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Abstract: HIV dynamical models are often based on non-linear sys-

tems of ordinary differential equations (ODE), which do not have analytical

solution. Introducing random effects in such models leads to very challeng-

ing non-linear mixed-effects models. To avoid the numerical computation

of multiple integrals involved in the likelihood, we propose a hierarchical

likelihood (h-likelihood) approach, treated in the spirit of a penalized like-

lihood. We give the asymptotic distribution of the maximum h-likelihood

estimators (MHLE) for fixed effects, a result that may be relevant in a more

general setting. The MHLE are slightly biased but the bias can be made
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negligible by using a parametric bootstrap procedure. We propose an effi-

cient algorithm for maximizing the h-likelihood. A simulation study, based

on a classical HIV dynamical model, confirms the good properties of the

MHLE. We apply it to the analysis of a clinical trial.

Keywords: algorithm, asymptotic, differential equations, h-likelihood,

HIV dynamics models, non-linear mixed effects model, penalized likelihood.

1 INTRODUCTION

Since the influential paper of Ho et al. (1995) there has been a strong

impetus to develop mathematical models for better understanding the in-

teraction between HIV and the immune system; see Nowak and May (2000).

However the statistical inference in these models has raised major challenges

coming from the intrication of identifiability and numerical problems. The

first problem is numerical: in general the trajectories of the interesting

quantities (e.g. viral load or CD4 counts) are solutions of non-linear differ-

ential equations that do not have analytical solutions. The second problem

is the identifiability problem: the observations recorded on one subject are

not informative enough to estimate all the parameters of the model. The

first problem is either avoided, simplifying the models to obtain analyti-

cal solutions (Wu and Ding, 1999), or solved by using numerical solvers of

ordinary differential equations (ODE); Ramsay et al. (2007) proposed an

original approach but did not apply it to a random effect model. The second

problem is partly treated by considering that the particular values of the pa-
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rameters for each subject are realizations of random variables with a given

distribution in the population. This puts the problem in the framework of

non-linear mixed effects models. Laplace approximation of the numerical

integrals involved in the computation of the likelihood has been proposed

(Beal and Sheiner, 1982; Lindstrom and Bates, 1990); adaptive Gaussian

quadrature is another possibility (see Davidian and Giltinan, 1995). We re-

fer to Wu (2005) for a review of statistical issues in HIV models. Recently a

stochastic approximation EM (SAEM) algorithm has been proposed (Kuhn

and Lavielle, 2005; Donnet and Samson, 2007). In the specific case of HIV

dynamics models a Bayesian approach has been proposed by Putter et al.

(2002) and Huang, Liu and Wu (2006), while a special algorithm for com-

puting the likelihood and maximizing using a Newton-like method has been

proposed by Guedj, Thiébaut and Commenges (2007). However all these

methods present difficulties and can be time-consuming.

The hierarchical likelihood (h-likelihood) has been proposed for general-

ized linear models with random effects by Lee and Nelder (1996) and further

studied in Lee and Nelder (2001) and Lee, Pawitan and Nelder (2006) and

for non-linear mixed effects models by Noh and Lee (2008). This is very

similar to an approach called penalized likelihood used by McGilChrist and

Aisbett (1991) and Therneau and Grambsch (2000) for frailty models. The

main idea is to treat the random effects (or the frailties) as parameters

and to find estimates of all the parameters by maximizing a function which

is essentially the loglikelihood conditional on the random effects minus a

penalty term which takes large values if the “random” parameters are very

dispersed. Penalized likelihood has also been used for function estimation

(O’Sullivan; 1988). The advantage of this approach is that it may avoid

computing numerical integrals. The curse of dimensionality is transferred
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from the dimension of numerical integrals to the dimension of the space on

which maximization takes place. There are problems with this approach.

One is the asymptotic distribution of the estimators of the fixed parame-

ters; another is the estimation of the variances of the random parameters.

Consistency of the maximum h-likelihood estimators (MHLE) has not been

proved. It is often suggested to revert to the likelihood to have consistent

estimators of the fixed parameters, but then the most important benefits

of h-likelihood in terms of computational burden is lost. Last but not least

is the problem of maximizing a complicated function over several hundred

parameters.

The aim of this paper is to develop a (partly non-standard) h-likelihood

approach to HIV dynamics models which completely avoids computation of

the likelihood. This is in the spirit of penalized likelihood in the sense that

we do not try to precisely estimate the variances of the random effects. One

aim is to study the asymptotic distribution of the MHLE for a given choice

of the penalty. Another aim is to find an efficient maximization algorithm.

The paper is organized as follows. In section 2 we describe a statistical

model based on an ODE system in a general form and in a particular form

which will be used for simulations. In section 3 we describe h-likelihood and

we give the asymptotic distribution of the MHLE for fixed effects when the

number of subjects tends toward infinity. We propose a parametric boot-

strap procedure to correct the bias of the MHLE. In section 4 we propose

a strategy for choosing the penalty based on the guess of an upper bound

of the variance of the random effects. An efficient maximization algorithm

is presented in section 5. Section 6 presents a simulation study. Section 7

presents the analysis of a clinical trial. We conclude in section 8.
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2 A POPULATION DYNAMICS MODEL

2.1 A general model for the system

The dynamics of the concentrations of virions and CD4+ T-cells (in short,

CD4) in different stages (represented by X i(t)) can be described by an

ODE system. We allow the values of the parameters to vary between sub-

jects; thus we consider a population model, as in Guedj, Thiébaut and

Commenges (2007). For subject i with i = 1, ...n, this can be written:
dX i

(t)
dt

= f(X i(t), ξi)

X i(0) = h(ξi)
(1)

where X i(t) = (X i
1(t), ..., X i

K(t))′ is the vector of the K state variables

(or components); ξi = (ξi1, ..., ξ
i
p) is a vector of p individual parameters

which appear naturally in the ODE system and have generally a biological

interpretation. Similarly to generalized (mixed) linear models, we introduce

a link function which relates ξi to a linear model involving explanatory

variables and random effects:

Ψl(ξ
i
l ) = ξ̃il =

 φl + bil + zil (t)βl, l = 1, . . . , R,

φl + zil (t)βl, l = R + 1, . . . , p,
(2)

where φl is the intercept, zil (t) are vectors of explanatory variables associ-

ated with the fixed effects of the lth biological parameter; these explana-

tory variables may be time-dependent, in which case the ODE system has

time-dependent parameters. The βl’s are vectors of regression coefficients;

bi = (bi1, . . . , b
i
R) is the individual vector of random effects. We assume

bi ∼ N (0,Σ) with Σ diagonal with diagonal elements τ 2
l . More general

models could of course be considered.
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2.2 Model for the observations

Let Yijm denote the jth measurement of the mth observable component for

subject i at time tijm; we assume that:

Yijm = gm(X i(tijm)) + εijm, i = 1, ..., n, j = 1, ..., nim, (3)

for m = 1, ...,M , where gm(.) are known functions and where the εijm

are independent Gaussian variables with zero mean and variances σ2
m. The

εijm’s are supposed independent because they represent measurement errors.

The model for the observations may be complicated by the detection limits

of assays leading to left-censored observations Yijm.

2.3 A particular model for HIV dynamics

For illustrating the proposed method we present a version of a rather stan-

dard model for the HIV dynamics model, close to that used by Nowak and

Bangham (1996):

dT i

dt
= λi − γiT iV i − µiTT i

dT ∗i

dt
= γiT iV i − µiT ∗T ∗i

dV i

dt
= πiT ∗i − µiV V i

where T i, T ∗i represent the concentrations (implicitly depending on t) of

non-infected and infected CD4 respectively, and V i stands for the concen-

tration of virus.

Here the components of ξil = (λi, γi, µiT , µ
i
T ∗ , π

i, µiV ) represent rates of

events such as production of new cells or particles, rates of infection after
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meeting between different particles. As for the Ψl(.), we will take the nat-

ural log-transform for all the parameters: the natural log-transform can be

justified if we think of the parameters as expectations of Poisson variables

and has the advantage that the standard deviations of the transformed pa-

rameters may be interpreted as coefficients of variations of the estimators

of the natural parameters. For the simulations, in the link equation (2) we

will take random effects for λi, πi and µiT ∗ (so R = 3) with the bil being

normal and independent with variances τ 2
λ , τ 2

π , τ 2
µT∗

, respectively. For all

parameters except for γi we will take no explanatory variable. The effect of

the treatment will be modeled as modifying γi according to the equation:

γ̃i = log γi = γ0 + β1z
i
1(t) + β2z

i
2(t),

where zi1(t) and zi2(t) are treatment indicators. The treatment may change

with time; here we will suppose that they are fixed for t ≥ 0 but take

the value 0 for t < 0. We assume that at t = 0 the patients are at the

equilibrium of the system with zi1(t) = zi2(t) = 0 and this gives impor-

tant information. As for the observation equation (3) we will take in the

simulations:

Yij1 = log10 V
i(tij1) + εij1

Yij2 = [T i(tij2) + T ∗i(tij2)]1/4 + εij2

Yij3 = [T ∗i(tij3)]1/4 + εij3
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3 THE HIERARCHICAL OR PENALIZED

LIKELIHOOD

3.1 Asymptotic Distribution of the MHLE

Let us consider the following model: conditionally on bi, Yi has a density

fY (.; θ, bi), where θ is a vector of fixed parameters of dimension q (θ ∈ Θ ⊂

<q) and bi are random effects (or parameters) of dimension R. The (Yi, bi)

are independently identically distributed (iid). Typically Yi is multivariate

of dimension ni. We assume that the bi have density fb(.; τ ) with zero

expectation and where τ is a vector of parameters. We denote by P ∗ the

true probability and θ∗ and τ ∗ the parameter values which specify the

distribution of the observed Yi. Typically Yi is (at least partially) observed

while bi is not.

Estimators of both θ and b = (b1, . . . , bn) are defined as maximizing

the (normalized) extended loglikelihood, called here (by abuse of language)

h-loglikelihood:

HL(θ, b, τ ) = Lθ,b
n
− 1

n

n∑
i=1

J(bi; τ ),

where Lθ,bn is the loglikelihood (normalized by 1
n
) for the observation con-

ditional on b, and J(bi; τ ) = − log fb(bi; τ ). We denote by (θ̂τ , b̂
τ

) the

values which maximize HL(θ, b, τ ) for given τ ; θ̂τ will be called the MHLE

of the parameters θ. We have HL(θ, b, τ ) = 1
n

∑n
i=1 hl(Yi; θ, bi, τ ) with

hl(Yi; θ, bi, τ ) = l(Yi; θ, bi) − J(bi; τ ), where l(Yi; θ, bi) is the loglikelihood

for subject i conditional on bi. For simpler notation we will not always

make the dependence in τ explicit and will write for instance HL(θ, b) for

HL(θ, b, τ ). We shall make the additional assumptions:
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A1 l(y; θ, bi) and J(bi; τ ) are continuous and twice-continuously differ-

entiable functions of θ and bi for all y and τ ;

A2 EP ∗l(Yi; θ, bi) exists for all θ ∈ Θ.

We shall derive asymptotic results for the MHLE of the fixed parameters

θ, which do not require that τ = τ ∗.

Lemma 1 Under assumptions A1 and A2 the MHLE for fixed effects are

M-estimators.

Proof. Consider the profile h-loglikelihood PHLn(θ) = HL(θ, b̂(θ)), where

b̂(θ) = argmaxb HL(θ, b). (θ̂τ , b̂(θ̂τ )) maximizes PHLn(θ), thus θ̂τ is the

profile h-likelihood estimator. Remembering that HL(θ, b) = 1
n

∑n
i=1 hl(Yi; θ, bi),

it is clear that the components of b̂(θ) are the b̂i(θ) = argmaxbi [hl(Yi; θ, bi)].

Thus PHLn(θ) = HL(θ, b̂(θ)) = 1
n

∑n
i=1 hl(Yi; θ, b̂i(θ)). It follows that θ̂τ

is a M-estimator because it is clear that θ̂τ is the maximum of Mn(θ) =

n−1 ∑n
i=1mθ(Yi), wheremθ(y) is a known measurable function: heremθ(y) =

hl(y; θ, b(y; θ)) where b(y; θ) = argmaxb[hl(y; θ, b)] (Van der Vaart, 1998, p

41).

For the convergence result we need the additional assumption:

A3 For every sufficiently small ball U ∈ Θ, EP ∗ supθ∈U hl(y; θ, b(y; θ)) <∞.

In the convergence theorems of the MHLE we will emphasize the fact

that it depends on n by writing θ̂τ = θ̂τn .

Theorem 1 If Θ is compact and assumption A1-A3 holds, the MHLE of

fixed effects θ̂τn converges in probability toward θτ0 = argmaxθ EP ∗ [hl(Yi; θ, b̂i(θ))],

for any τ .

Proof. By the law of large numbers Mn(θ) →p M(θ) where M(θ) =

EP ∗ [hl(Yi; θ, b̂i(θ))]. Let us call θτ0 the value, that we assume unique, at
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which M(θ) attains its maximum. The conditions stated in the Theorem,

together with the continuity assumption A1, allow us to apply Wald’s con-

sistency proof (van der Vaart, 1998, Theorem 5.14, p48).

Corollary 1 The MHLE of the fixed parameter of the statistical model de-

scribed in section 2 converges in probability toward θτ0 = argmaxθ EP ∗ [hl(Yi; θ, b̂i(θ))].

Proof. In the case of the statistical model of section 2 we have hl(Yi; θ, b̂i(θ)) =∑M
m=1[−ni

2
log σ2

m−
∑ni
j=1

(Yijm−φm(tijm;θ,b̂i(θ)))
2

2σ2
m

]−∑R
r=1

b̂ir(θ)
2

2τ2
, where φm(tijm; θ, bi) =

gm(X i(tijm)) (where X i(tijm) is the solution of the ODE system with pa-

rameters θ, bi). In case where σ2
m are fixed, assumption A3 is trivially

satisfied because we can remove the terms involving σ2
m and obtain a func-

tion which is bounded by zero. If we include the σ2
m in the parameters

that we wish to estimate, assumption A3 is satisfied since hl(Yi; θ, b̂i(θ)) ≤∑M
m=1−ni

2
log σ2

m −
∑ni
j=1

(Yijm−φm(tijm;θ,b̂i(θ)))
2

2σ2
m

≤ ∑M
m=1−ni

2
log σ̃2

m − ni/2,

with σ̃2
m =

∑ni
j=1

(Yijm−φm(tijm;θ,b̂i(θ)))
2

ni
. It seems reasonable to conjecture that

EP ∗ [− log (Yijm − φm(tijm; θ, b̂i(θ)))
2] < ∞. We can compactify the space

by taking Θ = <̄d. If some parameters take an infinite value, hl(Yi; θ, b̂i(θ))

take either the value −∞ or a finite value.

Now the problem is to investigate whether θτ0 is equal or close to θ∗.

M(θ) can be considered as an approximation of minus the Kullback-Leibler

divergence. This is obtained by replacing the expectation in b by the mode.

The approximation is exact if φm are linear functions in b but this is not

true in general. However there is a possibility of reducing the bias (see

section 3.3).

The asymptotic normal distribution holds for M-estimators under some

regularity conditions. We make use of Theorem 5.23 of van der Vaart (1998)

which only requires a Lipshitz condition on mθ(y) = hl(y; θ, b(y; θ)) that we
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can establish if the following assumption bearing on uθ(y) = ∂hl(y;θ,b̂(y;θ))
∂θ

holds. We shall use uθi = uθ(Yi) and will give an alternative expression in

formula (6).

A4 There is a neighborhood Θ0 ⊂ Θ of θτ0 such that the function ṁ(y) =

supθ∈Θ0
uθ(y) has the property: EP ∗‖ṁ(Yi)‖2 <∞.

Theorem 2 Assume assumptions A1-A4 hold. Then
√
n(θ̂τn −θτ0 ) is asymp-

totically normal with zero expectation and variance equal to

Σ(θτ0 ) = {EP ∗ [H
θτ0
i ]}−1{EP ∗ [u

θτ0
i u

θτ0 T
i ]}{EP ∗ [H

θτ0
i ]}−1,

where Hθ
i =

∂uθi
∂θ

.

Proof. The theorem follows by applying Theorem 5.23 of van der Vaart

(1998). In this theorem, the main condition is that there exists a measurable

function ṁ with EP ∗ṁ
2 <∞ such that for every θ1 and θ2 in a neighborhood

Θ0 of θ0 we have:

|mθ1(y)−mθ2(y)| ≤ ṁ(y)‖θ1 − θ2‖. (4)

A Taylor series expansion gives: mθ1 −mθ2 = (θ1 − θ2)T ∂mθ
∂θ

(θ̃), where

θ̃ ∈ Θ0. This yields:

|mθ1 −mθ2| ≤ ‖
∂mθ

∂θ
(θ̃)‖‖θ1 − θ2‖ ≤ sup

θ∈Θ0

‖∂mθ

∂θ
(θ)‖‖θ1 − θ2‖.

Then assumption A4 allows us applying the Theorem 5.23 of van der Vaart

(1998).

For applying Theorem 2, it remains to compute the first and second

derivatives of mθ(Yi) in terms of derivatives of the likelihood conditional

on the random effects. We write li(θ, b̂i(θ)) = l(Yi; θ, b̂i(θ)). Let us call ∂l
∂x

(resp. ∂l
∂z

) the derivatives of li(., .) wrt the first (resp. the second) argument
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and ∂J
∂z

the derivative of J(.) wrt its argument. We have uθi = ∂li
∂x
|θ,b̂i(θ) +

∂li
∂z
|θ,b̂i(θ)

∂b̂i
∂θ
|θ− ∂J

∂z
|b̂i(θ). However, because b̂i(θ) maximizes hl(Yi; θ, b) we have

∂li
∂z
|θ,b̂i(θ)

∂b̂i
∂θ
|θ −

∂J

∂z
|b̂i(θ) = 0. (5)

Hence we obtain that

uθi =
∂li
∂x
|θ,b̂i(θ). (6)

That is uθi is simply the derivative of the loglikelihood as if b was fixed,

computed in (θ, b̂i(θ)).

Next we have Hθ
i =

∂uθi
∂θ

= ∂2li
∂x2
|θ,b̂i(θ) + ∂2li

∂z∂x
|θ,b̂i(θ)

∂b̂i
∂θ
|θ. Differentiating

equation (5) wrt θ we have:

∂2li
∂x∂z

|θ,b̂i(θ) +
∂2li
∂z2
|θ,b̂i(θ)

∂b̂i
∂θ
|θ −

∂2J

∂z2
|b̂i(θ)

∂b̂i
∂θ
|θ = 0,

from which we obtain:

∂b̂i
∂θ
|θ = −

[
∂2li
∂z2
|θ,b̂i(θ) −

∂2J

∂z2
|b̂i(θ)

]−1
∂2li
∂x∂z

|θ,b̂i(θ).

Hence:

Hθ
i =

∂2li
∂x2
|θ,b̂i(θ) −

∂2li
∂z∂x

|θ,b̂i(θ)

[
∂2li
∂z2
|θ,b̂i(θ) −

∂2J

∂z2
|b̂i(θ)

]−1
∂2li
∂x∂z

|θ,b̂i(θ).

In practice we can plug in the estimator θ̂τ to obtain an estimator of

Σ(θτ0 ) (using the continuous mapping theorem). We may also use the ob-

served scores and Hessian. By virtue of the law of large numbers they

converge toward their expectations, and again the continuous mapping the-

orem allows to prove consistency of the resulting estimator.

3.2 Correction of the bias

We have shown in section 3.2 that the MHLE θ̂τ tends toward θτ0 which

is in general different from θ∗; thus there is an asymptotic bias θτ0 − θ∗.
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Note that the asymptotic distribution is valid for any τ , and on the other

hand, θ̂τ is biased even for τ = τ ∗. Thus the problem of this approach

is essentially that of the bias, although a small bias may be acceptable if

it goes with a small variance. We propose to partially correct the bias by

parametric bootstrap (Efron and Tibshirani, 1993).

Specifically, for s = 1, . . . , S, generate the bsi from fb(., τ ); generate Y s
i

from fY (.; θ̂τ , bsi ); compute the MHLE θ̂τ ,s for these data. An estimator

of the bias is S−1 ∑S
s=1(θ̂τ ,s − θ̂τ ). Thus the corrected estimator, called

cMHLE, is

θ̌τ = θ̂τ − S−1
S∑
s=1

(θ̂τ ,s − θ̂τ ).

This correction slightly increases the variance. The variance of θ̌τ can be

computed through the formula var EP ∗(θ̌
τ |θ̂τ )+EP ∗var(θ̌τ |θ̂τ ). Neglecting

the bias of the MHLE in this computation we obtain:

var θ̌τ ≈ (1 + S−1)var θ̂τ

4 PENALTY CHOICE

Profile likelihood has been proposed by Therneau and Grambsch (2000) and

Lee and Nelder (2001) but it has the drawback of requiring the computation

of the marginal likelihood. We propose a strategy for penalty choice which

avoids this computation. For any choice of τ = (τ1, . . . , τR) we have that

θ̂τ has an asymptotic normal distribution with expectation θτ0 and with

a variance that can be estimated. We propose to take a reasonable upper

bound of τ , that is, the value τ u = (τu, . . . , τu) where τu is considered

as an approximate upper bound for the τ ∗i . First, note that since we are

working with natural logarithms of the biological parameters, the τi may
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be interpreted as coefficients of variation of these parameters. It seems

reasonable (and is in agreement with the literature) to expect coefficients

of variations of parameters such as rate of production of new lymphocytes

(λ) or death rate of uninfected lymphocytes (µT ) are not very large, that

is no more than 0.3.

5 MAXIMIZATION ALGORITHM

Newton-like algorithms use an approximation of the Hessian of the function

to maximize. Since there are many parameters, this matrix can be very

large. For instance in our application q = 7, R = 3, n = 100, so the number

of parameters is q + nR = 307. In complex problems, both gradient and

Hessian have to be computed numerically. Particular care must be spent

to compute the Hessian both economically and precisely. The algorithm we

propose is an adaptation of the Marquardt algorithm (Marquardt, 1963),

taking advantage of the special structure of the Hessian in our problem. We

draw two consequences of this special structure: (i) there are many terms

which are equal to zero, so we do not need to compute them; (ii) the matrix

is not far from being block-diagonal.

We shall first consider the particular case where the number of ran-

dom and fixed effects are equal (R = q) and the loglikelihood of subject

i, l(Yi; θ, bi), depends only on θ + bi. We are interested in maximizing the

following function:

HL(θ, b) =
1

n

n∑
i=1

l(Yi; θ, bi)− R∑
r=1

bir
2

2τ 2

 ·

14



It is useful to reparametrize in term of ai = θ + bi. One finds

HL =
1

n

n∑
i=1

laii − R∑
r=1

(air − θr)
2

2τ 2

 =
1

n

n∑
i=1

hli·

With this parameterization the loglikelihood, laii = l(Yi; θ, ai − θ), which

is the complex part, depends only on ai so that many derivatives of the

h-loglikelihood are very simple:

∂HL

∂θr
=

1

n

n∑
i=1

air − θr
τ 2

; (7)

∂2HL

∂θr∂air′
=
δrr′

nτ 2
;

∂2HL

∂air∂a
i′
r′

= 0, if i 6= i′ ;
∂2HL

∂θr∂θr′
= −δrr

′

τ 2
,

where δrr′ = 1 if and only if r = r′. This leads to a specific block structure

of the Hessian matrix, involving blocks A = ∂2HL
∂θ2

= − 1
τ2
IR and D = ∂2HL

∂θ∂ai
=

1
nτ2
IR (where IR is the identity matrix of dimension R; D does not depend

on i) and Ci = 1
n
∂2hli
∂a2i

; the structure is displayed in Figure 1.

Figure 1: Hessian matrix in the case R = q. A = − 1

τ 2
IR and D =

1

nτ 2
IR,

IR is the identity matrix of dimension R, and Ci = 1
n
∂2hli
∂a2i

.
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Fast computation of this large (n + 1)R × (n + 1)R Hessian matrix is

possible for two reasons: (i) only the terms of blocks Ci require computation

of the likelihood; (ii) for computing the terms of block Ci we only need to

compute the second derivatives of laii (and not of the whole h-likelihood).

Finally there are nR(R + 1)/2 terms to compute, each involving only one

computation of the solution of the ODE system (needed for the numerical

differentiation): it follows that the number of computations of the solution

of ODE system does not exceed that required for the computation of the

Hessian for an ordinary (without random effect) non-linear model with q

parameters !

The nearly diagonal structure of the Hessian led us to design the so-

called “patient-by-patient” algorithm, decoupling the optimization between

patients. Denoting by ai(k) and θ(k) the values at iteration k, iteration k+1

proceeds in two steps:

Step 1: For i = 1, . . . , n: make one Marquardt step for optimizing the

function laii −
∑R
r=1

(air−θr(k))
2

2τ2
on ai; this gives ai(k + 1); Step 2: compute

θr(k + 1) = 1
n

∑n
i=1 a

i
r(k + 1) (which satisfies (7)); go to step 1 (until con-

vergence is reached).

The patient-by-patient algorithm works very well far from the maximum

when the global Marquardt algorithm is hampered by the need of a large

increase of the diagonal of the Hessian. However the decoupling between

patients also leads to a loss of efficiency so that close to the maximum

it is less efficient than the global Marquardt algorithm. This observation

led us to devise a hybrid algorithm: use the patient-by-patient algorithm

until all blocks Ci are definite-positive; then switch to the global Marquardt

algorithm. Note that ensuring that all blocks Ci be definite-positive does

not imply that the Hessian is so; generally however it is not far from being
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the case so that the Marquardt algorithm is efficient.

We now consider the case where there are R fixed parameters, that we

call α, associated with a random effect; such as above the loglikelihood of

subject i, l(Yi; θ, bi), depends only on α+bi and a vector of fixed parameters

β. As in the preceding case, the Hessian has a particular structure (see

Figure 2). It involves the blocks A, D and Ci as above, and in addition

blocks B = ∂2HL
∂β2 and Bi = 1

n
∂2hli
∂β∂ai

.

Figure 2: Hessian matrix in fixed and random effects case where A =

− 1

τ 2
IR, D =

1

nτ 2
IR (where IR is the identity matrix of dimension R),

B = ∂2HL
∂β2 , Bi = 1

n
∂2hli
∂β∂ai

and Ci = 1
n
∂2hli
∂a2i

The idea, like previously, is to deal with the case where there are non-

definite positive Ci. For that, we use the two steps of the patient-by-patient

approach which give the individual parameters ai(k + 1) and their means

α(k+1). Then keeping these values fixed, we find the other fixed parameters

β(k + 1) by a step of Marquardt algorithm with the block B. As soon as

all blocks Ci and the block B are definite positive, we switch to the global
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Marquardt algorithm.

6 A SIMULATION STUDY

6.1 Description of the simulation study

We did simulations from the model described in section 2.3. We fixed (that

is we did not estimate) the parameters µ̃V , µ̃T and σi, at values which

are plausible in view of the literature (taking as time unit the day and

as volume unit the micro-liter): µ̃V = 3.40; µ̃T = −2.20; σi = 0.5, i =

1, 2, 3. The values for the other parameters (to be estimated), including

the two treatment effects β1 and β2, are given in Table 2. For each replica,

observations for n = 100 subjects were generated; for each subject nim = 10

observations for the three compartments (m = 1, 2, 3) were generated at

times 0, 3, 6, 9, 12, 15, 18, 21, 24, 30.

6.2 Efficiency of the algorithm

We did a simulation to compare the number of iterations of the global Mar-

quardt algorithm and the hybrid algorithm. We tried the two algorithms

with models including one to three random effects. The initial values were:

λ̃ = 5.0; µ̃T ∗ = 0; π̃ = 0; γ̃0 = −5.0; β1 = −1.0; β2 = −1.0. The global

Marquardt algorithm did not always converge in less than 150 iterations

while the hybrid algorithm nearly always converged (see Table 1); when

they both converged, this was toward the same values (close to the true

parameter values). We checked that when we started from different values

the algorithms converged toward the same values. The hybrid algorithm is

faster than the global one. In Table 1 we give the mean number of iterations
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Table 1: Percentage of convergence in less than 150 iterations and mean

number of iterations to converge with different random effects for the Global

Marquardt and Hybrid algorithm.

Random effects
Global algorithm Hybrid algorithm

nb iter % success nb iter % success

λ̃ 35 81% 11 100%

λ̃, µ̃T ∗ 54 59% 17 100%

λ̃, µ̃T ∗ , π̃ 71 49% 25 94%

until convergence (computed on 100 replications) for which the algorithm

converged in less than 150 iterations. For instance the mean number of

iterations for 3 random effects was 25 versus 71 for the hybrid versus the

global algorithm. The mean time of one iteration is about the same for the

two algorithms. To give an idea in terms of computation time, the hybrid

algorithm took about 10 mn for the case with three random effects on a

standard work station (Bi Xeon, 3.8 GHz).

6.3 Efficiency of the bias correction

We estimated the bias of the corrected θ̌τ and uncorrected MHLE θ̂τ using

500 replicas of a distribution with three random effects bearing on λ̃, µ̃T ∗ , π̃.

We first examine the case where τ = τ ∗ = (0.2, 0.2, 0.2). The biases of the

uncorrected MHLE are of order 10−2 for all parameters. The correction

reduces the biases to the order of 10−3 (except for one parameter), which

seems negligible.
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Table 2: Parameter values for the simulation and uncorrected and corrected

biases

Parameters True value Mean estimated value Bias

non corr corr non corr corr

λ̃ 4.10 4.14 4.10 4.03 10−2 1.67 10−3

µ̃T ∗ −1.60 −1.54 −1.60 5.57 10−2 3.67 10−3

π̃ −0.170 −0.160 −0.166 1.01 10−2 3.69 10−3

γ0 −3.00 −2.98 −3.00 1.50 10−2 −3.60 10−3

β1 −1.10 −1.08 −1.10 2.04 10−2 2.59 10−3

β2 −1.40 −1.35 −1.39 4.55 10−2 1.11 10−2

6.4 Property of the cMHLE

We wished to check whether the asymptotic results hold in practice. We

simulated data from the standard model of section 2.3. In the first simu-

lation (case 1) we took as standard deviations of the random effects τ ∗λ =

τ ∗µT = τ ∗µT∗ = 0.2. In a second simulation (case 2) we took τ ∗λ = 0.1,

τ ∗µT = 0.2, τ ∗µT∗ = 0.3. We did 500 replications and computed the root

mean square errors (RMSE) and coverage rate of .95 confidence intervals

of the estimated fixed parameters obtained in fixing the components of τ u

in the h-likelihood at values τu = 0.1; 0.2; 0.3. The results for the RMSE

are shown in Table 3. In the first case, the results tend to be better when

τu = 0.2 which is closer to the τ ∗r , while τu = 0.3 tends to be better than

τu = 0.1. For the second case the results for τu = 0.2 and τu = 0.3 were

approximately of the same quality, better than for τu = 0.1. It is striking
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that most of the RMSE are roughly of the same order, between 10−2 and

10−1. These RMSE can be interpreted as typical relative errors on the nat-

ural parameter; in these simulation the order of magnitude is about 5%.

In term of coverage rates, the results (see Table 4) are not very good for

τu = 0.1. They are satisfactory for τu = 0.2 , and even more satisfactory

for τu = 0.3. This corroborates our strategy based on a reasonable upper

bound τu of the τ ∗r .

Table 3: Root Mean Square Error, 100 subjects, 500 replications.

τu 0.1 0.2 0.3

Par. case 1 case 2 case 1 case 2 case 1 case 2

λ̃ 5.62 10−2 4.47 10−2 3.34 10−2 3.94 10−2 4.95 10−2 3.76 10−2

µ̃T ∗ 9.10 10−2 7.67 10−2 4.64 10−2 6.84 10−2 8.50 10−2 7.47 10−2

π̃ 7.27 10−2 5.95 10−2 5.14 10−2 5.86 10−2 5.25 10−2 5.71 10−2

γ0 2.60 10−1 1.88 10−1 1.35 10−2 1.56 10−1 1.77 10−1 1.52 10−1

β1 1.74 10−1 1.59 10−1 1.01 10−1 1.04 10−1 1.04 10−1 9.89 10−2

β2 1.67 10−1 1.91 10−1 1.02 10−1 1.35 10−1 1.06 10−1 9.90 10−2
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Table 4: Coverage rate, 100 subjects, 500 replications.

τu 0.1 0.2 0.3

Par. case 1 case 2 case 1 case 2 case 1 case 2

λ̃ 90% 81% 95% 92% 89% 89%

µ̃T ∗ 94% 81% 94% 88% 93% 89%

π̃ 96% 95% 94% 92% 93% 94%

γ0 97% 97% 98% 96% 94% 95%

β1 94% 87% 97% 93% 93% 94%

β2 85% 74% 97% 93% 92% 93%

7 APPLICATION TO A CLINICAL TRIAL

As an application of the proposed method, we aimed at estimating the

difference of treatment effects in a randomized clinical trial (Molina et al.,

1999). The ALBI ANRS 070 trial compared over 24 weeks the combination

of zidovudine plus lamivudine (AZT+3TC) with that of stavudine plus

didanosine (ddI+d4T) (a third arm alternating from one regimen to another

was not considered in this paper). The inclusion criteria were CD4 ≥ 200

cells/µL and HIV RNA level between 4 and 5 log10 copies/mL within 15

days before entry into the study. The primary outcome measure defined in

the study protocol was the antiretroviral effect as measured by the mean

change in HIV RNA level between baseline and 24 weeks by use of the

ultra-sensitive PCR assay with lower limit of quantification of 50 copies/mL

(1.7 log10). In the main analysis of Molina et al. (1999), HIV RNA values

reported as < 50 copies/mL were considered equivalent to 50 copies/mL; 51
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patients were included in each treatment group. Over the 24-week period,

HIV RNA level declined in the two groups, with mean (SE) decreases at

the end of the study of 1.26 (0.09) log10 copies/mL in the AZT+3TC group

and 2.26 (0.11) log10 copies/mL in the ddI+d4T group.

We used the model described in section 2.3. In this application only

the first two components Yij1 and Yij2 were observed. Moreover only a

left-censored version of Yij1 was observed; this was taken into account in

the likelihood as in Guedj, Thiébaut and Commenges (2007). In view of

less informative observations than in the simulations we fixed the values of

three parameters: µ̃T = −2.20, µ̃V = 3.40 and γ0 = −3. We put random

effects on λ, π and µ∗T , working with τu = 0.3. The estimated values of the

parameters in natural logarithmic scale are displayed in Table 5. Reverting

to natural parameters we find: λ̂ = 56.8 [54.1; 59.7]; π̂ = 0.79 [0.67; 0.92];

µ̂T ∗ = 0.18 [0.17; 0.19]. In addition it was possible to test whether the two

treatment groups differed. The relevant null hypothesis is “η = 0”, where

η = β2 − β1. A natural test statistic is W = η̂√
v̂ar η̂

, where η̂ = β̂2 − β̂1 and

v̂ar η̂ can easily be computed from the estimate of the asymptotic variance

matrix Σ.

We found η̂ = 0.242, v̂ar η̂ = 5.16 10−3; this gives W = 3.37 and a

p-value equal to p = 7 10−4. Thus we conclude as expected that the treat-

ment groups differ, and more precisely that the infectivity of the virus has

been reduced more drastically in the ddI+d4T than in AZT+3TC group.

Baseline infectivity is multiplied by a factor estimated to eβ̂2 = 0.25 and

eβ̂1 = 0.32 in the ddI+d4T than in AZT+3TC groups respectively.
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Table 5: Estimated parameters based on the ALBI clinical trial

Parameters Uncorrected Values Corrected Values Confidence interval

λ̃ 4.05 4.04 [3.99; 4.09]

π̃ −0.129 −0.242 [−0.401;−0.083]

µ̃T ∗ −1.74 −1.73 [−1.80;−1.65]

β1 −1.33 −1.12 [−1.29;−0.957]

β2 −1.53 −1.37 [−1.56;−1.17]

σCD4 0.173 0.168 [0.151; 0.185]

σCV 0.584 0.541 [0.501; 0.582]

8 CONCLUSION

We have developed a hierarchical likelihood approach for inference in an

HIV dynamical model. We have obtained the asymptotic distribution of the

MHLE, we have derived a procedure which makes the bias negligible and

we have developed an efficient maximization algorithm. Our simulations

show that the whole approach works.

We have shown that it could be applied to the analysis of a real data

set. Rather precise estimates of the parameters were obtained. One limi-

tation of this approach is that some parameters must be fixed because of

identifiability problems. The model itself, although it is already statisti-

cally challenging, may be too simple from a biological point of view. The

development of such an approach would require richer data, for instance

observing the number of infected T cells.
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The main advantage of this approach is that it is easy to implement and

very fast as compared to the two main competing approaches, likelihood

and Bayesian inference. The main limitation is that it does not attempt to

estimate the variances of the random effects. In our application we already

have a knowledge of the range of values of these variances. Thus the method

can be used for exploring possible models while likelihood or Bayesian in-

ference can be used when estimates of the variances of the random effects

are needed.
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