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a b s t r a c t

Robust estimators for accelerated failure time models with asymmetric (or symmetric) er-
ror distribution and censored observations are proposed. It is assumed that the errormodel
belongs to a log-location-scale family of distributions and that the mean response is the
parameter of interest. Since scale is amain component ofmean, scale is not treated as a nui-
sance parameter. A three steps procedure is proposed. In the first step, an initial high break-
downpoint S estimate is computed. In the second step, observations that are unlikely under
the estimated model are rejected or down weighted. Finally, a weighted maximum likeli-
hood estimate is computed. To define the estimates, functions of censored residuals are
replaced by their estimated conditional expectation given that the response is larger than
the observed censored value. The rejection rule in the second step is based on an adaptive
cut-off that, asymptotically, does not reject any observation when the data are generated
according to the model. Therefore, the final estimate attains full efficiency at the model,
with respect to themaximum likelihood estimate, while maintaining the breakdown point
of the initial estimator. Asymptotic results are provided. The new procedure is evaluated
with the help of Monte Carlo simulations. Two examples with real data are discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Positive random variables with asymmetric distributions arise in many applications (e.g., analysis of survival times,
income and expenditures, output of biological systems). Often the populationmean is the parameter of interest and depends
upon a number of covariates. The data may contain censored observations as well as outliers; these features make themean
a difficult parameter to estimate.
As an example, we can mention the problem of estimating the expected length of stay (LOS) in a hospital as a function

of available patient characteristics, such as diagnosis, treatment, and type of admission (regular or emergency). LOS is of-
ten used as a substitute of cost of stay and the expected LOS is necessary for comparing hospital activities, planning, and
budgeting purposes. Stays may be censored because a patient may die or be transferred to a different hospital before the
ordinary home discharge. In addition, LOS distributions are skewed and often contain an important number of ‘‘outliers’’.
Outliers are observations markedly different from most others, often extremely long or surprisingly short stays, but also
patients with unusual characteristics. When a small number of outliers are observed, the classical estimates of the condi-
tional mean can bemuch different thanwhen none is observed. Since the values and the frequency of outliers fluctuate from
sample to sample, the mean and the associated inferences are unreliable. For this reason, various empirical rules are cur-
rently used by the practitioners in the domain of hospital management to distinguish typical cases, or ‘‘inliers’’, from outliers
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(e.g., Cots et al., 2003). Inliers are paid on the ground of standard rates based on estimates of the mean cost; outliers are re-
imbursed on the ground of special negotiations.
The proportional hazards model (Cox, 1972) is most commonly used in practice to describe censored data. However, as

noted by Cox (Reid, 1994, p. 450), accelerated failure time (AFT) regression (e.g., Cox and Oakes, 1984, Chap. 5; Kalbfleisch
and Prentice, 2002, Chap. 2; Lawless, 2003, Chap. 6) is ‘‘in many ways more appealing than the proportional hazards model
because of its quite direct physical interpretation’’. AFT models assume a log-linear relationship between the response
and the explanatory variables, where the error distribution belongs to a given parametric family. However, ‘‘answers are
quite insensitive to the parametric formulation’’ (Cox, in Reid, 1994, p. 450). Thus, AFT models are very convenient in
many prediction problems, especially when one has to predict outside the range of the sample, or when the sample size is
small. Usually, the maximum likelihood (ML) method is used to estimate the model parameters and the conditional mean.
Unfortunately, the ML estimate is extremely sensitive to outliers.
Several distribution free, rank based, and semiparametric methods for AFT models have been developed (e.g., Jin et al.,

2003; Zeng and Lin, 2007). These methods are fairly stable with respect to outliers in the response variable but are very
sensitive to leverage points, i.e., to outliers in the covariate components.
In this paper, we will consider robust procedures for AFT regression with censored data that are robust with respect to

both outliers in the response and leverage points, that provide stable inferences for the inliers, and identify outliers. To the
best of our knowledge, the sole published methodology meeting these requirements are the high breakdown point (bdp)
S and MM estimates proposed in Salibian-Barrera and Yohai (2008). We will pay a special attention to the nonparametric
S estimate defined by these authors. This procedure, based on a symmetric loss, can consistently estimate the conditional
mean of the (log-) response when the error distribution is symmetric. However, it is not designed for asymmetric errors. In
addition, the procedure uses the conditional expectation approach introduced by Buckley and James (1979), where functions
of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the
recorded censored value. The conditional expectation is based on the Kaplan–Meier (KM) distribution K(r) of the residuals.
From the point of view of robustness, the KM estimate has an important drawback, because it distributes the mass of each
censored residual r∗i among all the noncensored residuals rj such that rj > r

∗

i . The worst case occurs when all the censored
residuals are between the good noncensored residuals and the outliers. Suppose that we have a fraction ε of extremely large
residuals and a proportion λ of censored residuals. Then, the mass given to the largest residuals by the KM estimate is λ+ ε.
Therefore, the regression estimate is more affected by outliers than in the uncensored case. In addition, when the largest
residual r∗k is censored, the KM estimate K(r) is not defined for r > r

∗

k . To define K(r) it is common to treat the largest
censored residual as a noncensored one. Clearly, this procedure exacerbates the outlier’s effect.
To overcome these problems, we propose to modify the S estimate of Salibian-Barrera and Yohai replacing the KM

estimate with a parametric estimate of the error distribution. We assume that the error model belongs to a location-scale
family of asymmetric or symmetric distributions. Examples are the Log–Weibull and the Gaussian distributions.Monte Carlo
results indicate that the new parametric S estimate has a higher degree of robustness than the original proposal because it
does not suffer the drawback of the KM estimate.
Finally, we use the new S estimate as the first step of an adaptiveweightedmaximum likelihood (WML) procedurewhich

extends the adaptive truncated maximal likelihood estimate of Marazzi and Yohai (2004) to censored regression models.
The adaptive WML attains full relative efficiency with respect to ML at the model, while maintaining the bdp of the initial S
estimate.
In Section 2 we introduce the model and some notations. Section 3 describes the proposed estimates. In Section 4 we

discuss their bdp and in Section 5 their asymptotic behavior. A resampling algorithm to compute the parametric S estimate is
described in Section 6. Section 7 summarizes some empirical results described inmore details in a technical report (Locatelli
et al., 2010, referenced as LMY in the following). Section 8 illustrates the newprocedurewith two real data sets and compares
it with the estimates of Salibian-Barrera and Yohai (2008), Jin et al. (2003), and Zeng and Lin (2007). One of the examples
concerns modeling of hospital length of stay. A discussion section concludes the paper. Proofs are given in LMY.

2. Model, notations, and expectations

We consider an accelerated failure time model for n pairs of variates (xi, yi)

yi = βT0xi + σ0ui, i = 1, . . . , n, (1)

where yi represents the duration on the logarithmic scale. The errors ui are i.i.d. with cdf F and independent of xi; β0 ∈ Rp
is an unknown vector of coefficients, the first component being an intercept term and σ0 an unknown scale parameter.
The distribution of the carriers xi is unknown. We consider single censoring on the right, i.e., the true value of yi is not
observed. Instead, the censored variable y∗i = min(yi, vi) is observed, where v1, . . . , vn are i.i.d. censoring log-times, which
are independent of the yi’s. We define the indicator δi = 1 if y∗i = yi and δi = 0 if y

∗

i = vi. Thus, δi indicates whether
observation i is complete (δi = 1) or censored (δi = 0).
In practice, we use a hypothetical model cdf F0 as an approximation of the real error distribution F . We assume that

F0(z) = F0,1(z), where F0,1 is the standard member of a parametric location-scale family of asymmetric (or symmetric)
distributions with cdf Fµ,σ (z) = F0,1((z −µ)/σ). We denote by fµ,σ and f0 the densities of Fµ,σ and F0, respectively, and by
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Hβ,σ the corresponding cdf of (y, x) when (β, σ ) are the true parameters. Examples of location-scale error models are the
Gaussian model with density

fµ,σ (z) =
1

σ
√
2π
exp

(
(z − µ)2/(2σ 2)

)
, −∞ < z <∞,

and the Log–Weibull model with density

fµ,σ (z) =
1
σ
exp [((z − µ) /σ)− exp ((z − µ) /σ)] , −∞ < z <∞.

Other models are mentioned in Lawless (2003, Chaps. 1.3.6 and 6). The negative log-likelihood function is denoted by
ρµ,σ (u) = − ln fµ,σ (u). We put ρ0(u) = ρ0,1(u) and assume that this function is convex and that E0 [ρ0(u)] <∞, where E0
denotes expectation under F0. Finally let

ψ0(u) = ρ ′0(u) = −f
′

0(u)/f0(u) and ψ1(u) = uψ0(u). (2)

The triplets (y∗i , xi, δi) are observed and we want to estimate (β0, σ0). Since σ0 is necessary for the computation of the
conditional expectation of the response exp(y), we are not going to treat σ0, as often is the case, as a nuisance parameter.
We note that, for any measurable function h(y, x), E [h(y, x)|y∗, x, δ = 1] = h(y∗, x), E [h(y, x)|y∗, x, δ = 0] =

E [h(y, x)|y > y∗, x], and thus

E
[
h(y, x)|y∗, x, δ

]
= δh(y∗, x)+ (1− δ)E

[
h(y, x)|y > y∗, x

]
. (3)

In particular, under the model, we have

Eβ,σ
[
h (y, x) |y > y∗i , xi

]
=

∫
∞

(y∗i −x
T
i β)/σ

h(σu+ xTi β, xi)f0(u)du

1− F0((y∗i − xTi β)/σ )
. (4)

Using the model, we define an empirical cdf for censored observations (y∗i , xi) as

Hn,β,σ (z, z) =
1
n

n∑
i=1

Eβ,σ
[
I (y ≤ z) |y∗i , xi, δi

]
I (xi ≤ z) . (5)

When there is no censoring, Hn,β,σ (z, z) coincides with the usual empirical cdf

Hn(z, z) =
1
n

n∑
i=1

I (yi ≤ z) I (xi ≤ z) . (6)

We note that Eβ,σ
[
I (y ≤ z) |y∗i , xi, δi

]
I (xi ≤ z) are i.i.d. random variables and that

Eβ,σ
[
Eβ,σ

{
I (y ≤ z) |y∗i , xi, δi

}
I (xi ≤ z)

]
= Hβ,σ (z, z).

Therefore, by the Law of the Large Numbers, Hn,β0,σ0(z, z) is a consistent estimate of Hβ0,σ0(z, z). In general, for any
measurable function h(y, x), we have limn→∞ En,β,σ [h (y, x)] = Eβ,σ [h (y, x)] a.s., where En,β,σ denotes expectation under
Hn,β,σ .
We finally note that the ML equations of the estimates of β0 and σ0 (Lawless, 2003, p. 293) can be written as follows,

En,β,σ
[
ψ0
((
y− xTβ

)
/σ
)
x
]
= 0, (7)

En,β,σ
[
ψ1
((
y− xTβ

)
/σ
)]
= 1. (8)

Remark 1. The conditional expectation in (4) can also be estimated using the Kaplan–Meier distribution of the residuals
y∗i − xTi β, an idea used by Buckley and James (1979) to extend the least squares estimate to censored observations and
by Salibian-Barrera and Yohai (2008) to define nonparametric high bdp regression estimates for censored data.

3. The proposed estimates

3.1. The initial estimate

The initial step of the proposed procedure is the computation of a high bdp S estimate. This class of regression estimates
was introduced by Rousseeuw and Yohai (1987) for noncensored data. S estimates can be calibrated so that they have a bdp
of 50%. However, when this occurs, the S estimates are inefficient. For details about S estimates see Maronna et al. (2007).
In this section, we extend the S estimates for censored observations proposed by Salibian-Barrera and Yohai (2008) to the
case where data follow the parametric model of Section 2.
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Suppose that ρ is a given function R→ R+ satisfying the following conditions:
A: (i) ρ(0) = 0; (ii) ρ is even; (iii) if |z1| < |z2|, then ρ(z1) ≤ ρ(z2); (iv) ρ is bounded; (v) ρ is continuous at 0.
For example, ρ is a member of the Tukey’s biweight family

ρT (z, k) =
{
3(z/k)2 − 3(z/k)4 + (z/k)6 if |z| ≤ k,
1 if |z| > k, (9)

where k is a user chosen tuning parameter. For any µ, let the function S(µ) be the M scale (Huber, 1981)
E0 [ρ ((u− µ)/S(µ))] = b, where expectation is based on F0 and b = max ρ(z)/2. Thus, b = 0.5 for Tukey’s biweight.
In the following, we will assume that there exists a uniqueµ0 such thatµ0 = argminµ S(µ). This holds, for example, under
the following conditions (Mizera, 1993):

(a) f0 is strictly unimodal,
(b) for any c ≥ inf ρ(u), the function log(max(c − ρ(x), 0)) is strictly concave.

Then, we define the S scale of F0 as s0 = S(µ0). Without loss of generality, we assume that s0 = 1 and µ0 = 0 (if not, we
replace ρ(u)with ρ((u− µ0)/s0)). For any β ∈ Rp, let the residual scale s(β) be defined by

E0
[
ρ
((
y− xTβ

)
/s(β)

)]
= b.

Marazzi et al. (2009, Lemma 2) prove that σ0 = minβ s(β) and β0 = argminβ s(β). Then, for the noncensored case, the S
estimate (β̃n, σ̃n) is defined by

β̃n = argmin
β
sn(β), σ̃n = sn(β̃n),

where sn(β) solves

EHn
[
ρ
((
y− xTβ

)
/sn(β)

)]
= b. (10)

Since Hn is a consistent estimate of Hβ0,σ0 , (β̃n, σ̃n) is consistent for
(
β0, σ0

)
.

Consider now the censored case; here, Hn is not available. Then, we define sn(γ) by

En,γ,sn(γ)
[
ρ
((
y− xTγ

)
/sn(γ)

)]
= b (11)

and β̄n by β̄n = argminγ sn(γ). Since sn(γ) is a consistent estimate of σ0 only when γ = β0, the estimate β̄n is not consistent.
Therefore,wehave to proceed in a differentway. Assume for onemoment thatweknowβ0. Then,we can find s

∗
n(γ)by solving

En,β0,sn(β0)
[
ρ
((
y− xTγ

)
/s∗n(γ)

)]
= b (12)

and define the ‘‘pseudo estimate’’ β̄
∗

n by

β̄
∗

n = argmin
γ
s∗n(γ). (13)

Then, since Hn,β0,sn(β0) is a consistent estimate of Hβ0,σ0 (Section 2), we have that β̄
∗

n → β0. Unfortunately, β̄
∗

n is clearly not a
feasible estimate but it suggests the following procedure to find a feasible and consistent estimate.
For any β ∈ Rp and γ ∈ Rp, let Sn(β, γ) be defined by

En,β,sn(β)
[
ρ
((
y− xTγ

)
/Sn(β, γ)

)]
= b, (14)

where sn(β) is defined in (11). Let

γ̃n(β) = argmin
γ
S(β, γ). (15)

We note that γ̃n(β0) = β̄
∗

n , where β̄
∗

n is defined in (13) and therefore γ̃n(β0) → β0, i.e., β0 is an ‘‘almost fixed point’’ of γ̃n.
Then, it is natural to define the S estimate β̃n of β0 by the fixed point equation

γ̃n(β̃n) = β̃n (16)

and the S estimate σ̃n of σ0 by σ̃n = sn(β̃n).
The estimate (β̃n, σ̃n) is a parametric version of the S estimate for censored data introduced by Salibian-Barrera and

Yohai (2008). Differentiating (14) with respect to γ and using (16), we obtain the following system of estimating equations
for (β̃n, σ̃n):

E
n,β̃n,σ̃n
[ψ((y− xTβ̃n)/σ̃n)x] = 0, (17)

E
n,β̃n,σ̃n
[ρ((y− xTβ̃n)/σ̃n)] = b. (18)
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Since the function ψ is redescending, Eqs. (17) and (18) may have more than one solution, especially when the sample
contains outliers. However, not all these solutions satisfy (16). Therefore it is important, when solving these equations using
a numerical iterative algorithm, to start with a robust estimate unaffected by outliers. Such a procedure is described in
Section 6.

Remark 2. To avoid existence problems with the solution of (16), we can alternatively define β̃n by

β̃n = argmin
β

∣∣∣(γ̃n(β)− β
)T An (γ̃n(β)− β

)∣∣∣ ,
where An is any robust equivariant estimator of the covariance matrix of the explanatory variables. The matrix An is needed
to maintain the affine equivariance of the estimator.

3.2. The outlier rejection rule

We now suppose that (β̃n, σ̃n) is an ‘‘initial’’ high bdp and consistent but maybe inefficient estimate, such as the
parametric S estimate defined above. To obtain a ‘‘final’’ estimate that keeps the bdp of the initial estimate but which is
highly efficient, we have to reject the outliers. In the following, we define a rejection rule based on a proposal by Marazzi
and Yohai (2004).
We want to reject observations whose likelihoods under the initial model are smaller than a given cut-off value. For this

purpose, we consider the cdfM0 of the negative log-likelihood l = ρ0(u) under the model and the estimate ofM0 given by

Mn,β̃n,σ̃n(z) =
1
n

n∑
i=1

[δiI
(
l∗i ≤ z

)
+ (1− δi)Pβ̃n,σ̃n(l ≤ z|y > y

∗

i )],

where l∗i = ρ0(r̃
∗

i ) and r̃
∗

i = (y
∗

i −xTi β̃n)/σ̃n. For simplicity, wewriteMn in place ofMn,β̃n,σ̃n . Using the argument of Section 2,
one can show thatMn is a consistent estimate ofM0. A fixed cut-off ζ on the likelihood scale can be defined as a large quantile
of M0, e.g., ζ = M−10 (0.99). To define an adaptive cut-off ϑn, that depends on the observed degree of contamination, we
compare the tails ofM0 andMn. LetMn,ϑ denoteMn truncated at ϑ , i.e.,

Mn,ϑ (z) =
{
Mn(z)/Mn(ϑ) if z ≤ ϑ,

1 otherwise. (19)

We look for the largest ϑ such thatMn,ϑ (z) = M0(z) for all z ≥ ζ , i.e.,

ϑn = sup{ϑ | Mn,ϑ (z) = M0(z) for all z ≥ ζ }. (20)

Note that ϑn ≥ ζ . As in Gervini and Yohai (2002), one can prove that if the sample does not contain outliers, ϑn →∞ a.s.

3.3. The final estimate

Let ω(z) be a function satisfying conditions B:
B: (i) ω(z) is nonincreasing; (ii) limz→−∞ ω(z) = 1; (iii) ω(z) = 0 for z > 0.
For example, let c > 0 and consider the function

ω(z) = ρT (z, c) · I(z ≤ 0), (21)

where ρT (z, c) is in the biweight family (9). Then, define the weight function

wϑn(z) = ω (ρ0(z)− ϑn) , (22)

where ϑn is a fixed or adaptive cut-off for outlier rejection. When ϑn → ∞, wϑn
(u) → 1 for all u. The ‘‘final’’ estimate

(β̂n, σ̂n) is defined by the equations

En,β̂n,σ̂n [wϑn((y− xTβ̃n)/σ̃n)ψ0((y− xTβ̂n)/σ̂n)x] = 0, (23)

En,β̂n,σ̂n [wϑn((y− xTβ̃n)/σ̃n)ψ1((y− xTβ̂n)/σ̂n)] = bϑn , (24)

where bϑn = E0
[
wϑn(u)ψ1(u)

]
, and ψ0, ψ1 are given in (2).

The estimate (β̂n, σ̂n) is a natural extension of the truncatedmaximum likelihood estimate for noncensored observations
proposed inMarazzi and Yohai (2004), which usesω(z) = I(z ≤ 0) (‘‘hard rejection’’). In the adaptive case, where ϑn →∞
and bϑn → 1, the Eqs. (23)–(24) approach to the ML equations (7)–(8). In the nonadaptive case, where ϑn is fixed, the
estimator (β̂n, σ̂n) will be called weighted maximum likelihood estimate or WML estimate; in the adaptive case, it will be
referred to as the adaptive WML estimate.
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4. Breakdown point

Intuitively, the bdp of an estimator is the proportion of incorrect observations (i.e. arbitrarily large observations) the
estimator can handle before giving an arbitrarily large result. Formally, given a sample Zn of size n, the finite-sample bdp of
an estimator Tn = Tn(Zn) is defined (Maronna et al., 2007) as:

ε∗n (Tn, Zn) = min1≤k≤n
{k/n : sup ‖Tn(Z∗k,n)− Tn(Zn)‖ = ∞},

where the supremum is taken over all possible samples Z∗k,n which are obtained by replacing k observations from Zn with
arbitrary values and ‖ · ‖ is the L2 norm. Let Zn = (z1, . . . , zn) be a sample from a censored linear regression model,
where zi = (y∗i , xi, δi), xi ∈ Rp. Assume that the rank of {x1, . . . , xn} is p and let q = max‖β‖=1 #{i : βTxi = 0}. The
following theorem gives a lower bound of the bdp of the S estimate and the adaptive (or the non adaptive) WML estimate.

Theorem 1. We assume that ρ satisfies conditions A and b = max ρ(z)/2. (a) A lower bound for the finite sample bdp of β̃n
and σ̃n is ε∗1 = 0.5− q/n−m/n, where m is the number of censored observations in the sample. (b) The finite sample bdp of σ̂n
and β̂n, starting with σ̃n and β̃n, are larger or equal than ε

∗

1 .

Remark 3. Salibian-Barrera and Yohai (2008) show that ε∗1 is also a lower bound of the bdp of their nonparametric S
estimate. In LMY, we show that, for a given β, a lower bound of the bdp of the initial scale estimate sn(β) defined by (11) is
ε∗2 = 0.5− 0.5m/n. This bound is larger than ε

∗

1 . Unfortunately we cannot prove that the bdp of σ̃n and β̃n is larger than ε
∗

2 .
However, the numerical results in Section 7.2 support this conjecture.

5. Asymptotic behavior

We first discuss the Fisher consistency of the adaptive WML estimate. We consider the parameter vector θ =
(θ1, θ2, θ3, θ4) = (β, σ , β, σ ) where β and σ are duplicated. The true value of θ is θ0 = (β0, σ0, β0, σ0). According to
(17), (18), (23) and (24), the estimate θ̂n = (β̃n, σ̃n, β̂n, σ̂n) is defined by

n∑
i=1

η(y∗i , xi, δi, θ̂n, φn) = 0,

where η = (η1, η2, η3, η4)
T, φn = 1/ϑn, and

η1(y
∗, x, δ, θ, φ) = E

θ1,θ2

[
ψ
((
y− xTθ1

)
/θ2
)
|y∗, x, δ

]
x,

η2(y∗i , xi, δi, θ, φ) = Eθ1,θ2

[
ρ
((
y− xTθ1

)
/θ2
)
|y∗, x, δ

]
− b,

η3(y
∗, x, δ, θ, φ) = E

θ3,θ4

[
w1/φ

((
y− xTθ1

)
/θ2
)
ψ0
((
y− xTθ3

)
/θ4
)
|y∗, x, δ

]
x,

η4(y∗i , xi, δi, θ, φ) = Eθ3,θ4

[
w1/φ

((
y− xTθ1

)
/θ2
)
ψ1
((
y− xTθ3

)
/θ4
)
|y∗, x, δ

]
− b1/φ .

Theorem 2. Assume that the function ρ satisfies conditions A and that µ0 = 0 and s0 = 1. Then, θ̂n is Fisher consistent for θ0,
i.e.

E
[
η(y∗, x, δ, θ0, φ)

]
= 0 for all φ. (25)

A complete proof of consistency would require to show that the S estimate of β0 defined in (16) is unique, i.e., that if
β 6= β0 then γ̃n(β) remains asymptotically away from β0. This seems a difficult problem and is still open. However, in all our
numerical experiments this property holds. A simple illustration is provided in Section 7.3.
We now put u = (y− βT0x)/σ0,

ηθ(y
∗, x, δ, θ, φ) = ∂η(y∗, x, δ, θ, φ)/∂θ,

R0 = E
[
η(u, x, δ, (0, 1, 0, 1), φ0)η(u, x, δ, (0, 1, 0, 1), φ0)T

]
,

Q0 = E
[
ηθ(u, x, δ, (0, 1, 0, 1), φ0)

]
.

The following theorem states the asymptotic normality of the WLM estimate. The notation ‘‘→P ’’ means convergence in
probability.

Theorem 3. Suppose that: (i) the function ρ satisfies conditions A; (ii) the functions ρ and ρ0 are two times continuously
differentiable; (iii) the function ω satisfies conditions B; (iv) the function ω is continuously differentiable; (v) the vector x has
second ordermoments; (vi) θ̂n→P θ0; (vii) φn→P φ0 (viii) thematrix Q0 is nonsingular. Then, (a) n1/2(θ̂n−θ0) is asymptotically
normal, with mean 0 and covariance matrix σ 20 Q

−1
0 R0Q

−1T
0 ; (b) If φ0 = 0, the asymptotic distribution of n1/2(β̂n−β0, σ̂n−σ0)

is the same as the one of the maximum likelihood estimate defined by Eqs. (7) and (8).

Remark 4. If ϑn is defined by (20) then, under the model, ϑn →∞ a.s. and φ0 = 0. Thus, (b) holds.
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6. Computation

For a given initial estimate and a given cut off-value, the final estimate can be computed with the help of standard
numerical tools for solving nonlinear equations. To compute the initial S estimate, we propose the following resampling
algorithm based on Salibian-Barrera and Yohai (2008) and Salibian-Barrera and Yohai (2006). Without loss of generality, we
assume that s0 = 1.
Phase 1 (Subsampling and concentration). Draw N random subsamples of size q ≥ p of noncensored observations. Let
β
(1)
0 , . . . , β

(N)
0 be the coefficients of the corresponding ML fits. Compute the scales s(j)0 = sn(β

(j)
0 ) (j = 1, . . . ,N) according to

En,β(j)0 ,sn(β
(j)
0 )
[ρ((y− xTβ(j)0 )/sn(β

(j)
0 )− µ0)] = b. (26)

For each pair (β(j)0 , s
(j)
0 ) (j = 1, . . . ,N) calculate the ‘‘residuals’’

r (j)i = δi(y
∗

i − xTi β
(j)
0 )/s

(j)
0 + (1− δi)

∫
∞

(y∗i −x
T
i β
(j)
0 )/s

(j)
0

uf0(u)du, i = 1, . . . , n,

set y(j)i = xTi β
(j)
0 + s

(j)
0 r

(j)
i , i = 1, . . . , n, and compute the (noncensored) truncated maximum likelihood fit β

(j) to (xi, y
(j)
i ),

according to Marazzi and Yohai (2004), where the rejection fraction is set to 50%. The coefficient vectors β(1), . . . , β(N) are
the ‘‘candidates’’.
Phase 2 (Selection). Take β(kj) as an approximate value of γ̃n(β

(j)), where

kj = arg min
1≤k≤N

Sn(β(j), β(k)), (27)

and Sn(β(j), β(k)) is the solution of

En,β(j),sn(β(j))
[
ρ
((
y− xTβ(k)

)
/Sn(β(j), β(k))− µ0

)]
= b. (28)

Select a tentative S-estimate as β̃
∗

n = β(j
∗) and s̃∗n = sn(β̃

∗

n), where j
∗
= argmin1≤j≤N ‖β(kj) − β(j)‖.

The selection can be accelerated, avoiding computing the N2 values Sn(β(j), β(k)), as follows.

Step 1. Compute k1 using (27) with j = 1. Put j∗1 = 1 and λ1 = ‖β
(k1) − β(1)‖.

Step 2. Divide the N candidates β(k) into two sets:

A = {β(k)| ‖β(k) − β(2)‖ ≤ λ1} and B = {β(k)| ‖β(k) − β(2)‖ > λ1}.

Let F2 = minβ(k)∈A Sn(β
(2), β(k)). Then compute, once at the time, Sn(β(2), β(k)) for β(k) ∈ B. Suppose that for some β(k) ∈ B,

S(β(2), β(k)) < F2. Then, ‖β(k2) − β(2)‖ ≥ λ1 and the remaining values of B can therefore be ignored. In this case, put j∗2 = j
∗

1 ,
and λ2 = λ1. If S(β(2), β(k)) ≥ F2 for all β(k) ∈ B, put λ2 = ‖β(k2) − β(2)‖ and j∗2 = 2.

Step 3 to Step N . Proceed as in step 2, replacing β(2) by β(3), λ1 by λ2, etc. At the end of the procedure put j∗ = j∗N , β̃
∗

n = β(j
∗)

and s̃∗n = sn(β̃
∗

n).
Phase 3 (Refinement). Solve

n∑
i=1

E
β̃n,σ̃n
[ψ((y− xTβ̃n)/σ̃n − µ0)x|y

∗

i
, xi, δi] = 0,

n∑
i=1

E
β̃n,σ̃n
[ψ((y− xTβ̃n)/σ̃n − µ0)x|y

∗

i
, xi, δi] = 0,

using an iterative algorithm starting at (β̃
∗

n, ŝ
∗
n). The vector (β̃n, σ̃n) defines the refined tentative S estimate.

7. Empirical results

7.1. Monte Carlo simulation

We performed a Monte Carlo study for the simple regression model

yi = α0 + β0xi + σ0ui, i = 1, . . . , n, (29)
vi ∼ N (µ, 1) , xi ∼ N (0, 1) , ui ∼ F0,

with α0 = 0, β0 = 1 and σ0 = 1. We considered both the standard Gaussian and the standard Log–Weibull distributions of
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Table 1
Simulated root mean square errors at the nominal Gaussian model.

Parameter Estimate Sample size
100 200 500 1000

Intercept SNP 0.231 0.155 0.100 0.071
MM 0.136 0.092 0.059 0.040
SP 0.187 0.129 0.082 0.059
WML 0.118 0.083 0.055 0.037
ML 0.116 0.082 0.054 0.036

Slope SNP 0.222 0.158 0.094 0.066
MM 0.151 0.110 0.064 0.045
SP 0.211 0.156 0.097 0.066
WML 0.123 0.092 0.055 0.038
ML 0.124 0.090 0.054 0.037

Scale SNP 0.122 0.087 0.054 0.038
MM 0.122 0.087 0.054 0.038
SP 0.116 0.083 0.052 0.037
WML 0.097 0.070 0.044 0.031
ML 0.090 0.063 0.040 0.029

Table 2
Simulated maximum root mean square errors under point contamination at (x0,mx0) , ε = 10%, n = 100, and Gaussian errors. The maximum has been
computed overm ∈ (1.0, 1.5, . . . , 5.5, 6.0).

Parameter x0 = 1 x0 = 10
SNP MM SP WML ML SNP MM SP WML ML

Intercept 0.600 0.449 0.456 0.417 1.007 0.466 0.386 0.351 0.310 2.399
Slope 0.646 0.510 0.557 0.434 0.998 0.760 0.756 0.664 0.652 4.661
Scale 0.342 0.342 0.268 0.304 1.018 0.343 0.343 0.268 0.122 3.357

the error term. The mean µ of the censoring variables vi was chosen in order to have a probability of censoring of around
0.35. For normal errors, we have µ = 0.668; in the Log–Weibull case, µ = 0.213. The initial S estimates were based on
the Tukey’s biweight ρ-function with k = 1.548 in the Gaussian case and k = 1.718 in the Log–Weibull case. With these
values of k, we have s0 = 1. In addition, µ0 = 0 in the Gaussian case and µ0 = −0.135 in the Log–Weibull case. The
S estimates were computed using the algorithm described in Section 6 with N = 100 and q = 4. The fixed cut-off on the
negative log-likelihood scalewas set to ζ = M−10 (0.99). Theweight function (21)was used in the calculation of the adaptive
WML estimator with c = 0, so that the adaptive WML estimate behaves like a truncated maximum likelihood estimate. All
simulations were based on 1000 samples.
In the tables, ML denotes the ML estimate, SNP and MM denote the nonparametric S estimate and the final MM estimate

of Salibian-Barrera and Yohai (2008) respectively, SP the parametric S estimate defined in this paper, andWML the adaptive
weighted maximum likelihood estimate.
Table 1 shows the simulated root mean square errors (rMSE) of the intercept, slope, and scale estimates at the nominal

Gaussian model. As expected, WML attains a much higher performance than the initial SP , approaching the ML values when
n increases. The efficiency of SP is higher than the one of SNP and WML performs better than MM.
In order to investigate the behavior of the estimates in the presence of outliers, the simulated sampleswere contaminated

with a fixed fraction ε = 10% of outlying observations at (x0,mx0) for x0 = 1 (low leverage point) and x0 = 10 (high leverage
point) andm varying over the regular grid 1.0, 1.5, . . . , 6.0. Detailed results of this simulation can be found in a LMY. Table 2
reports the maximum rMSEs (maxrMSE) over the grid of the estimated parameters for n = 100. In general, the maxrMSE
of the adaptive WML estimates are smaller than the maxrMSEs of the other estimates. Moreover, SP and WML perform
better than SNP and MM. For Log–Weibull errors, we obtained similar results reported in LMY. Since SNP and MM require a
symmetric error distribution, they were not included this case.

7.2. Breakdown point

In order to compare the bdp of the parametric and the non-parametric S estimates, we took a sample of size n = 1000
from the model yi = α0 + β0xi + σ0ui, i = 1, . . . , n, vi ∼ N (µ, 1) , xi ∼ N (0, 1) and ui ∼ N(0, 1). We took
α0 = 0, β0 = 1, σ0 = 1, and µ = 0.44, so that the censoring fraction was around 40%. In a first experiment, an increasing
number t of noncensored observations was replaced by t noncensored outliers at (x0, y0)with x0 = 1 and y0 varying from 1
to 500. In a second experiment, x0 was set to 10 and y0 varied from 10 to 500. For each t , we computed themaximum bias of
the estimates of β0, which is represented in Fig. 1. We observe that the parametric estimate has a lower maximum bias and
a higher bdp than the nonparametric one. For the parametric estimate the bdp occurs around ε = 30% for both values of x0,
which is close to 0.5− 0.5m/n (see Remark 3, Section 4). For the nonparametric estimate the bdp occurs around ε = 27.5%
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Fig. 1. Maximum bias of the parametric (squares) and non-parametric (circles) S estimates of slope as a function of the contamination fraction (filled
marks: x0 = 1; empty marks: x0 = 10).

Fig. 2. Plot of |γ̃n (β)− β| as a function of β based on simulated data.

when x0 = 1 and ε = 22.5% when x0 = 10. All these values are larger that the theoretical lower bound 0.5 − q/n − m/n
given in Salibian-Barrera and Yohai (2008).

7.3. Unicity of the S estimate

In order to explore the unicity of the parametric S estimate, we considered n = 1000 observations frommodel (29) with
α0 = 0, β0 = 1, σ0 = 1 and standard Gaussian errors. The censoring fraction was 0.35. Fixing the intercept at its true value
(α0 = 0), we computed γ̃n (β) according to (15) for β varying in (−10, 10). The plot of |γ̃n (β)− β| as a function of β in
Fig. 2 shows that the only value of β satisfying (16) is the true value β0 = 1. Using Log–Weibull errors we obtained similar
results.

7.4. Sensitivity analysis

To assess the sensitivity of the estimates to an incorrect choice of the model error distribution, a Monte Carlo simulation
has been performed. We considered the regression model (29) with a standard Log–Weibull error and n = 100. (For large n,
model inadequacies can usually be detected with the help of diagnostic tools.) We computed 1000 simulated values of the
estimates based on the Log–Weibull (correct model) and the Gaussian error models (incorrect model). However, since α0
was a model dependent intercept, we redefined the intercept as the median of the response distribution for x = 0 (i.e., we
required that the median of the error distribution was 0). Thus, with α0 = 0, the new intercept was α∗0 = m0, where
m0 = −0.577 was the median of a standard Log–Weibull distribution. If (α̂, β̂, σ̂ )was an estimate of (α0, β0, σ0) based on
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Table 3
Simulated means and root mean square errors of ML and WML estimates based on the correct (Log–Weibull) and a wrong (Gaussian) model when the
errors are Log–Weibull. MM estimates are not based on a parametric model.

Parameter Estimate Correct model Wrong model
rMSE Mean rMSE Mean

α∗0 ML 0.146 −0.578 0.176 −0.490
WML 0.154 −0.588 0.226 −0.409
MM 0.267 −0.367 0.267 −0.367

β0 ML 0.144 1.014 0.182 1.050
WML 0.158 1.034 0.169 1.026
MM 0.178 1.018 0.178 1.018

Table 4
Estimates of the regression model for the Length of Stay dataset.

Complete data Outliers removed
ML JIN ZNG MM WML ML JIN ZNG MM WML

α 2.93 2.42 2.49 2.21 2.46 2.43 2.22 2.41 2.27 2.39
β1 2.34 2.11 0.37 −0.19 0.60 1.25 0.77 −0.31 0.54 0.60
10β2 0.11 0.11 0.07 0.08 0.11 0.13 0.11 0.08 0.11 0.10
10γ −0.30 −0.24 0.02 0.09 −0.04 −0.14 −0.05 0.10 −0.02 −0.02
σ 1.00 – – 0.77 0.60 0.65 – – 0.56 0.52

Log–Weibull errors, the estimate of α∗0 was α̂ + σ̂m0. On the other hand, if (α̂, β̂, σ̂ )was based on the Gaussian model, the
estimate of α∗0 was α̂ (since the median of the Gaussian error was 0). Table 3 reports the mean values and the root mean
square errors (rMSE) of the intercept and slope estimates (scale estimates are not comparable). We note that the bias of
the Gaussian slope estimates – especially the robust ones – were very small and comparable with the bias of the correct
estimates. In addition, the Gaussian robust slope estimates had smaller rMSEs than the GaussianML. Finally, the rMSE of the
Gaussian WML estimate of α∗0 was lower than the rMSE of the nonparametric MM estimate of Salibian-Barrera and Yohai
(2008).

7.5. Computing times

Computing times of the resampling algorithm for the parametric S estimate are reported in LMY.

8. Illustrations with real data

In a first example, we consider a sample of 75 hospital stays for ‘‘Major cardiovascular interventions’’. The data (made
available in LMY) are shown in Fig. 3. 45 stays were censored because the patients were transferred to a different hospital
before dismissal. The LOS of two young patients were exceptionally high. We study the relationship between length of
stay (LOS) and two covariates usually available on administrative files: age of the patient (x1) and admission type (x2 = 0
for planned admissions, x2 = 1 for emergency admissions.). This kind of relationship is used as a basis to determine
reimbursement rates.We consider themodel y = α+β1x1+β2x2+γ x1x2+σu, where y = log(LOS). We computed theML
estimate, the adaptive WML estimate (with normal errors), the MM estimate of Salibian-Barrera and Yohai (2008), the rank
based estimate of Jin et al. (2003), JIN, and the nonparametric estimate of Zeng and Lin (2007), ZNG. Note that JIN and ZNG
do not directly provide the intercept andwe used themedian of the KMdistribution of the residuals yi−β1x1−β2x2−γ x1x2
to estimate α. The results are given in Table 4 (complete data); the prediction lines for the regular cases are shown in Fig. 3,
panel (a) and for the emergency cases in panel (b). Standard errors based on Theorem 3 are reported in LMY.
We remark the two strong negative interactions γ given by ML and JIN, which are meaningless and disagree with the

very small values of γ provided by WML, MM, and ZNG. Clearly, the ML and JIN prediction lines for emergency cases suffer
the leverage effect of the two outlying observations with very long stay. Surprisingly, ZNG does not seem to be affected. The
next example shows however, that it might also be impaired by leverage outliers.
TheWML estimate points out five observations with zero weights. These observations are indicated by prominent marks

in panels (a) and (b) of Fig. 3. If we remove these outliers we obtain the second set of estimates given in Table 4 and the
prediction lines in Fig. 3, panels (c) and (d). These estimates look much more alike than those based on the full data set
and all values of γ are small. Note however, the large changes in β1 for ML, JIN, and ZNG and that WML remains virtually
unchanged after removal of the five outliers.
The plots in Fig. 4 show the parametric (normal) estimate, the Kaplan–Meier (KM) estimate, and the semiparametric

estimate of the standardized residual cdf for ML, WML, and MM based on (5). Censored and noncensored residuals are
marked by ‘‘0’’, respectively ‘‘1’’ on the horizontal axes.We note the very large steps of the KM distribution corresponding to
the two extreme noncensored outliers. The reason is that KM puts the mass of 12 uncensored residuals in the interval (0.78,
2.64) on these two points. Panel (a) shows that the ML fit and the associated residual scale estimate are strongly affected
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Fig. 3. Data: log(LOS) and Age of 75 hospital patients. Squares are regular admissions, triangles emergency admissions. Filled and empty marks indicate
complete and censored cases. Panels (a) and (b) show the complete data. Large marks are outliers. In panels (c) and (d), outliers have been removed. The
fits WML (black solid line), MM (black dotted line), ML (grey solid line), ZNG (grey dotted line) JIN (grey broken line) in panels (a) and (c) refers to regular
cases. The fits in panels (b) and (d) refers to emergency cases.

by these two points. From panel (c), we learn that the MM estimate based on KM is also badly damaged. This explains the
large negative value of β1. As a matter of fact, if we remove the 12 observations with the largest censored residuals, the two
extreme steps contract and we obtain the plot in Fig. 4, panel (d), i.e. a very nice fit. Finally, the WML estimate (panel (b))
behaves as desired, its residuals being – with two exceptions – almost perfectly normal.
In a second example, we consider the Heart dataset analyzed in Kalbfleisch and Prentice (2002) and available in the

‘‘survival’’ library of R. These data contain information on 69 heart transplant recipients, including their age and their time
to death or censoring (survival). The model y = α + βx + σu, where y = log(time) and x = age, has been considered
in Salibian-Barrera and Yohai (2008). The results are given in Table 5 and shown in Fig. 5. Four cases – the large marks in
Fig. 5 – receive a zeroweight in theWMLprocedure. Table 4 also provides the results obtained after removal of these outliers.
We observe that, with the full data set, the ML, JIN, and ZNG estimates of β are similar and indicate that the effect of age

on the mean survival time is very small. This is somewhat counterintuitive. The robust estimates yield a slope with a much
smaller value, indicating that there is in fact a negative linear relationship, as it is expected from the data (older transplant
patients tend to die sooner). Clearly, the outliers have an important leverage effect on ML, JIN, and ZNG. Removing the
outliers, these estimates become similar to WML and MMwhich remain almost unchanged.

9. Discussion

We have introduced a robust procedure to estimate a linear regression model with censored observations, which may
be considered a parametric counterpart of the estimates presented in Salibian-Barrera and Yohai (2008).
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Fig. 4. Parametric (normal, dotted line), Kaplan–Meier (grey step function), and semiparametric (grey smooth function) estimates of the standardized error
cdf for ML (panel (a)), WML (panel (b)), and MM (panel (c)). Censored and noncensored residuals are marked by ‘‘0’’, respectively ‘‘1’’ on the horizontal
axes. Panel (d) is obtained with MM, after removal of the 10 observations with the largest censored residuals.

Table 5
Estimates of the regression model for the Heart dataset.

Complete data Outliers removed
ML JIN ZNG MM WML ML JIN ZNG MM WML

α 8.90 8.79 7.10 13.17 13.63 12.91 13.66 12.16 14.48 13.67
β −0.07 −0.07 −0.04 −0.16 −0.17 −0.15 −0.17 −0.14 −0.18 −0.17

Our Monte Carlo simulations show that, when the model is correct, the new estimates are more efficient and more
robust than the previous ones. The higher degree of robustness was explained in the introduction by the fact that the
Kaplan–Meier estimate creates artificial outliers. Another advantage of the parametric approach occurs when the error
distribution is asymmetric. In fact, in this case, if the family of parametric models includes asymmetric distributions, a
better and differential treatment of left and right outliers is made possible.
As usual, the plausibility of an initially selectedmodel has to be checkedwith the help of diagnostic tools or goodness of fit

measures. For example, in Fig. 4,we compared theKaplan–Meier distribution of the standardized residualswith the assumed
normal distribution. When inadequacy of the selected model is detected, the procedure has to be repeated using different
distribution families until a satisfactory fit is found. Methods to choose among several competing distributionmodels in the
presence of censoring and in the absence of covariates have been described in the literature; see for example Kim and Yum
(2008) and the references mentioned by these authors. Some of these methods (e.g., the comparison of the likelihoods of
competingmodelswith the same number of parameters) could be naturally extended to regression. One could also robustify
these procedures by deleting the detected outliers before their application. However, we consider that this is a matter of
further research.
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Fig. 5. Data: log(time) and Age of 69 heart transplant recepients. Filled and empty marks correspond to complete and censored observations. Large marks
correspond to outliers.

One may also wonder how good is the performance of the parametric estimate if the selected family of model
distributions is not correct. To answer this question we studied the performance of our procedure based on a Gaussian
error model when the true distribution was Log–Weibull. The results can be considered as satisfactory.
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