
ar
X

iv
:0

90
6.

01
13

v4
  [

st
at

.M
E

] 
 1

6 
Se

p 
20

21

A note on Influence diagnostics in nonlinear mixed-effects elliptical models
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Abstract

This paper provides general matrix formulas for computing the score function, the (expected and observed)
Fisher information and the ∆ matrices (required for the assessment of local influence) for a quite general
model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression
for the generalized leverage. The matrix formulation has a considerable advantage, since although the
complexity of the postulated model, all general formulas are compact, clear and have nice forms.
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1. Main results

Recently, Russo et al. (2009) introduce an interesting nonlinear mixed model considering an elliptical
distribution for the response variable. The authors also present a motivating example in a kinetics longi-
tudinal data set which was firstly presented in Vonesh and Carter (1992) and previously analyzed under
the assumption of normality. Russo et al. (2009) analyze this dataset considering heavy-tailed distributions
which may accommodate “large” observations. The authors compute the score function, Fisher information
and some influence measures, but some matrices are presented only with the (r, s) element. The first au-
thor to compute expressions for the entries of the expected Fisher information in a multivariate elliptical
distribution was, perhaps, Mitchell (1989). Other recent papers have adopted the same strategy, namely
Savalli et al. (2006) and Osorio et al. (2007). Since writing a matrix by entering element by element is not
an efficient way to do it, we present a matrix version of these quantities (considering a more general model)
in which, besides an aesthetic improvement, one can use it for avoiding that cumbersome task. Moreover,
the compactness of the expressions might encourage other researches to study more complex models. We
also show matrix versions of some expectations of a variable with elliptic distribution that can be useful to
apply in a multivariate context.

The nonlinear model studied in Russo et al. (2009) is given by

yi = f(xi,α) +Zibi + ǫi, i = 1, . . . , n (1)

and, as defined by the authors, f is an mi-dimensional nonlinear function of α, xi is a vector of covariates,
Zi is a matrix of known constants, α is a p× 1 vector of unknown parameters and bi is an r × 1 vector of
unobserved random regression coefficients, where (yi, bi) follows an elliptical distribution, such that

(
yi

bi

)
ind
∼ Elmi+r

[(
f(xi,α)

0

)
;

(
ZiDZ⊤

i + σ2Imi
ZiD

DZ⊤
i D

)]
,

where Imi
is an (mi ×mi) identity matrix.

For the purpose of avoiding numerical integrations, Russo et al. (2009) consider the marginal model, that

is yi
ind
∼ Elmi

(f(xi,α);Σi), where Σi = ZiDZ⊤
i + σ2Imi

. The vector of parameters of interest is defined
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as θ = (α⊤,γ⊤)⊤, where γ = (γ0, γ1, . . . , γq)
⊤ is the vector of parameters involved in Σi with, in this case,

γ0 = σ2. In addition to the authors’ suppositions, the functional form of f(xi,α) must be known and twice
continuously differentiable with respect to each element of α.

In this paper, we consider the following model,

yi
ind
∼ Elmi

(f(xi,α);Σi(wi,γ)), (2)

where wi and xi may have common components. The functional form of the covariance matrix Σi(wi,γ) is
known and twice continuously differentiable with respect to each element of γ. Since θ must be identifiable
in model (1), we suppose that the model fulfills this requirement. To see that model (1) is a special case of
(2), take wi = Zi and Σi(Zi,γ) = ZiDZ⊤

i +σ2Imi
. As model (2) is not considering a specific structure for

Σi, it can represent other multivariate models. That is, model (1) can be generalized just by considering
Ri(zi,σ2) instead of σ2Imi

, where zi is a vector of extra dispersion covariates. Then, in this context, we
have that Σi(wi,γ) = ZiDZ⊤

i +Ri(zi,σ) and γ = (τ⊤,σ⊤)⊤, where wi = (Z⊤
i , z⊤

i )
⊤, τ is a q1× 1 vector

of dispersion parameters involved in D and σ is a q2× 1 vector of dispersion parameters associated with the
model error term. We can go further and assign, for instance, a first-order autoregressive covariance matrix
to the error terms, that is, Σi(wi,γ) = ZiDZ⊤

i + σ2V (ρ), where Vrs(ρ) = ρ|r−s|/(1 − ρ), then wi = Zi,
q2 = 2 and γ = (τ , σ2, ρ)⊤. In general, Σi(wi,γ) may be any structured covariance matrix with properties
aforementioned. To keep the same notation, consider γ = (γ0, . . . , γq)

⊤, i.e., q1 + q2 = q + 1, then, the
number of parameters is still b = p+ q + 1 (here, b is fixed and b ≪ n).

Russo et al. (2009) show that the score functions considering model (1) are given by

Uα =

n∑

i=1

viJ
⊤
i Σ−1

i ri and Uγj
= −

1

2

n∑

i=1

{
tr
[
Σ−1

i Σ̇i(j)

]
− vir

⊤
i Σ

−1
i Σ̇−1

i(j)Σ
−1
i ri

}
for j = 0, . . . , q

where vi = −2Wg(ui), ui = r⊤
i Σ

−1
i ri, ri = yi−f(xi,α), Ji = ∂f(xi,α)/∂α⊤, Σ̇i(j) = ∂Σi/∂γj, Wg(ui) =

d log g(ui)/dui and function g(·) is the density generator function with properties defined in Russo et al.

(2009). Notice that, the score function Uγj
has a typographical error. The right form is given by

Uγj
= −

1

2

n∑

i=1

{
tr
[
Σ−1

i Σ̇i(j)

]
− vir

⊤
i Σ

−1
i Σ̇i(j)Σ

−1
i ri

}
for j = 0, . . . , q.

The authors also show that the expected Fisher information considering model (1) is given by

Kθθ =

(
Kαα 0

0 Kγγ

)
,

where

Kαα =

n∑

i=1

4dgi
mi

J⊤
i Σ−1

i Ji,

and the (r, s) element of Kγγ is given by

Kγrγs
=

n∑

i=1

{
arsi
4

(ci − 1) + ci
1

2
tr
[
Σ−1

i Σ̇i(r)Σ
−1
i Σ̇i(s)

]}

with ci = 4fgi/[mi(mi+2)] and the quantities dgi, fgi and arsi are well defined in Russo et al. (2009). Note
that, the above score functions and Fisher information are essentially the same of those under model (2), but
here matrix Σi does not have the specific structure as regarded in Russo et al. (2009), it is left in the general
form. See also that the score function and Fisher information for γ are written in an element-by-element
form.

This paper is organized as follows. Section 1.1 presents a matrix version for the score function, the
(observed and expected) Fisher information and shows an iterative re-weighted least squares algorithm to
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attain the maximum-likelihood estimate for θ. Section 1.2 shows a matrix version for the ∆ matrices
presented by Russo et al. (2009) which are also applicable for model (2). Additionally, Section 1.3 presents
an expression for the generalized leverage in model (2). We do not present an application in this paper,
since it can be seen just as a complementary material of Russo et al. (2009).

1.1. Matrix version for the score function and Fisher information

The following two matrix results will be intensively used in the computation of the expressions derived in
this paper. Let A, B, C and D be n×n matrices, define also A = (a1,a2, . . . ,an) and C = (c1, c2, . . . , cn),
where ai and ci are n× 1 vectors, then

tr{A⊤CDB⊤} = vec(A)⊤(B ⊗C)vec(D) and A⊤BC = {a⊤
r Bcs} (3)

where vec(·) is the vec operator, which transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other, “⊗” indicates the Kronecker product. These results and other methods
in matrix differential calculus can be studied in Magnus and Neudecker (2007).

Define the following quantities,

Fi =

(
Ji 0

0 Vi

)
, Hi =

(
Σ−1

i 0

0 1
2Σ

−1
i ⊗Σ−1

i

)
, u̇i =

(
viri

−vec(Σi − virir
⊤
i )

)

and Vi =
(
vec(Σ̇i(0)), . . . , vec(Σ̇i(q))

)
, where Fi has rank b (i.e., the functions f and Σi must be defined to

hold such condition). Then, by using (3) and after a somewhat algebra, we have that the score function and
the expected Fisher information, considering model (2), can be written, respectively, as

Uθ =

n∑

i=1

F⊤
i Hiu̇i and Kθθ =

n∑

i=1

F⊤
i HiOiHiFi (4)

where

Oi = ci

( 4dgi

mici
Σi 0

0 2Σi ⊗Σi

)
+ (ci − 1)

(
0 0

0 vec(Σi)vec(Σi)
⊤

)
.

Fisher information given in (4) can clearly be interpreted as a quadratic form which can be easily
attained through direct matrix operations. Thus, a joint iterative procedure for attaining the MLE of θ can
be formulated as the following re-weighted least squares algorithm

θ̂(m+1) =

(
n∑

i=1

F
(m)⊤
i H̃

(m)
i F

(m)
i

)−1( n∑

i=1

F
(m)⊤
i H̃

(m)
i ũ

(m)
i

)
, m = 1, 2, . . . (5)

where the quantities with the upper script “(m)” are evaluated at θ̂(m), H̃i = HiOiHi, ũi = H−1
i O−1

i u̇i+

Fiθ̂ and m is the iteration counter. Under normality we have that ci = 1, Oi = H−1
i and vi = 1, and it is

easy to see that this iterative procedure (under normality) is a special case of the one proposed in Patriota
and Lemonte (2009).

In the sequence, we provide a matrix formulation for the observed Fisher information which requires
harder matrix operations than the one spent in the expected Fisher information. The observed Fisher
information presented in Russo et al. (2009), that is the same observed Fisher information considering
model (2), is given by −L̈θθ = −

∑n
i=1 L̈θθ,i, with

L̈θθ,i =
∂Li(θ)

∂θ∂θ⊤
=

(
L̈αα,i L̈αγ,i

L̈γα,i L̈γγ,i

)

where
L̈αα,i = 2J⊤

i Σ−1
i

{
Wg(ui)Σi + 2W ′

g(ui)rir
⊤
i

}
Σ−1

i Ji − 2Wg(ui)[Ip ⊗ r⊤
i Σ

−1
i ]Di,

3



L̈αγ,i = (L̈αγ0,i, L̈αγ1,i, . . . , L̈αγq,i) (6)

with L̈αγj,i = 2J⊤
i Σ−1

i

{
Wg(ui)Σi +W ′

g(ui)rir
⊤
i

}
Σ−1

i Σ̇i(j)Σ
−1
i ri and the element (j, k) of L̈γγ,i has the

form

1

2
tr

{
Σ−1

i

[
Σ̇i(j)Σ

−1
i Σ̇i(k) − Σ̇i(jk)

]}
+ r⊤

i Σ
−1
i

{
W ′

g(ui)Σ̇i(j)Σ
−1
i rir

⊤
i Σ

−1
i Σ̇i(k) −Wg(ui)Σ̇i(jk) (7)

+Wg(ui)Σ̇i(j)Σ
−1
i Σ̇i(k) +Wg(ui)Σ̇i(k)Σ

−1
i Σ̇i(j)

}
Σ−1

i ri

with

Σ̇i(jk) =
∂2Σi

∂γj∂γk
, Di =



ai(11) . . . ai(1p)

...
. . .

...
ai(p1) . . . ai(pp)


 and ai(rs) =

∂2f

∂αr∂αs

.

Note that, quantities (6) and (7) are not written in a matrix form, in the following we present a compact
matrix version of L̈θθ.

L̈θθ =
n∑

i=1

{
F⊤
i HiÖiHiFi +

[
u̇⊤
i Hi

] [∂Fi

∂θ

]}
(8)

where

Öi = 2Wg(ui)

(
Σi 2Σi ⊗ r⊤

i

2Σi ⊗ ri 2(Σi ⊗ (rir
⊤
i ) + (rir

⊤
i )⊗Σi)

)
+ 2

(
0 0

0 Σi ⊗Σi,

)

+ 4W ′
g(ui)

(
rir

⊤
i (rir

⊤
i )⊗ r⊤

i

(rir
⊤
i )⊗ ri vec(rir

⊤
i )vec(rir

⊤
i )

⊤

)
,

∂Fi

∂θ
is an mi(mi+1)×b×b array,

[
u̇⊤
i Hi

] [
∂Fi

∂θ

]
is the bracket product of u̇⊤

i Hi and
∂Fi

∂θ
(for further details

see Wei, 1998, on pg. 188).

In what follows, we present some matricial results on elliptical variables. Here, ri
ind
∼ Elmi

(0,Σi), then
adapting the results of Mitchell (1989) for a matrix version, we have that

a) E(rivi) = 0,

b) E(rir
⊤
i vi) = Σi,

c) E(rir
⊤
i v

2
i ) = 4dgi/miΣi

d) E(vec(rir
⊤
i )r

⊤
i v

2
i ) = 0

e) E(vec(rir
⊤
i )vec(rir

⊤
i )

⊤v2i ) = ci

(
vec(Σi)vec(Σi)

⊤+Σi⊗Σi+Pi(Σi⊗Σi)

)
, where Pi is a commutation

maltrix such that vec(A) = Pivec(A
⊤) for any matrix A with appropriated dimensions.

Therefore, as we are considering a function g(·) with regular properties (differentiation and integration
are interchangeable), we have that E(u̇i) = 0 and E(−L̈θθ) = Kθθ.

1.2. Matrix version for ∆

The diagnostic technique developed in Cook (1986) is a well-spread tool to check the model assumptions
and conduct diagnostic studies. The author proposes to look at the likelihood displacement LD(ω) =

2{L(θ̂) − L(θ̂ω)} to find possible influential observations in the MLEs, where L(θ) =
∑

i Li(θ) is the log-
likelihood function and ω is a s×1 vector of perturbation restricted in an open set Ω ⊂ R

s. It is also defined
a vector of no perturbation as ω0 ∈ Ω in which LD(ω0) = 0, i.e., L(θω0

) = L(θ). In his seminal paper, Cook
shows that the normal curvature at the unit direction ℓ has the following form Cℓ(θ) = 2|ℓ⊤∆⊤(L̈θθ)

−1∆ℓ|

where ∆ = ∂2L(θ|ω)/∂θ∂ω⊤, both ∆ and L̈θθ are evaluated at θ = θ̂ and ω = ω0. Thus, Cdmax
is twice
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the largest eigenvalue of B = −∆⊤L̈−1
θθ∆ and dmax is the corresponding eigenvector. The index plot of

dmax may reveal how to perturb the model (or data) to obtain large changes in the estimate of θ. For a
more detailed information, we refer the reader to the work of Russo et al. (2009) and the references therein.

Note that, by using the defined quantities, we can write the b×nmatrix∆ in the case weight perturbation
(i.e., Li(θω0

) = ωiLi(θ)) and the scale perturbation (i.e., the perturbed log-likelihood function Li(θω) is
built replacing Σi with ω−1

i Σi in Li(θ)), respectively, by

∆ =

(
F̂⊤
1 Ĥ1

̂̇u1, . . . , F̂
⊤
n Ĥn

̂̇un

)
and ∆ =

(
F̂⊤
1 Ĥ1

̂̇v1, . . . , F̂
⊤
n Ĥn

̂̇vn

)
, (9)

where the quantities with “̂” are evaluated at θ̂ and

v̇i = −2(Wg(ui) + uiW
′
g(ui))

(
ri

vec(rir
⊤
i )

)
.

In Russo et al. (2009), the ∆ matrix under a case weight perturbation is presented with the same typo
of the score function. Finally, the b × N matrix ∆ under the response perturbation (i.e., the perturbed
log-likelihood function Li(θω) is built replacing yi with yi + ωi in Li(θ)) becomes

∆ =

(
F̂⊤
1 Ĥ1Ĝ1, . . . , F̂

⊤
n ĤnĜn

)
, (10)

where N =
∑n

i=1 mi and

Gi = −2

(
Wg(ui)Imi

+ 2W ′
g(ui)rir

⊤
i Σ

−1
i

2ri ⊗
(
Wg(ui)Imi

+W ′
g(ui)rir

⊤
i Σ

−1
i

)
)
.

Note that, formulas (9) and (10) are easily handled through any statistical software.

1.3. Generalized leverage

In this section, we compute the generalized leverage proposed byWei et al. (1998). Let y = vec(y1, . . . ,yn)
and µ(α) = vec(f(α,x1), . . . ,f(α,xn)). The authors have shown that the generalized leverage is obtained
by evaluating the N ×N matrix

GL(θ) = Dθ(−L̈θθ)
−1L̈θY ,

at θ = θ̂, where Dθ = ∂µ(α)/∂θ⊤ and L̈θY = ∂2ℓ(θ)/∂θ∂Y ⊤. The main idea behind the concept of
leverage is that of evaluating the influence of Yi on its own predicted value. As noted by the authors, the
generalized leverage is invariant under reparameterizations and observations with large GLii are leverage
points.

Under the model defined in (2), we have that

Dθ =




J1 0

J2 0
...

...
Jn 0


 and L̈θY =

(
F⊤
1 H1G1, . . . ,F

⊤
n HnGn

)

Index plots of GLii may reveal those observations with high influence on their own predicted values.
It is worth emphasizing that other models are special cases of the formulas derived in this paper. One just

has to define f(xi,α) and Σi(wi,γ) and find their derivatives. That is, the score vector and the (expected
and observed) Fisher information as well as the curvatures and the generalized leverage (when available) of
several works are special cases of the proposed matrix formulation (to mention just a few of them, see for
instance, Paula et al., 2003; Savalli et al., 2006; Osorio et al., 2007; Paula et al., 2009; Russo et al., 2009).
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2. Conclusion

In this short communication, we presented a matrix formulation of the score function, the (expected
and observed) Fisher information, the generalized leverage and the ∆ matrices under case weight, scale and
response perturbations for a very general elliptical model which includes the nonlinear mixed-effects elliptical
model proposed in Russo et al. (2009). The general expressions derived in this paper can be applied in many
other models and have advantages for numerical purposes because they require only simple operations on
matrices and vectors.
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