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Abstract

Importance sampling is an efficient strategy for reducing the variance of certain bootstrap estimates.
It has found wide applications in bootstrap quantile estimation, proportional hazards regression,
bootstrap confidence interval estimation, and other problems. Although estimation of the optimal
sampling weights is a special case of convex programming, generic optimization methods are
frustratingly slow on problems with large numbers of observations. For instance, interior point and
adaptive barrier methods must cope with forming, storing, and inverting the Hessian of the objective
function. In this paper, we present an efficient procedure for calculating the optimal importance
weights and compare its performance to standard optimization methods on a representative data set.
The procedure combines several potent ideas for large scale optimization.
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1. Introduction

Because it involves Monte Carlo estimation, the nonparametric bootstrap is an obvious
candidate for importance sampling. To our knowledge, Johns [10] and Davison [1] first
recognized the possibilities in the context of quantile estimation. The general idea is to sample
cases with nonuniform weights. If the weights are carefully tuned to a given statistic, then
importance sampling can dramatically reduce the variance of the bootstrap sample average
estimating the mean of the statistic [6]. Bootstrap importance sampling has expanded beyond
quantile estimation to include proportional hazards regression, bootstrap confidence interval
estimation, and many other applications [2,4,10,7].

Although estimation of the optimal sampling weights is a constrained optimization problem
that yields to standard methods of convex programming, there is still room for improvement,
particularly in problems with large numbers of observations. Interior point and adaptive barrier
methods incur heavy costs in forming, storing, and inverting the Hessian of the objective
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function. In the current paper, we present an efficient procedure for calculating the optimal
importance weights and compare its performance to standard optimization methods on a
representative data set. The procedure combines several potent ideas for large scale
optimization. Briefly these include: (a) approximating the objective function by a quadratic,
(b) majorizing the quadratic by a simple quadratic surrogate with parameters separated, (c)
reparameterizing the surrogate so its minimization reduces to finding the closest point to a
simplex, (d) mapping the simplex solution back to the original parameters, and () accelerating
the entire scheme by a quasi-Newton improvement for finding the fixed point of a smooth
algorithm map. The procedure sounds complicated, but each step is fast and straightforward
to implement. On a test example with 1,664 observations, our accelerated algorithm surpasses
the performance of current standard methods for optimization.

Section 2 introduces the convex optimization problem defining the importance weights and
derives our optimization procedure. Section 3 reviews and generalizes the clever simplex
projection algorithm of Michelot. Section 4 summarizes our quasi-Newton acceleration; this
scheme is specifically tailored to high-dimensional problems. Section 5 compares our new
procedure, both unaccelerated and accelerated, to the standard methods of convex optimization
on our sample problem. Finally, our discussion points readers to other applications of the design
principles met here for high-dimensional optimization.

2. Optimization in Importance Resampling

In standard bootstrap resampling with n observations, each observation x; is resampled
uniformly with probability n=1. As just argued, it is often helpful to implement importance
sampling by assigning different resampling probabilities p; to the different observations [1,3,
5]. For instance, with univariate observations (xy, ..., X,), we may want to emphasize one of
the tails of the empirical distribution. If we elect to resample nonuniformly according to the
multinomial distribution with proportions p = (py, ..., p)\, then the change of measure equality
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connects the uniform expectation and the importance expectation on the bootstrap resampling

space. Here m; represents the number of times sample point x; appears in x*. Thus we can
approximate the mean E[T (x*)] by taking a bootstrap average
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which achieves its minimum with respect to p when the theoretical second moment
2 n —2m
EP{T(X ) Hf:l(”pi) b‘] is minimized.

Hall [4] suggests approximately minimizing the second moment by taking a preliminary
uniform bootstrap sample of size B;. Based on the preliminary resample, we approximate

2 n —2my
Ep {T(X N O ] by the Monte Carlo average
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The function s(p) serves as a surrogate for E» [T(X*)Zni: \(pi) _m”"]. It is possible to
minimize s(p) on the open unit simplex by standard methods. Unfortunately, Newton's method
is hampered when the nis large by the necessity of evaluating, storing, and inverting the Hessian
matrix at each iteration. This dilemma prompted our quest for a more efficient algorithm for
minimizing s(p).

Consider the optimization problem

n
mins (p) subject toZp,:l, Di 2 €, 1<i<n.
p ;
i=1

Here the lower bound ¢ > 0 is imposed so that sampling does not entirely neglect some
observations. In practice we take € = =2 or n3. The gradient and second differential (Hessian)
of s(p) are

my
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Because d2s(p) is positive definite, s(p) is strictly convex. Evaluation of the gradient and
Hessian requires O(nB1) and O(n2B1) operations, respectively.

Our first step in minimizing the objective function s(p) is to approximate it by a quadratic
around the current iterate pX. According to Taylor's theorem, we have
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Our second step is to majorize the quadratic r(p | p¥) by a quadratic with parameters separated.
If we set u= 3, cp vy and D:Zbcb (H"b||21n+Db), then application of the Cauchy-Schwartz

inequality vel*hwl* > ("Z“’)_ yields the inequality

r(p | pk)ss(pk)—B%[u'+(pk)rD]p+2—1191p'Dp+ck=q(p P,

where cX is an irrelevant constant that does not depend on p. Because equality holds in this last
inequality whenever p = p¥, the function q(p | p¥) is said to majorize r(p | p¥). The guiding
principle of the MM algorithm [8,12] is that minimizing q(p | p¥) drives r(p| p¥), and presumably
s(p), downhill. Thus, we achieve a steady decrease in s(p).

Our third step is to transform minimization of q(p | p¥) into a problem of finding the closest
point to a truncated simplex. This step is effected by the reparameterization p* = DY/2p, where
DY/ is the matrix square root of D. Minimization of q(p | p¥) reduces to minimizing the squared
distance

2

l * — ol
SIp" = (D7 2ur D))

subject to the constraints 1'D1/2p* = 1 and p* > ¢éDY/21. Before we discuss how to project
(D~Y2y + DY2pk) onto this truncated simplex, let us summarize our overall algorithm in
pseudo-code.

Several remarks are pertinent. (a) Projection onto the truncated simplex can be solved by a
slight generalization of an efficient algorithm of Michelot [13]. The details spelled out in the
next section show that projection requires at most O(n?) operations and usually much fewer in
practice. (b) Evaluation of u and D requires O(nB1) operations. These represent potentially
huge gains over Newton's method if convergence occurs fast enough. Recall that Newton's
method needs O(nB;) operations for evaluating the gradient, O(n?B4) operations for evaluating
the Hessian matrix, and O(n3) for inverting the Hessian matrix. (c) The boundary conditions
and linear constraint are incorporated in the algorithm gracefully. (d) A side effect of
majorization is the loss of the superlinear convergence enjoyed by Newton's method. We
therefore accelerate convergence by applying a general quasi-Newton scheme for fixed point
problems. As discussed in Section 4, this scheme requires little extra computation per iteration
and only O(n) storage. It is particularly attractive for high-dimensional problems. By contrast
Newton's method requires O(n?) storage for manipulating the Hessian matrix.
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3. Michelot Algorithm

Michelot [13] derived an efficient algorithm for projecting a point onto the unit simplex in
R". This algorithm converges in at most n iterations and often much sooner. We consider a
trivial generalization that maps a point x € R" to the closest point P(x) in the dilated and
truncated simplex

n
K= {_y € R":Za,—_\y:c, vizeg, 1<i< n} ,

i=1 (1)

where the a; and g; are strictly positive and together satisfy Ziaifi < ¢, The unit simplex is
realized by taking ¢ = 1 and aj = 1 and ¢j = 0 for all i. The revised algorithm cycles through the
following steps.

The Michelot algorithm stops after a finite number of iterations because every iteration reduces
the dimension n by at least 1. The first two steps of the algorithm are motivated by the following
propositions, whose proofs are straightforward generalizations of those of Michelot [13]. Full
validation of the revised algorithm follows from his further arguments.

Proposition 3.1

Suppose C is a closed convex set wholly contained within an affine subspace V. Then the
projection Pc(x) onto C and the projection Py(x) onto V satisfy Pc(X) = Pc o Py(X).

Proof—See Michelot's paper [13].
Proposition 3.2

Suppose x € R" satisfies Zia,-x,-:c, where q; > 0 for all i. If x/ € R" has coordinates

x::max {xi, &}, then Pk (x) = Pk(x’) for the truncated simplex (1).

Proof—Consider minimizing the objective function y ., 1)y — x||? subject to the linear
n o

constraint /2 ,_, @i¥i=¢ and boundary conditions y; > ¢; for every i. The Lagrangian function is
1
L(y, A, i;) =§||.\' ! [Za’z’.\‘i - CJ - Zi:lli (vi—&).

Because this is a convex programming problem, the Karush-Kuhn-Tucker (KKT) optimality
conditions are both necessary and sufficient. These conditions can be stated as

yi — XitAa; — ;=0 2)
(vi — &) 1i=0 3)
1 =0 (4)
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for multipliers A and p;j. Multiplying both sides of equality (2) by oj and summing over i
determines A as the ratio

1= 2l - 0.

= —~ >
Ziai'

If Xj < &, then condition (2) implies p; = yj — X; + Aa; > 0. But condition (3) now compels the
equality y; = €j. Therefore we can replace x; by &; and p; by Ao; and still maintain the KTT
conditions at the pointy. In other words, Pk (x) = Pk(x).

4. A Quasi-Newton Acceleration Scheme

In this section, we review a general quasi-Newton acceleration [17] for fixed point problems.
If F(x) is an algorithm map, then the idea of the scheme is to approximate Newton's method
for finding a root of the equation 0 = x — F(x). Let G(x) now denote the difference G(x) = x —
F(x). Because G(x) has the differential dG(x) = | — dF(x), Newton's method iterates according
to

K=yt — (IG(xk)_lG (xk) =xf - lI —dF (xk)J_lG(xk). )

If we can approximate dF(xX) by a low-rank matrix M, then we can replace | — dF(x¥) by | —
M and explicitly form the inverse (I — M) 1.

Quasi-Newton methods operate by secant approximations. We generate one of these by taking
two iterates of the algorithm starting from the current point xK. When we are close to the optimal
point x*, we have the linear approximation

FoF (&) -F ()~ M|F (&) - 2],

where M = dF(x®). If v is the vector F o F(xK) — F(xK) and u is the vector F(x) — xX, then the
secant requirement is Mu = v. In fact, for the best results we require several secant
approximations Mu; = vj for i = 1, ..., g. These can be generated at the current iterate xk and
the previous g — 1 iterates. The next proposition gives a sensible way of approximating M.

Proposition 4.1

i MIP= 2. . .
Let M = (mj;) be a n x n matrix and I ”F_Z,-ijij its squared Frobenius norm. Write the
secant constraints Muj = vj in the matrix form MU =V for U = (ug, ..., Ug) and V = (vy, ...,

vg). Provided U has full column rank g, the minimum of the strictly convex function \lMHi
subject to the constraints is attained by the choice M = V(U'U)1UL.

Proof—See the reference [17].

To apply the proposition in our proposed quasi-Newton scheme, we must invert the matrix |
— V(UU)~1UL. Fortunately, the explicit inverse

[1 - V(U'U)*IU'}_I:HV[ v'v-u'v| v
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is a straightforward to check variant of the Sherman-Morrison formula. The g x g matrix
U'U — UV is trivial to invert for g small even when n is large. This result suggest replacing
the Newton update (5) by the quasi-Newton update

w1 =k 1oy o - F ()
=x* - |[+V(U'U - U'V) U | [ - F ()]
=F (<) - v(U'U - U'v) U [ & - F ()]

The quasi-Newton method is clearly feasible for high-dimensional problems. It takes two
ordinary iterates to generate a secant condition and a corresponding quasi-Newton update. If
a quasi-Newton update fails to send the objective function in the right direction, then one can
always revert to the second iterate F o F(xX). For a given g, the obvious way to proceed is to
do q initial ordinary updates and form g — 1 secant pairs. At that point quasi-Newton updating
can commence. After each accelerated update, one should replace the earliest retained secant
pair by the new secant pair. The whole scheme is summarized in Algorithm 3. Note that the
effort per iteration is relatively light: two ordinary iterates and some matrix times vector
multiplications. Most of the entries of U'U and U'V can be computed once and used over
multiple iterations. The scheme is also consistent with linear constraints. Thus, if the parameter
space satisfies a linear constraint wx = a for all feasible x, then the quasi-Newton iterates also
satisfy wixk = a for all k. This claim follows from the equalities W!F(x) = a and wiVV = 0 in the
above notation.

Earlier quasi-Newton accelerations [9,11] focus on approximating the Hessian of the objective
function rather than the differential of the algorithm map. In our recent paper [17], we
demonstrate that the current quasi-Newton acceleration significantly boosts the convergence
rate of a variety of optimization algorithms. We apply it in the next section to importance
sampling.

5. Example

Our numerical example, borrowed from chapter 14 of the book [14], contains a random sample
of n = 1,664 repair times for Verizon's telephone customers. It is evident from the histogram

displayed in Figure 1 that the distribution of repair times has a long right tail and is far from

normal. The median is 3.59 hours, but the mean is 8.41 hours, and the maximum is 191.6 hours.
For purposes of illustration, we focus on the probability that the repair time of a Verizon

customer exceeds 100 hours. The statistic of interest 7 (X) = 52;“1(x,.> 100 IS strongly influenced
g

by extreme repair times. To estimate optimal importance wel its, we took a preliminary
bootstrap sample of size B; = 1,000 and executed our estimation procedure in MATLAB. We
also performed three forms of interior point optimization in MATLAB's Optimization Toolbox
as part of the fmincon function. The three standard methods use the exact Hessian of the
objective function, a BFGS quasi-Newton approximation to it, and a limited-memaory version
(LBFGS) of the BFGS approximation. The LBFGS algorithm depends as well on the number
q of secant conditions selected. The active set and trust region methods also implemented in
MATLAB are ignored here. The first is noticeably slower than the interior point methods, and

the second cannot handle equality constraints and boundary conditions.

The exact Hessian method takes only 18 iterations but 1,248 seconds to converge. In practice,
99% of the execution time is spent on evaluating the Hessian matrix, which requires O(nB;)
operations per iteration, and 1% of the time is spent on factoring the Hessian matrix, which
requires O(n3) operations per iteration. This example illustrates the extreme speed of
MATLAB's matrix operations. The interior point method with BFGS updates takes many more
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iterations but much less time per iteration because it dispenses with evaluating and factoring
the Hessian matrix. Part of the slow convergence of the BFGS method may be attributed to the
boundary conditions. In contrast, our algorithm takes O(nB;) operations per iteration and
converges quickly under acceleration. As shown in Table 1, the accelerated algorithm with g
> 1 secant conditions is a clear winner, giving massive improvements in execution time over
the naive MM algorithm and the Hessian and BFGS variants of Newton's method. Although
our accelerated algorithm also beats the LBFGS algorithm for all choices of g, Table 2 shows
that the later algorithm is highly competitive on large-scale problems. All comparisons listed
in the two tables involve stringent stopping criteria, which are adjusted to give the same number
of significant digits for the converged values of the objective function. Running times are
recorded in seconds.

6. Discussion

In summary, our procedure uses: (a) quadratic approximation of the objective function, (b)
majorization by a second quadratic with parameters separated, (c) the Michelot algorithm to
project points onto a truncated simplex, and (d) acceleration by quasi-Newton approximation
of the algorithm map. Each of these ideas has other applications.

Quadratic approximation lies at the heart of Newton's method and its many spinoffs. Our outer-
product majorization balances separation of parameters against poor approximation of the
Hessian. Separation of parameters is often the key to solving high-dimensional problems. The
loss of quadratic convergence is largely remedied by acceleration. This combination of tactics
also has potential in fitting generalized linear models (GLM). In this setting, Fisher's scoring
method uses the expected information matrix

n

10 =Y, = )

rather than the observed information matrix. Here f is the parameter vector, q(-) is the inverse
link function, x; is the predictor vector for case i, y; the response for case i, and

o-f (B) =Var (y;). Note that J(B) is again a sum of outer products. This fact suggests a
combination of majorization and acceleration on high-dimensional GLM problems. In many
such problems, itis prudent to also imposes a ridge or lasso penalty. The ridge penalty preserves
separation of parameters by a quadratic surrogate. The lasso penalty also preserves separation
of parameters, but not by a quadratic surrogate. Lasso penalized maximum likelihood
estimation is amenable to cyclic coordinate descent because the lasso is linear on either side
of 0. Our recent work on penalized ordinary and logistic regression [15,16] illustrates some of
the possibilities. Finally, our paper [17] amply illustrates the virtues of acceleration by quasi-
Newton approximation of an algorithm map.
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Figure 1.
Histogram of 1,664 repair times for Verizon's customers.
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Comparison of algorithms for calculating importance weights for the Verizon repair time data set. There are n =
1, 664 observations and B1 = 1, 000 bootstrap replicates.

Algorithm Iters  s(p*) (x107%) Time
Naive 11586 4.666920 2023.1764
q=1 24 4.665277 11.7226
q=2 19 4.665277 8.9670
q=3 16  4.665277 7.1562
q=4 16  4.665277 6.9169
g=5 17  4.665276 7.0566
g=6 17  4.665277 6.7434
q=7 18 4.665277 6.8271
q=8 19 4.665277 7.0829
qg=9 20 4.665277 7.2667
q=10 21  4.665277 7.4299
Int-Pt (Hessian) 18 4.665276 1247.8343
Int-Pt (BFGS) 69 4.665276 149.7225

Int-Pt (LBFGS)

Refer to Table 2
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Optimal Importance Weights

- 1 1
Initialize: p = ;, .

n
repeat
_]719k
o, = T(XZ)ZH;1(npj) % b-1. .. B,

_ * -1 *  —1]|t _

Vb—(mb1p1 R mbnpn ) ,b=1, ., B1
o * =2 * =2 _

Db_ dlag(mblp1 R mbnpn ) b=1, .., B1

U= CpVp
D=>ycy (Dp+ ”Vb"2 1n)
project x = D12y + D¥2p onto

-1/2 1/2
K={yER”:):jd1. yi=1 y;2d; 5}
p=D2P (x)

until convergence occurs
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Algorithm 2

n

Michelot Algorithm: Project x € R” onto the truncated simplex K= {J' eR™ o @vi=c, yiz & forall i}

repeat
Project x onto the hyperplane H = {x : >’j a;X; = c} via the map
t
a X —C P
2
[ all

Set x; = max{x;, €i},i=1,...,n

PH(X) =x—

If some X; < €;, then eliminate x; from further consideration

until x; > g; for all i
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Initialize: x°, g
fori=1toq+1do
X =F(x?)
end for
ui=xi—xiL v =xtl—xii=1,...,q
U = [uyugl, V = [vyvgl
X, = XA+
repeat
X, = F(X")
if [O(x1) - O(x"] < e[|O(x™)| + 1] then
break
end if
X2 = F(x1)
update the oldest u in U by u = x; — x"
update the oldest vin V by v = x, — X1
Xgn = X + V(U'U = UV) U
if Xqq falls outside the feasible region then
project xg, onto feasible region
end if
if the objective function satisfies O(xg,) < O(xp) then

XH+1 -

= an
else

XM= x,
end if

until convergence occurs
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Algorithm 3

Quasi-Newton Acceleration of an Algorithm Map F for Minimizing the Objective Function O
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