 1 TKS .046 .044 .040 .058

TCM .038 .034 .042 .064

TAD .038 .036 .042 .062

0.4 0.9 0.7 TKS .232 .238 .226 .308

TCM .284 .330 .288 .382

TAD .242 .290 .266 .320

0.45 0.3 0.4 TKS .514 .550 .530 .548

TCM .568 .598 .558 .652

TAD .642 .690 .620 .756

0.44 0.9 0.7 TKS .630 .680 .652 .736

TCM .740 .778 .756 .826

TAD .708 .760 .738 .792

0.5 0.7 0.1 TKS 1 1 1 1

TCM 1 1 1 1

TAD 1 1 1 1

Table 1: Rejection proportions under H01 for different mixtures of normal distributions

and for model (4.1). The parameters determining m(·) and σ(·) are chosen as α0 = 1,

α1 = 1, α2 = −2, α3 = 1.5, β0 = 0.1 and β1 = 0.1.
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p1 µ1 σ1 (a) (b) (c) (d) (e) (f)

0.44 0.9 0.7 TKS .044 .036 .038 .038 .046 .044

TCM .038 .034 .046 .036 .044 .032

TAD .042 .036 .050 .040 .046 .034

0 0 1 TKS .046 .042 .048 .054 .044 .056

TCM .044 .054 .042 .056 .038 .062

TAD .046 .048 .044 .052 .038 .056

0.45 0.3 0.4 TKS .756 .784 .686 .834 .682 .836

TCM .788 .826 .732 .882 .734 .896

TAD .788 .822 .718 .892 .724 .894

0.5 0.7 0.1 TKS 1 1 1 1 1 1

TCM 1 1 1 1 1 1

TAD 1 1 1 1 1 1

Table 2: Rejection proportions under H02 for different mixtures of normal distributions

and for model (4.1). The parameters determining m(·) and σ(·) are chosen as α0 = 1,

α1 = 1, α2 = 0, α3 = 0, β0 = 0.3 and β1 = 0.3.

p1 µ1 σ1 (a) (b) (c) (d) (e) (f)

0.44 0.9 0.7 TKS .012 .034 .024 .010 .030 .018

TCM .014 .018 .032 .016 .026 .010

TAD .012 .016 .022 .016 .024 .010

0 0 1 TKS .022 .018 .028 .026 .018 .032

TCM .016 .018 .024 .014 .020 .020

TAD .016 .022 .018 .018 .030 .026

0.45 0.3 0.4 TKS .074 .080 .126 .136 .104 .164

TCM .088 .116 .162 .192 .116 .210

TAD .100 .136 .158 .206 .112 .252

0.5 0.7 0.1 TKS .978 .994 .998 1 .984 1

TCM .962 .974 .996 1 .990 1

TAD .974 .984 .996 1 .992 1

Table 3: Rejection proportions under H03 for different mixtures of normal distributions

and for model (4.1). The parameters determining m(·) and σ(·) are chosen as α0 = 1,

α1 = 1, α2 = 0, α3 = 0, β0 = 0.3 and β1 = 0.3.
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p1 µ1 σ1 TKS TCM TAD

0 0 1 .062 .054 .074

0.4 0.9 0.7 .230 .244 .208

0.45 0.3 0.4 .432 .428 .446

0.44 0.9 0.7 .548 .634 .598

0.5 0.7 0.1 1 .996 1

Table 4: Rejection proportions under H01 for different mixtures of normal distributions

and for model (4.2). The smoothing parameter is obtained from (f), n = 100, α10 = 1,

α01 = 1, α11 = 1, α20 = 4, α30 = −3, β0 = 0.3 and β11 = 0.3.

p1 µ1 σ1 TKS TCM TAD

0.44 0.9 0.7 .032 .040 .038

0 0 1 .028 .022 .034

0.45 0.3 0.4 .448 .446 .454

0.5 0.7 0.1 1 .992 .998

Table 5: Rejection proportions under H02 for different mixtures of normal distributions

and for model (4.2). The bandwidth parameter is obtained by (f), n = 100, α10 = 1,

α01 = 1, α11 = 1, α20 = 4, α30 = −3, β0 = 0.3 and β11 = 0.3.

p1 µ1 σ1 TKS TCM TAD

0.45 0.3 0.4 .918 .934 .924

Table 6: Rejection proportions under H02 for one mixture of normal distributions and for

model (4.2). The bandwidth parameter is obtained by (f), n = 200, α10 = 1, α01 = 1,

α11 = 1, α20 = 4, α30 = −3, β0 = 0.3 and β11 = 0.3.
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Appendix

In this appendix we state the assumptions under which the asymptotic results of Section

3 are valid, and we also give the proofs of these results. Throughout this appendix we

will denote the true error by ε0, the true regression function by m0 and the true scale

function by σ0.

For an arbitrary θ, and for arbitrary functions m and σ > 0 defined on RX , let

G(θ,m, σ) = E

 ḟεθ

(
Y−m(X)

σ(X)

)
fεθ

(
Y−m(X)

σ(X)

)
 .

(C1) For all δ > 0, there exists an ε > 0 such that inf‖θ−θ0‖>δ ‖G(θ,m0, σ0)‖ > ε.

(C2) Uniformly for all θ ∈ Θ, G(θ,m, σ) is continuous with respect to the supremum

norm in (m, σ) at (m,σ) = (m0, σ0). Moreover, Ω is non-singular.

(C3) k is a symmetric probability density function supported on [−1, 1], k is d times

continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , d− 1.

(C4) hj, lj and gj are of the same order (j = 1, . . . , d) and satisfy hj/h
∗ → bj, lj/h

∗ → cj

and gj/h
∗ → dj for some 0 < bj, cj, dj < ∞ and some baseline bandwidth h∗.

Moreover, for r = p or q, h∗ satisfies nh∗
2r+4 → 0 when r is even, nh∗

2r+2 → 0 when

r is odd and nh∗
3d+δ →∞ for some small δ > 0.

(C5) All partial derivatives of FX up to order 2d + 1 exist on the interior of RX , they are

uniformly continuous and infx∈RX
fX(x) > 0.

(C6) All partial derivatives of m0 and σ0 up to order p + 2 exist on the interior of RX ,

they are uniformly continuous and infx∈RX
σ0(x) > 0.

(C7) All (mixed) derivatives upto order 3 of Fεθ(y) with respect to y and the components

of θ exist and are continuous. Moreover, supy |y2f ′ε(y)| < ∞ and E(ε6
0) < ∞.

Proof of Theorem 3.1. For an arbitrary θ, and for arbitrary functions m : RX → IR

and σ : RX → IR+, let

Gn(θ, m, σ) = n−1
n∑

i=1

ḟεθ

(
Yi−m(Xi)

σ(Xi)

)
fεθ

(
Yi−m(Xi)

σ(Xi)

) .
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Then, θn is the solution of Gn(θ, m̂, σ̂) = 0. Also note that θ0 satisfies G(θ0, m0, σ0) = 0.

We will start by showing the consistency of θn. This will be done by checking the condi-

tions of Theorem 1 in Chen, Linton and Van Keilegom (2003) (CLV hereafter). Condition

(1.1) holds by definition of θn, while the second and third condition are guaranteed by

assumptions (C1) and (C2). Condition (1.4) follows from Lemma A.1 in Neumeyer and

Van Keilegom (2009), and from conditions (C3)-(C7). Finally, condition (1.5) is very

similar to condition (2.5) of Theorem 2 of CLV, and we will verify both conditions below.

So, the conditions of Theorem 1 are verified, up to condition (1.5) which we postpone to

later. Next, we verify conditions (2.1)–(2.6) of Theorem 2 in CLV in order to obtain an

i.i.d. representation for θn − θ0 and to prove the asymptotic normality of θn. Condition

(2.1) is, as for condit ion (1.1), valid by construction of the estimator θn. For condition

(2.2), write for any θ ∈ Θ,

Γ1(θ) :=
∂

∂θ
G(θ, m0, σ0) = E

[ f̈εθ(ε0)fεθ(ε0)− ḟεθ(ε0)ḟ
t
εθ(ε0)

f 2
εθ(ε0)

]

=
∫

f̈εθ(y) dy −
∫ ḟεθ(y)ḟ t

εθ(y)

fεθ(y)
dy

=
∂2

∂θ∂θt

∫
fεθ(y) dy − E

[ ḟεθ(ε0)ḟ
t
εθ(ε0)

f 2
εθ(ε0)

]
= −E

[ ḟεθ(ε0)ḟ
t
εθ(ε0)

f 2
εθ(ε0)

]
,

where f̈εθ(y) = ∂2

∂θ∂θt fεθ(y). Hence, condition (2.2) is easily seen to hold thanks to condi-

tion (C2) and (C7). As for condition (2.3), we need to calculate

Γ2(θ,m0, σ0)[m−m0, σ − σ0]

:= lim
τ→0

1

τ

{
G(θ, m0 + τ(m−m0), σ0 + τ(σ − σ0))−G(θ, m0, σ0)

}
.

For notational convenience, in a first stage, we ignore the σ component in the above

expression and calculate

Γ2(θ, m0)[m−m0] = lim
τ→0

1

τ

{
E

[ ḟεθ(Y −m0(X)− τ(m−m0)(X))

fεθ(Y −m0(X)− τ(m−m0)(X))
− ḟεθ(Y −m0(X))

fεθ(Y −m0(X))

]}

= −E
[ ḟ ′εθ(ε0)fεθ(ε0)− ḟεθ(ε0)f

′
εθ(ε0)

f 2
εθ(ε0)

(m−m0)(X)
]

= −
{ ∫

ḟ ′εθ(y) dy −
∫ ḟεθ(y)f ′εθ(y)

fεθ(y)
dy

}
E[(m−m0)(X)]

=
∫ ḟεθ(y)f ′εθ(y)

fεθ(y)
dy E[(m−m0)(X)],
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since ∂
∂θ

∫
f ′εθ(y) dy = 0. Hence, taking the dependence on σ into account, we get that

Γ2(θ, m0, σ0)[m−m0, σ − σ0]

=
∫ ḟεθ(y)f ′εθ(y)

fεθ(y)
dy E

[(m−m0)(X)

σ0(X)

]
+

∫
y
ḟεθ(y)f ′εθ(y)

fεθ(y)
dy E

[(σ − σ0)(X)

σ0(X)

]
,

for all θ, m and σ > 0. Now, it is easily seen that condition (2.3)(i) is satisfied, if we

define for any function h defined on RX ,

‖h‖d+α = max
k.≤d

sup
x∈RX

|Dkh(x)|+ max
k.=d

sup
x,x′∈RX

|Dkh(x)−Dkh(x′)|
‖x− x′‖α

,

k = (k1, . . . , kd),

Dk =
∂k.

∂xk1
1 . . . ∂xkd

d

,

k. =
∑d

j=1 kj, and ‖ · ‖ is the Euclidean norm on IRd. As for (2.3)(ii), note that it follows

from the proof of Theorem 2 in CLV that it suffices to show that

‖Γ2(θ̂, m0, σ0)[m̂−m0, σ̂ − σ0]− Γ2(θ0, m0, σ0)[m̂−m0, σ̂ − σ0]‖ ≤ ‖θ̂ − θ0‖oP (1),

and this can be easily shown, using condition (C7). For condition (2.4), let

M =
{
m : RX → IR : ‖m‖d+α ≤ M1

}
,

and

S =
{
σ : RX → IR : ‖σ‖d+α ≤ M1, inf

x∈RX

σ(x) > M0

}
,

for some 0 < M0 < M1 < ∞. Then, we apply once more (the proof of) Lemma A.1

in Neumeyer and Van Keilegom (2009) for the rate of convergence of m̂ and σ̂. The

same lemma ensures that P (m̂ ∈ M) → 1 and P (σ̂ ∈ S) → 1. Next, for verifying

condition (2.5) we check the conditions of Theorem 3 in CLV. It suffices to check either

condition (3.1) or (3.2). Condition (3.2) is verified for sj = 1 and j = 1, . . . , κ, whereas

condition (3.3) follows from Theorem 2.7.1 in Van der Vaart and Wellner (1996). It re-

mains to verify condition (2.6), which is immediate after applying the i.i.d. representation

for E[ (m̂−m0)(X)
σ0(X)

] and E[ (σ̂−σ0)(X)
σ0(X)

], given in Lemma A.2 in Neumeyer and Van Keilegom

(2009). This finishes the proof. 2

Proof of Theorem 3.2. Write

F̂ε(y)− Fεθn(y) = [F̂ε(y)− Fε(y)]− [Fεθn(y)− Fε(y)]

= n−1
n∑

i=1

I(εi ≤ y)− Fε(y) + n−1
n∑

i=1

ϕ(εi, y)

+Ḟ t
ε(y)(θn − θ0) + oP (n−1/2),
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uniformly in y, where the latter equality follows from Theorem 2.1 in Neumeyer and Van

Keilegom (2009). The result now follows from Theorem 3.1. 2

Proof of Corollary 3.3. The convergence of the Kolmogorov-Smirnov statistic TKS

follows directly from the continuous mapping theorem. For the Crámer-von Mises statistic

TCM it suffices to show that dF̂ε(y) can be replaced by dFε(y). Write∣∣∣n ∫
(F̂ε(y)− Fεθn(y))2 d[F̂ε(y)− Fε(y)]

∣∣∣
≤

∣∣∣n ∫
(F̂ε(y)− Fεθn(y))2 d[F̂ε(y)− Fεθn(y)]

∣∣∣
+

∣∣∣n ∫
(F̂ε(y)− Fεθn(y))2 d[Fεθn(y)− Fε(y)]

∣∣∣.
It suffices to consider the second term above, which can be written as

∣∣∣n ∫
(F̂ε(y)− Fεθn(y))2 ḟ t

εθ̃
(y) dy Ω−1 n−1

n∑
i=1

ξ(εi)
∣∣∣ + oP (1) = oP (1),

(with θ̃ on the line segment between θ0 and θn) which follows from Theorems 3.1 and 3.2. 2
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Alcalá, J.T., Cristóbal, J.A. and González Manteiga, W. (1999). Goodness-of-fit test for

linear models based on local polynomials. Statist. Probab. Letters, 42, 39–46.

Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric models

when the criterion function is not smooth. Econometrica, 71, 1591–1608.

Deschepper, E., Thas, O. and Ottoy, J.P. (2006). Regional residual plots for assessing the

fit of linear regression models. Comput. Stat. Data An., 50, 1995–2013.

Dette, H. (1999). A consistent test for the functional form of a regression based on a

difference of variance estimators. Ann. Statist., 27, 1012–1040.

18



Dette, H. and Munk, A. (1998). Validation of linear regression models. Ann. Statist., 26,

778–800.

Dette, H., Neumeyer, N. and Van Keilegom, I. (2007). A new test for the parametric form

of the variance function in nonparametric regression. J. Royal Statist. Soc. - Series B,

69, 903–917.

Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks

phenomenon. Ann. Statist., 29, 153–193.
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Jiménez Gamero, M.D., Muñoz Garćıa, J. and Pino Mej́ıas, R. (2005). Testing goodness

of fit for the distribution of errors in multivariate linear models. J. Multiv. Anal., 95,

301–322.
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