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Abstract
The assumption of proportional hazards (PH) fundamental to the Cox PH model sometimes may not
hold in practice. In this paper, we propose a generalization of the Cox PH model in terms of the
cumulative hazard function taking a form similar to the Cox PH model, with the extension that the
baseline cumulative hazard function is raised to a power function. Our model allows for interaction
between covariates and the baseline hazard and it also includes, for the two sample problem, the case
of two Weibull distributions and two extreme value distributions differing in both scale and shape
parameters. The partial likelihood approach can not be applied here to estimate the model parameters.
We use the full likelihood approach via a cubic B-spline approximation for the baseline hazard to
estimate the model parameters. A semi-automatic procedure for knot selection based on Akaike’s
Information Criterion is developed. We illustrate the applicability of our approach using real-life
data.
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1 Introduction
The modeling and analysis of data in which the principal endpoint is the time until an event
occurs is often of prime interest in medical and engineering studies. Typically, such an event
is the onset of a disease or death itself as seen in clinical trials or failure of an item or a system
as seen in industrial life testing. The time to an event is normally referred to as survival or
failure time.

The primary goal in analyzing censored survival data is to assess the dependence of survival
time on covariates. The secondary goal is the estimation of the underlying distribution of
survival time. The Cox Proportional Hazards (PH) model (Cox, 1972) is a standard tool for
exploring the association of covariates with survival time. An interesting feature of this model
is that it is semi-parametric in the sense that it can be factored into a parametric part consisting
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of a regression parameter vector associated with the covariates and a non-parametric part that
can be left completely unspecified.

In the Cox PH model, given a vector of possibly time-dependent covariates z, the hazard
function at time t is assumed to be of the form

(1.1)

where λ0(t) is the baseline hazard function, denoting the hazard under no covariate effect and
g(z) is a non-negative function of the covariate vector z, referred to as the risk function, such
that g(0) = 1. The most commonly used form of the Cox PH model is

(1.2)

where β = (β1,…,βp)′ is a p vector of regression coefficients. The focus is on inference for β,
with the baseline hazard function, λ0(t), the non-parametric part, left completely unspecified.

In spite of its semi-parametric feature, the Cox PH model implicitly assumes that the hazard
and survival curves corresponding to two different values of the covariates do not cross.
Although this assumption may be valid in many experimental settings, it has been found to be
suspect in others. For example, if the treatment effect decreases with time, then one might
expect the hazard curves corresponding to the treatment and control groups to converge. Other
examples that indicate the presence of non-proportional hazards are also given in Gore et al.
(1984), and Tonak et al. (1979), among others.

In this paper, we describe a semi-parametric generalization of the Cox PH model which allows
crossing of hazards as well as survival functions. In Section 2, we discuss its unique properties
and place it within the context of censored survival data analysis. In Section 3, we describe an
estimation procedure for this model using cubic B-spline approximations for the baseline
hazard. We illustrate our method with real-life examples in Section 4, and in Section 5 we
provide some concluding remarks.

2 A Semi-Parametric Generalization of the Cox PH Model
We describe a semi-parametric generalization of the Cox PH model in which the hazard
functions corresponding to different values of the covariates can cross. The special case of this
model was originally introduced by Quantin et al. (1996) for the purpose of goodness of fit
testing of the Cox PH model. Devarajan (2000) outlined the unique properties of this non-
proportional hazards regression model as well as inference for this model using maximum
penalized likelihood estimation, and provided a theoretical justification for using spline
approximations for the baseline hazard. In addition, Devarajan and Ebrahimi (2002, p.237)
used this model and developed a goodness of fit procedure for testing the Cox PH model. In
independent work, Hsieh (2001) and Wu & Hsieh (2009) discussed an estimating equations
approach for this model by approximating the baseline hazard using piecewise constants.

In our model, the survival function corresponding to a covariate vector z is assumed to be of
the form

(2.1)
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where S0(t) is an arbitrary baseline survival function, and g(z) and h(z) are nonnegative
functions of the covariate vector z such that g(0) = h(0) = 1. This model includes, for the two
sample problem, the case of two Weibull and two extreme value distributions differing in both
scale and shape parameters. The Cox PH model is obtained as a special case of model (2.1) by
setting h(z) = 1. In this paper, we will consider only the exponential function for g and h, i.e.,
g(z) = exp(β′z) and h(z) = exp(γ′z) where β and γ are unknown p vectors of parameters. In
terms of cumulative hazard functions, our non-proportional hazards regression model takes the
specific form

(2.2)

The Cox PH model is obtained as a special case of model (2.2) by setting γ = 0. The conditional
survival function is

(2.3)

and the conditional hazard function is

(2.4)

Applying a complementary log(− log) transformation in (2.3), we get

The above equation can be expressed as

(2.5)

where ψ(x) = log(− log(x)) and h(t) = log{− log{S0(t)}}. This can be shown to be a member of
the family of models described in Cheng et al. (1997) (see Devarajan, 2000, pp.45-48 for
details). An equivalent version of (2.5) is

(2.6)

where the error ε has distribution function F = 1 − ψ−1. Since the distribution of the baseline
h(T) = log{− log(S0(T)}} is unit extreme value, equation (2.6) results in a scale and shape
transformation of this unit extreme value distribution. The generalized model (2.3) can be
interpreted as a transformation of the unit extreme value distribution in terms of
reparametrizations of the scale and shape parameters. Similarly, applying a log transformation
in (2.3) (with ψ(x) = log(x) and h(t) = log{S0(t)}) and using similar arguments as above, one
can interpret our generalized model as a transformation of the unit exponential distribution in
terms of reparametrizations of the scale and shape parameters.
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2.1 Some Useful Features of the Generalization
We describe several useful features of our generalized model and highlight its relationship to
other survival models. These properties provide the framework for a generalized approach to
censored survival data analysis.

2.1.1 Crossing hazards over time—The hazards ratio corresponding to two different
covariate vectors z1 and z2 is

(2.7)

Since this ratio is a monotone function of t, the model allows the hazards ratio to invert over
time. In other words, it allows crossing of hazard curves. For example, when treatment effect
decreases or increases over time, model (2.2) can be applied.

2.1.2 Relation to the Time-Dependent Coefficient Cox PH Model—If γ is assumed
to be close to zero, we can approximate the right hand side of equation (2.2) as follows:

Thus, for two different covariate vectors z1 and z2, we have,

(2.8)

where η(t) = β + g(t) · γ with g(t) = log{Λ0(t)}. This is a special case of the Cox PH model with
time-dependent coefficients η(t) which allows for crossing of hazard curves. When the
deviation from proportional hazards is small, our proposed model approximates the Cox PH
model with time dependent coeffcients.

In terms of the hazard functions,

(2.9)

where h(t) = 1+log{Λ0(t)}. Cox (1972) considered the case where h(t) = t, a dummy time-
dependent variable for goodness of fit testing of the Cox PH model. Therneau and Grambsch
(1994) have considered the model (2.9) with an assumed form for h(t).

2.1.3 Proportionality of the Hazard-Cumulative Hazard Ratios—Using equations
(2.2) and (2.4), we see that,

(2.10)
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Let k(t∣z) denote the conditional growth rate of the logarithm of the cumulative hazard function.

Then  Using (2.10), we see that

(2.11)

where  is the growth rate of the logarithm of the baseline cumulative hazard
function.

Equation (2.10) has a form similar to that of (1.2), the Cox PH model. The difference between
the two is that (1.2) models the growth rate of the cumulative hazard function while (2.10)
models the growth rate of the logarithm of the cumulative hazard function. Equation (2.10)
implies that the ratio of the hazard function to the cumulative hazard function, given a covariate
vector z, is proportional to the ratio of the hazard function to the cumulative hazard function
at baseline. It is worth mentioning here that this property is related to the constancy of the ratio
of the hazard function to the cumulative hazard function of the extreme value distribution. Note
that if we set γ = 0 in (2.10), the ratios of hazard to cumulative hazard in (2.10) are equal and
it reduces to the Cox PH model.

2.1.4 Proportionality of the Logarithm of Cumulative Hazards—For β = 0, model
(2.2) reduces to

(2.12)

Model (2.12) is similar to (2.2) and has all its features with the exception that it does not include
the Cox PH model. By taking logarithm on both sides of (2.12), it is easy to see that the
logarithms of the cumulative hazards are proportional.

2.1.5 Relation to the Frailty Model—In survival analysis, it has been found that differences
between hazards due to covariate effects tend to converge as follow-up time elapses. Such an
effect can be accounted for by postulating the existence of unobserved random effects or
frailties with prognostic value. In terms of hazard functions, we can write

(2.13)

where u is an unobserved frailty or random effect (see Hougaard (2000) pp.215-245 for more
details). Assuming that u has a positive stable distribution with parameter θ, one can easily
show that

(2.14)

It is clear from (2.14) that if we define γ = (θ, 0, ⋯, 0), then our proposed model and (2.14)
will be the same. When frailty interacts with treatment, we can re-write (2.14) as

(2.15)
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This also leads to crossing or diverging hazards (Cuzick & Trejo, 1992, p.65; Hastie &
Tibshirani, 1993) and can be shown to be equivalent to (2.14), and hence to our proposed
model.

2.1.6 Interaction between covariates and baseline hazard—We can rewrite the
conditional survival function given by (2.3) as

(2.16)

where g0(x) = exp{−exp(x)} and h0(t) = log Λ0(t). The generalized model (2.3) allows for
interaction between covariates and the baseline hazard.

2.2 Interpretation of the model
For the two-sample problem, the non-proportional hazards model (2.2) can be written as

(2.17)

where Λ0(t) = Λ(t∣z = 0) and Λ(t∣z = 1) are the conditional cumulative hazard functions for the
control and treatment groups respectively. From (2.17), we see that as γ → 0, the model
becomes proportional in hazards. As ∣γ∣ → ∞, the model deviates from the proportionality
assumption, i.e., large values of ∣γ∣ may be indicative of diverging or converging hazards over
time. One way to interpret the parameter γ in this model is to consider the following equation
obtained from (2.17) using (2.10),

(2.18)

which implies that

a result analogous to that obtained (as the logarithm of the relative risk) for the regression
parameter β in the Cox PH model in the two-sample setting.

3 Estimation for the Non-Proportional Hazards Model
The observed data consist of independent observations on the triple (X, δ, z), where X is the
minimum of a failure and censoring time pair (T, C), δ = I(T ≤ C) is the indicator of the event
that a failure has been observed and z = (z1, … , zp)′ is a p vector of covariates. The random
variables T and C denote the survival and censoring times respectively which are assumed to
be independent.

The fundamental assumption of proportionality of hazards in the Cox PH model (1.2) requires
that the hazards ratio remains constant over time. The partial likelihood approach of Cox
(1972) is the standard inferential method for this model. The baseline hazard, λ0(t), drops out
of this partial likelihood and can be left completely unspecified (Cox, 1972). On the other hand,

Devarajan and Ebrahimi Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



it is evident from equations (2.4) and (2.7) that the generalized model (2.2) allows crossing of
hazard curves over time. Due to the non-constant hazards ratio, a factorization of the likelihood
into a “partial” likelihood and a nuisance part is not possible. The baseline hazard must be
specified in the likelihood and needs to be explicitly estimated. There are several methods
available for estimation in this model. For example, Bordes & Breuils (2006) discussed
sequential estimation for semi-parametric models with application to the PH model, while Wu
& Hsieh (2009) adopted a piecewise constant approach to estimating the baseline hazard in
model (2.2). One could use a set of parametric basis functions, such as splines, to approximate
the baseline hazard and then proceed with maximum likelihood (ML) methods to estimate the
parameters of the model. Splines have been used to model the baseline hazard in the Cox PH
model by Durrelman & Simon (1989), Gray (1992) and Rosenberg (1995).

Models based on spline approximations are intermediate in structure between completely
parametric models and non-parametric methods, and provide flexibility in incorporating a
variety of shapes. Under certain regularity conditions, Devarajan (2000, pp.53-58) showed that
the maximum penalized likelihood estimate of the baseline hazard and baseline cumulative
hazard in model (2.2) are exponential splines with knots at the unique failure times. This
provides us with a theoretical justification for using spline functions to model the baseline
hazard and cumulative hazard functions. de Boor (2001, Chapter IX, p.87) describes in detail
the computational properties of B-spline basis functions. The B-spline basis function has the
properties of a probability density function and a linear combination of such functions is like
a mixture of densities that allows for various distributions. In this paper, we use a set of cubic
B-spline basis functions to model the baseline hazard.

3.1 Modeling the Baseline Hazard using B-Splines
We assume that the baseline hazard function, λ0(t), and its first two derivatives are continuous
and model it as a linear combination of cubic B-spline basis functions. This model consists of
K + 1 segments determined by K knots t0 < t1 < t2 < … < tK < tK+1 over the interval [t0, tK+1]
subject to the constraints that adjacent functions and their first two derivatives agree at the
knots. It requires total of 4(K + 1) parameters and K + 4 basis functions (Devarajan (2000, p.
72); de Boor (2001)).

We also define six additional ‘slack’ knots (Rosenberg (1995)) given by t−3 = t0 − 3, t−2 = t0
− 2, t−1 = t0 − 1, tK+2 = tK+1 + 1, tK+3 = tK+1 + 2 and tK+4 = t K+1 + 3 where t0 = min(xi), tK+1
= max(xi) and (xi, δi), i = 1, … , n are right-censored observations. Using the result from
Schumaker (1981, p.46), the cubic B-Spline basis functions are given by

(3.1)

where x+ = x if x ≥ 0 and zero otherwise. Using (2.2) and (2.4), the log-likelihood for right-
censored observations (xi, δi), i = 1, … , n where δi is the censoring indicator, is given by
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(3.2)

Using a linear combination of B-spline basis functions, the baseline hazard is given by

 with Bk(t) defined as in (3.1). With the number of knots fixed at K, the
order of approximation attainable is O(K−4) (Devarajan (2000, p.73); de Boor (2001)).We take
ηk = eαk to ensure positivity of the hazard function λ0(t∣α). The cumulative baseline hazard

function is  where

is a quartic B-spline basis function. Since Ik(t) is monotone increasing and positive and eαk is
positive for each k, monotonicity and positivity of the cumulative hazard function is ensured.
Now, the log-likelihood given by (3.2) becomes,

(3.3)

This equation is maximized with respect to the model parameters α, β and γ to obtain the
maximum likelihood (ML) estimates. Using the second partial derivatives of the likelihood
function with respect to the model parameters, we obtain the Fisher information matrix and
hence the variance-covariance matrix of the parameter estimates. If n → ∞ at a rate faster than
the rate at which K → ∞, then one can show that our proposed estimators are consistent
estimators and are normally distributed (Devarajan, 2000, pp.73-74).

3.2 Implementation
ML estimation of model parameters was implemented using the Broyden-Fletch-Goldfarb-
Shanno (BFGS) method for the unconstrained optimization of a nonlinear multivariate function
in double precision. Routines from the IMSL Fortran Library (DU2ING and DU2POL) were
used for maximization of the likelihood function with respect to model parameters α, β and γ
to obtain the ML estimates. Multiple restarts of the optimization procedure were performed
with various starting values to check the consistency and validity of the results.
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3.3 Knot Selection
An integral part of the estimation procedure using any spline approximations is the choice of
the number and location of the knots. In general, it is desirable to have the knots reasonably
spread out with roughly equal number of data points between successive knots. Knot selection
has been discussed by many authors in the context of hazard estimation. We develop a semi-
automatic knot selection procedure that involves initial knot placement based on quantiles
equally spaced in percentile ranks of the uncensored observations followed by stepwise knot
deletion and final model selection based on Akaike’s Information Criterion (AIC). During the
stepwise deletion process, a sequence of models indexed by ν is obtained such that the νth

model has nν parameters. In each step, only the significant parameters are retained. The
significance of any parameter associated with a covariate or a knot, say β, is determined by its
Wald z-score. All non-significant knots are removed from the likelihood function at each stage
as they do not provide a good approximation to the baseline hazard. If lν denotes the log-
likelihood of the νth model, then the AIC for this model, with penalty parameter a = 2 is given
by

The model ν corresponding to the minimum value of AIC(a = 2, ν,K) is chosen as the final
model where nν is the number of significant parameters in the final model. This method
provides a balance between computational complexity and model flexibility.

4 Illustration of our Methods
We illustrate estimation in the non-proportional hazards model (2.2) using real-life examples.
All figures presented were created using the R statistical language and environment (R
Development Core Team (2009), www.R-project.org).

4.1 Example 1: Leukemia Data
This dataset consists of times to remission (in weeks) of 42 leukemia patients (Kalbfleisch and
Prentice, 1980, pp.205-206). Patients are randomized into two groups of 21 each - a control
and a treated group. Group membership is the only covariate of interest and is specified by z
where z = 0, 1 denote the treatment and control groups, respectively. Figure 1(a) presents the
Kaplan-Meier survival curves for these groups.

First, we modeled this data using the non-proportional hazards regression model (2.2) with B-
spline approximations for the baseline hazard. Slack knots were chosen as described in Section
3.1. The remaining knots were chosen based on quantiles equally spaced in percentile ranks
of the uncensored observations. This model consists of two parameters, β and γ. The knot
selection procedure described in Section 3.3 was implemented for this data set. The model with
three knots based on quantiles of uncensored observations provided the best fit using the
AIC criterion. Table 4.1 presents a summary of the knot selection procedure where K denotes
the number of knots. Results of the final model fit are provided in Table 4.2. The log-likelihood
corresponding to this final model is -106.084. The parameter estimates corresponding to the 4
slack knots are α̂−3 = −19.93, α̂−2 = −4.15, α̂−1 = −3.97 and α̂0 = −3:45; and those corresponding
to the 3 knots based on quantiles are α̂1 = −3.68, α̂2 = −2.88 and α̂3 = −16.92. The parameter
γ provides information about the non-proportionality in the hazards and its estimate is close to
zero. From the results presented in Table 4.2, we observe that this parameter is highly non-
significant while the parameter β is highly significant at the 5% level. Figure 1(b) presents the
fitted survival curves for the two groups based on model (3.1) computed using the parameter
estimates specified above.
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Next, we fit the Cox PH model to this data. We obtained an estimate of 1.57 (with standard
error 0.412) for the regression coefficient β and a highly significant p-value of 0.00014. Our
results for the fit based on the non-proportional hazards model (2.2) corroborate those based
on a fit of the Cox PH model. In addition, the fitted parametric survival curves presented in
Figure 1(b) lend evidence to the same conclusion as their non-parametric counterparts shown
in Figure 1(a). The Cox PH model thus provides a good fit for this example and the estimated
treatment effect is indeed 1.57 under both models.

Example 2: Mice Data
As a general rule, we recommend fitting the generalized model (2.2) to a dataset since the Cox
PH model is embedded within this model. If the assumption of proportionality is indeed true,
we expect it to be reflected in the model fit as seen in this example. On the other hand, any
evidence of crossing hazards will likely be indicated by the fit of the more general model. We
illustrate this in our next example.

In this example, we analyze data from an animal experiment presented in Wei (1984) in which
a control group of 22 male mice are subject to 300 rads of radiation and followed for cancer
incidence. The treatment group consists of 29 mice placed in a germ-free environment. The
purpose of the study was to determine the effect of a germ-free environment in developing
thymic lymphoma. All 51 observations in this dataset were uncensored. Figure 2(a) presents
the survival curves for the control and treatment groups. The survival curves cross at various
points until about 250 days after which the treatment group has higher survival probability than
the control group.

First, we modeled this data using the non-proportional hazards regression model (2.2) with B-
spline approximations for the baseline hazard. Slack knots were chosen as described in Section
3.1, and the remaining knots were chosen based on quantiles equally spaced in percentile ranks
of the uncensored observations. As in the previous example, this model contains two
parameters, β and γ. Once again, the knot selection procedure described in Section 3.3 was
implemented for this data. The best model, chosen using the AIC criterion, consisted of four
knots based on quantiles of uncensored observations. Table 4.3 presents a summary of the knot
selection procedure for this data. Results of the final model fit are provided in Table 4.4. The
log-likelihood corresponding to this final model is -301.369. The parameter estimates
corresponding to the 4 slack knots are α̂−3 = −5.93, α̂−2 = −169.71, α̂−1 = −4.73 and α̂0 = −4.18;
and those corresponding to the 4 knots based on quantiles are α̂1 = −34:21, α̂2 = −3.20, α̂3 =
−12.79 and α̂4 = −2.54.

From the results of the final model fit presented in Table 4.4, we observe that the parameter
β is marginally significant at the 5% level while the parameter γ is highly significant. This
indicates that the hazards for the two treatment groups are non-proportional and corroborates
the graphical evidence from Figure 2(a). We computed the fitted survival curves for the two
groups based on (3.1) using the estimates of the model parameters specified above. These
parametric curves, displayed in Figure 2(b), cross in a similar fashion to that seen in their non-
parametric counterparts shown in Figure 2(a).

For exploratory purposes, we also analyzed this data set using the Cox PH model. The
regression coefficient in this model, β, was only marginally significant at the 5% level (p-value
= 0.0732). This suggests a possible non-proportionality of the hazards corresponding to the
treatment and placebo groups. Using (2.18), we obtain
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for this example and thus we expect

This indicates an interaction between the baseline hazard and treatment. Note that
proportionality of hazards amounts to equality of the hazard-cumulative hazard ratios in (2.18).
Using (2.17), we also obtain

That is, mice in the treatment group have significantly better survival rate than the control
group.

These examples suggest that a few knots based on equally spaced quantiles of uncensored
observations provide a reasonably good approximation to the unknown baseline hazard. Also,
a fit of this generalized model provides a method for testing the assumption of proportional
hazards.
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Figure 1.
(a): Kaplan-Meier Survival Curves (Leukemia Data)
(b) Fitted Survival Curves (Leukemia Data)
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Figure 2.
(a) Kaplan-Meier Survival Curves (Mice Data)
(b) Fitted Survival Curves (Mice Data)
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Table 4.1

Summary of Knot Selection Procedure for Leukemia Data

K β ̂ γ ̂ log-likelihood AIC

10 1.890 0.099 -104.772 239.544

9 1.616 -0.076 -104.556 223.112

8 1.692 0.070 -104.927 231.854

7 1.719 0.058 -105.735 227.470

6 1.672 0.007 -105.683 223.366

5 1.578 -0.066 -105.522 223.044

4 1.564 -0.088 -105.909 223.818

3 1.573 -0.111 -106.084 222.168

2 1.549 -0.129 -106.106 222.212

1 1.538 -0.138 -106.120 222.240
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Table 4.2

Leukemia Data - Knot Sequence: 5,8,12.75 Quantiles of Uncensored Observations based on Final Model

Parameter Estimate Std. Error Wald z-score p-value

β 1.573 0.5044 3.1187 0.0018

γ -0.111 0.3113 -0.3568 0.7213
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Table 4.3

Summary of Knot Selection Procedure for Mice Data

K β ̂ γ ̂ log-likelihood AIC

6 -0.453 -0.411 -300.516 625.032

5 -0.434 -0.393 -301.369 624.154

4 -0.414 -0.348 -301.369 622.738

3 -0.438 -0.270 -302.743 623.486

2 -0.364 -0.587 -304.204 624.408

1 -0.438 -0.312 -305.732 625.464
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Table 4.4

Mice Data - Knot Sequence: 202, 244, 300, 428 Quantiles of Uncensored Observations based on Final Model

Parameter Estimate Std. Error Wald z-score p-value

β -0.414 0.222 -1.865 0.0622

γ -0.348 0.144 -2.417 0.0157
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