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Abstract

This paper focuses on estimating limited dependent variable models with incidentally trun-

cated data and two selection mechanisms. While typical sample selection models have been widely

estimated, extensions to multiple selection mechanisms have been sparse due to intractable likeli-

hood functions or estimation algorithms with slow convergence. This paper extends the sampling

algorithm from Chib et al. (2009) and proposes a computationally-efficient Markov chain Monte

Carlo (MCMC) estimation algorithm with data augmentation. The algorithm only augments the

posterior with a small subset of the total missing data caused by the selection mechanisms, which

improves convergence of the MCMC chain and decreases computational load relative to standard

algorithms. The resulting sampling densities are well-known despite not having the “complete”

data. The methods are applied to estimate the effects of residential density on vehicle usage and

holdings in California.

Keywords: sample selection; incidental truncation; minimal data augmentation; Markov chain

Monte Carlo; vehicle choice; residential density.
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1 Introduction

The seminal sample selection model of Heckman (1979) has generated a vast amount of theoreti-

cal and empirical research across a variety of disciplines. Sample selection occurs when a dependent

variable of interest is missing for a subset of the sample as a consequence of “incidental truncation,”

while all other quantities are fully observed. The remaining observations are non-random and do

not represent the population of interest, hence estimation based only on this selected sample may

lead to specification errors. This problem is prevalent in empirical applications in economics and

disciplines that use observational data, thus estimation techniques which address sample selection

are of substantial interest.

The conventional sample selection model with a single selection mechanism and its variants have

been extensively estimated. Common classical estimation methods are developed and discussed in

Amemiya (1984), Gronau (1973), Heckman (1979), and Wooldridge (1998, 2002), while semipara-

metric estimation and a variety of extensions are discussed in Heckman (1990), Manski (1989), and

Newey et al. (1990). Extensions in the direction of multiple selection mechanisms are discussed in

Shonkwiler and Yen (1999), Yen (2005), and Poirier (1980), where the two former articles discuss

equation-by-equation sample selection, and the latter discusses observability of a single binary out-

come as a result of two binary selection variables. The preceding procedures generally involve two

classes of estimators: 1) two-step estimators that are consistent, asymptotically normal, but inef-

ficient, and 2) maximum likelihood estimators that depend on numerous evaluations of integrals.

Puhani (2000) studies the practical performance of such estimators using a Monte Carlo frame-

work, where one of the criticisms of Heckman-like estimators is the small sample properties. An

alternative method involves Bayesian estimation that results in finite sample inference and avoids

direct evaluations of integrals. Recent developments with one selection variable include Chib et al.

(2009), Greenberg (2007), and van Hasselt (2009); extensions such as semiparametric estimation,

endogeneity, and multiple outcome types are also discussed.

The model being analyzed contains a correlated system of equations with two continuous de-

pendent variables of interest, where each variable has an incidental truncation problem determined

by a unique ordered selection variable. An unrestricted covariance matrix for the error terms is

used to account for informative contemporaneous relationships. A major difference between this

model and previous work is that the two selection mechanisms are modeled simultaneously, cre-

ating four combinations of outcome observability for any observational unit. This feature results

in a non-standard likelihood function and thus sampling densities that are not from well-known

distributions. A simple solution is to augment the posterior with all the missing outcomes, resulting

in “complete” data, and estimate the model using standard Markov chain Monte Carlo (MCMC)
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procedures, but this approach slows down convergence as shown in Chib et al. (2009). As a result,

such a model warrants special attention in estimation.

This paper extends the MCMC estimation technique from Chib et al. (2009), which involves

one selection mechanism and two cases of outcome observability, to accommodate models with two

selection mechanisms and four cases of observability. Because of the additional complexity with

a second selection mechanism, the sampling methods from Chib et al. (2009) cannot be directly

applied. The proposed algorithm samples all the unknown model parameters from well-known

distributions without having to augment a majority of the missing data. Specifically, a small

subset of the missing data is included to facilitate the sampling of the covariance matrix only. The

amount and complexity of missing data increases with larger systems, therefore it is important to

minimize their usage in the MCMC chain. While typical data augmentation schemes include all

missing data, the proposed technique augments the posterior with at most 50% of the missing data

that are associated with the selection mechanisms, which improves the convergence of the MCMC

chain and reduces the computational load.

The methods are applied to study the effects of residential density on vehicle usage and vehicle

holdings in California. Residential density and household demographic variables are used to explain

the annual mileage a household drives with trucks and cars and the number of trucks and cars

a household owns. A careful analysis is needed since vehicle usage data is only observable for

households that own vehicles. The resulting estimation results will supplement the current literature

and be informative for policy decisions.

2 Sample Selection Model

The model is given by

yi,1 = x′i,1β1 + εi,1, (1)

yi,2 = x′i,2β2 + εi,2, (2)

y∗i,3 = x′i,3β3 + εi,3, (3)

y∗i,4 = x′i,4β4 + εi,4, (4)

yi,j = tj if αtj−1,j < y∗i,j ≤ αtj ,j , (5)

δtj ,j = ln

{
αtj ,j − αtj−1,j

1− αtj ,j

}
, (6)
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for observational units i = 1, . . . , N , equations j = 3, 4, ordered categories tj = 1, . . . , Tj , ordered

cutpoints α0,j = −∞ < α1,j < . . . < αTj ,j = +∞, and transformed cutpoints {δtj ,j}. The contin-

uous dependent variables of interest are yi,1 and yi,2. Due to sample selection, their observability

depends on the values of two ordered selection variables yi,3 and yi,4, respectively. Following Al-

bert and Chib (1993), the ordered variables, which can take one of Tj categories, are modeled in

a threshold-crossing framework with the latent variables y∗i,3 and y∗i,4 according to equations (3)

through (5). In addition, a re-parameterization of the ordered cutpoints according to equation

(6) is performed to remove the ordering constraints along the lines of Chen and Dey (2000). The

row vector x′i,j and conformable column vector βj are the exogenous covariates and correspond-

ing regression coefficients, respectively. The vector of error terms (εi,1, εi,2, εi,3, εi,4)
′ is distributed

independent multivariate normal, N (0,Ω), where Ω is an unrestricted covariance matrix. This nor-

mality assumption for the error terms results in ordered probit models for equations (3) through

(5).

A key feature of the model is the inclusion of two selection variables, which results in four cases

of observability. For any observational unit i, only one of the following vectors is observed

(yi,1, yi,2, yi,3, yi,4)
′, (yi,2, yi,3, yi,4)

′, (yi,1, yi,3, yi,4)
′, (yi,3, yi,4)

′,

where yi,1 and yi,2 are missing if and only if yi,3 and yi,4 are in known, application-specific categories

γ and λ, respectively. In the context of the vehicle choice example, the mileage driven with trucks

and cars are missing when the number of trucks and cars owned by the household equal zero,

expressed as γ = λ = 0. The rules involving yi,3 and yi,4 that affect the observability are known

as the selection mechanisms. These rules are assumed to have the previously mentioned forms for

simplicity, although they can be modified without affecting the estimation procedure. To be general

about where incidental truncation occurs, let Nr (r = 1, . . . , 4) denote partitions of the sample set

that correspond to the four aforementioned cases of observability. In addition, let nr denote their

sizes such that
∑4

r=1 nr = N . Formally, the variable yi,1 is only observed for units in N1 ∪N3, and

yi,2 is only observed for units in N1 ∪ N2, as illustrated in Table 1. Other quantities such as the

ordered variables and covariates are always observed.

The model is linear since many econometric models can be seen as linear regression models

with suitably-defined latent data. This flexible formulation can accommodate continuous, discrete,

or censored outcomes as they all have latent variable representations (Koop et al., 2007, Chapter

14). Although yi,1 and yi,2 are presented as scalars to reduce complexity in notation, they can be

changed to vectors of outcomes without alterations in the estimation algorithm. Extensions such

as semiparametric estimation and endogeneity can also be easily incorporated along the lines of
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Variables N1 N2 N3 N4

yi,1 X © X ©
yi,2 X X © ©
yi,3 X X X X
yi,4 X X X X

Table 1: Variable observability. The symbols © and X denote whether the variable is missing or
observed in the sample partition, respectively.

Chib et al. (2009) and van Hasselt (2009).

3 Estimation

The proposed estimation algorithm uses MCMC methods with minimal data augmentation

(MDA). The idea, motivation, and implementation of MDA are described in Section 3.1. Section

3.2 provides the data-augmented likelihood, priors, and data-augmented posterior. Section 3.3

presents the sampling algorithm in detail.

3.1 Minimal Data Augmentation (MDA)

The aim of MDA is to augment the posterior with the least amount of missing outcomes

possible while keeping the densities of interest tractable for sampling. By introducing all the

latent and missing data along the lines of Tanner and Wong (1987), many complex econometric

models can be estimated as linear regression models with Gibbs or Metropolis-Hastings sampling

(Koop et al., 2007, Chapter 14). Such an approach provides for easy sampling since given the

“complete” data, the full conditional densities for β̃, Ω, and other quantities are in standard forms

(Chib and Greenberg, 1995). However, as noted in Chib et al. (2009), such a “naive” approach

would degrade the mixing of the Markov chains and increase computation time. This problem is

especially intensified when the quantity of missing outcomes due to the selection mechanism is large

or when the model contains a sizable number of unknown parameters. Even if these impediments

are disregarded, sample selection makes simulating the missing outcomes difficult as influential

covariates may also be missing for the same reason. For these reasons, it is generally desirable to

minimize the amount of missing outcomes involved in the algorithm.

The proposed algorithm augments the posterior with the missing variable yi,2 in N3 and the

latent variables {y∗i,3 y∗i,4} for all observations, while leaving yi,1 in N2∪N4 and yi,2 in N4 out of the

sampler, as illustrated in Table 2. While the choices of variables and observations for augmentation

appear arbitrary, they are specifically chosen to facilitate the sampling of the matrix Ω. By assuming
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Variables N1 N2 N3 N4

yi,1 X © X ©
yi,2 X X

⊗
©

y∗i,3 × × × ×
y∗i,4 × × × ×

Table 2: Minimal data augmentation scheme. The symbols X, ×,
⊗

, and © denote whether the
variable is observed, latent but augmented, missing but augmented, or missing but not augmented
in the posterior, respectively.

that yi,1 is missing more than yi,2, this algorithm includes less than 50% of all missing data. In the

vehicle choice application with 2, 297 observations, only 18% of the total missing data is used.

3.2 Posterior Analysis

The data-augmented posterior density is proportional to the product of the data-augmented

likelihood and the prior density for the unknown parameters:

π(θ, ymiss, y
∗|yobs) ∝ f(yobs, ymiss, y

∗|θ)π(θ). (7)

Define the vector θ = (β̃, δ,Ω), where β̃ = (β′1, β
′
2, β
′
3, β
′
4)
′ and δ = {δtj ,j}, to contain all the

unknown parameters. Also, define ymiss and y∗ to contain the augmented missing outcomes and

latent selection variables, respectively, and yobs to contain all the observed data from Table 1.

Due to the intricate pattern of missing outcomes, specific quantities for each case of observability

need to be defined. Let

ỹi,1:4 = (yi,1, yi,2, y
∗
i,3, y

∗
i,4)
′, ỹi,2:4 = (yi,2, y

∗
i,3, y

∗
i,4)
′, ỹi,134 = (yi,1, y

∗
i,3, y

∗
i,4)
′, ỹi,3:4 = (y∗i,3, y

∗
i,4)
′,

and using similar notation, let X̃i,1:4, X̃i,2:4, X̃i,134, and X̃i,3:4 be block-diagonal matrices with

the corresponding vectors of covariates on the block diagonals and zeros elsewhere. Similarly,

define S′2:4, S
′
134, and S′3:4 to be conformable matrices that “select out” the appropriate regression

coefficients when pre-multiplied to β̃. For example,

X̃i,3:4 =

(
x′i,3 0

0 x′i,4

)
, S3:4 =

(
0

I

)
, and S′3:4β̃ =

(
β3

β4

)
.
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Now, partition Ω and Ω22 as

Ω =

 Ω11
(1×1)

Ω12

Ω21 Ω22
(3×3)

 , Ω22 =

 Ω11
(1×1)

Ω12

Ω21 Ω22
(2×2)

 ,

and denote the covariance matrix for ỹi,134 as Ω134.

The data-augmented likelihood needed in equation (7) is given by

f(yobs, ymiss, y
∗|θ) ∝

∏
N1∪N3

φ(ỹi,1:4|X̃i,1:4β̃,Ω)
∏
N2

φ(ỹi,2:4|X̃i,2:4S
′
2:4β̃,Ω22)× (8)

∏
N4

φ(ỹi,3:4|X̃i,3:4S
′
3:4β̃,Ω22)

N∏
i=1

4∏
j=3

I(αyi,j−1,j < y∗i,j ≤ αyi,j ,j),

where φ(x|µ,Σ) denotes the density of a multivariate normal distribution with mean vector µ and

covariance matrix Σ, and I(·) denotes an indicator function. The last product in (8) is the joint

probability function of the ordered selection variables, which is known with certainty conditional

on the latent variables. For some calculations, the data-augmented likelihood marginally of the

missing outcomes is needed; it is obtained by integrating {yi,2}i∈N3 out of equation (8) and is given

by

f(yobs, y
∗|θ) ∝

∏
N1

φ(ỹi,1:4|X̃i,1:4β̃,Ω)
∏
N2

φ(ỹi,2:4|X̃i,2:4S
′
2:4β̃,Ω22)× (9)

∏
N3

φ(ỹi,134|X̃i,134S
′
134β̃,Ω134)

∏
N4

φ(ỹi,3:4|X̃i,3:4S
′
3:4β̃,Ω22)×

N∏
i=1

4∏
j=3

I(αyi,j−1,j < y∗i,j ≤ αyi,j ,j).

Prior independence is assumed for simplicity. Let

β̃ ∼ N (β0, B0), Ω ∼ IW(ν1, Q), δ ∼ N (δ0, D0), (10)

where the priors for β̃ and δ are multivariate normal, and the prior for Ω is inverse-Wishart. The

hyperparameters are set to reflect prior information. To be non-informative, set the mean vectors β0

and δ0 to zeros, the covariance matrices B0 and D0 to diagonal matrices with 100 on the diagonals,

ν1 to 4, and Q to an identity matrix.
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3.3 Sampling Algorithm

For the following computations, define δj and δ(−j) to contain all the transformed cutpoints

for equations j and other than j, respectively. Similarly, define y∗j and y∗(−j) to contain the latent

outcomes from y∗ for equations j and other than j.

The posterior distribution is approximated by MCMC methods. The algorithm, which omits

extraneous quantities from the conditioning set, is summarized as follows:

1. Sample β̃ from the distribution β̃|yobs,Ω, y∗.

2. Sample (δj , y
∗
j ) for j = 3, 4 from the distribution δj , y

∗
j |yobs, β̃,Ω, δ(−j), y∗(−j).

3. Sample Ω from the distribution Ω|yobs, β̃, ymiss, y
∗.

4. Sample yi,2 for i ∈ N3 from the distribution yi,2|yobs, β̃,Ω, y∗.

This algorithm starts by initializing the unknown quantities and then recursively obtains draws

from the distributions listed above like any other MCMC sampler. Note that the quantities β̃, δj ,

and y∗j are sampled without conditioning on the missing outcomes as this improves the mixing of

the Markov chain. As the number of iterations approaches infinity, the draws can be shown to come

from the posterior distribution of interest by collapsed MCMC theory (Liu, 1994). Quantities such

as posterior means, standard deviations, and changes in probabilities can be obtained by calculating

ergodic averages over the appropriate set of draws.

Identification in the ordered probit equations is achieved by multiple cutpoint restrictions,

following Jeliazkov et al. (2008) and Fang (2008). The cutpoints α1,j and α2,j are fixed at zero and

one, respectively, with α0,j = −∞ and αTj ,j = +∞. Standard identification procedures fix one of

the cutpoints to zero and constrain the error variances to one. However, the proposed approach

offers two advantages. First, the elements of Ω corresponding to the ordered variables are not

restricted to be in correlation form, which allows for straightforward interpretation. Second, the

transformed cutpoints do not need to be sampled when the selection variables only have three

categories since the four required cutpoints are fixed.

Sampling β̃

The conditional distribution for β̃ can be easily derived by combining (9) and the normal prior

for β̃. By completing the square in the exponential functions, the distribution of interest can be

recognized as N (β,B), where
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β = B


∑
N1

X̃ ′i,1:4Ω
−1ỹi,1:4 +

∑
N2

S2:4X̃
′
i,2:4Ω

−1
22 ỹi,2:4+∑

N3

S134X̃
′
i,134Ω

−1
134ỹi,134 +

∑
N4

S3:4X̃
′
i,3:4Ω

−1
22 ỹi,3:4 +B−10 β0

 ,

B =


∑
N1

X̃ ′i,1:4Ω
−1X̃i,1:4 +

∑
N2

S2:4X̃
′
i,2:4Ω

−1
22 X̃i,2:4S

′
2:4+∑

N3

S134X̃
′
i,134Ω

−1
134X̃i,134S

′
134 +

∑
N4

S3:4X̃
′
i,3:4Ω

−1
22 X̃i,3:4S

′
3:4 +B−10


−1

.

Sampling (δj , y
∗
j )

The pair (δj , y
∗
j ) is sampled in one block from the joint distribution δj , y

∗
j |yobs, β̃,Ω, δ(−j), y∗(−j)

for j = 3, 4, as proposed in Chen and Dey (2000) and Albert and Chib (2001). The vector of

transformed cutpoints δj is first sampled marginally of y∗j from δj |yobs, β̃,Ω, δ(−j), y∗(−j), and then

y∗j is sampled conditionally on δj from y∗j |yobs, β̃,Ω, δ, y∗(−j). Sampling is performed jointly, because

drawing δj and y∗j each from their full conditional distributions may induce high autocorrelation in

the MCMC chains (Nandram and Chen, 1996).

The marginal distribution of δj , recovered by integrating y∗j out of the joint distribution,

is difficult to sample from directly. Instead, an independence chain Metropolis-Hastings step

is used. A new draw, δ′j , is proposed from a multivariate t distribution with ν2 = 5 de-

grees of freedom, fT (δj |δ̂j , D̂j , ν2), where δ̂j and D̂j are the maximizer and negative Hessian of

f(yj |yobs(−j), β̃,Ω, δj , y∗(−j))π(δj |δ(−j)) evaluated at the maximum, respectively. The vector yobs(−j)

contains all elements in yobs not associated with equation j. The acceptance probability for δ′j is

αMH(δj , δ
′
j) = min

{
1,
f(yj |yobs(−j), β̃,Ω, δ′j , y∗(−j))π(δ′j |δ(−j))fT (δj |δ̂j , D̂j , ν2)

f(yj |yobs(−j), β̃,Ω, δj , y∗(−j))π(δj |δ(−j))fT (δ′j |δ̂j , D̂j , ν2)

}
, (11)

where the conditional probabilities of yj can be calculated as products of univariate normal distri-

bution functions (Chib et al., 2009, Section 2.1).

By independence across observational units, the vector y∗j can be recovered by sampling y∗i,j from

y∗i,j |yobs, β̃,Ω, δ, y∗(−j) for i = 1, . . . , N . From equation (9), this distribution is truncated normal. Let

T N (µ, σ2, a, b) denote a univariate normal distribution truncated to the region (a, b) with mean µ

and variance σ2. The distribution of interest is given by

y∗i,j |yobs, β̃,Ω, δ, y∗(−j) ∼ T N (µi,j , σ
2
i,j , αyi,j−1,j , αyi,j ,j), (12)

where µi,j and σ2i,j are the conditional mean and variance for a normal distribution.
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Sampling Ω

Due to the non-standard form of the posterior density in equation (7), the covariance matrix Ω

cannot be sampled in one block from the usual inverse-Wishart distribution. Instead, one-to-one

transformations of Ω and Ω22 will be sampled and used to construct a draw for Ω. The presented

technique is an extension of Chib et al. (2009) by applying the transformation twice due to the

additional selection mechanism.

Define the transformations

Ω11·2 = Ω11 − Ω12Ω
−1
22 Ω21, B21 = Ω−122 Ω21, Ω11·2 = Ω11 − Ω12Ω

−1
22 Ω21, B21 = Ω

−1
22 Ω21,

and partition Q and Q22 as

Q =

 Q11
(1×1)

Q12

Q21 Q22
(3×3)

 , Q22 =


Q11
(1×1)

Q12

Q21 Q22
(2×2)

 .

To sample Ω22, a change of variables from Ω22 to (Ω22,Ω11·2, B21) is applied to the density

Ω22|yobs, β̃, y∗ with Jacobian |Ω22|. The resulting density is proportional to a product of three

recognizable distribution kernels, namely two inverse-Wisharts and one matric-normal. They are

Ω22|yobs, β̃, y∗ ∼ IW(ν1 +N − 1, Q22 +
N∑
i=1

ε̃3:4ε̃
′
3:4), (13)

Ω11·2|yobs, β̃, y∗ ∼ IW(ν1 + n1 + n2, R11·2), (14)

B21|Ω11·2, yobs, β̃, y
∗ ∼ MN (2×1)(R

−1
22 R21,Ω11·2 ⊗R

−1
22 ), (15)

where ε̃i,3:4 = (ỹi,3:4 − X̃i,3:4S
′
3:4β̃), ε̃i,2:4 = (ỹi,2:4 − X̃i,2:4S

′
2:4β̃), R22 = (Q22 +

∑
N1∪N2

ε̃i,2:4ε̃
′
i,2:4) is

partitioned to be conformable with Q22 using the same notation, and R11·2 = R11 − R12R
−1
22 R21.

By drawing from (13) to (15) and manipulating the inverted quantities, a draw of Ω22 marginally

of the missing data can be recovered.

To sample Ω, a similar change of variables from Ω to (Ω22,Ω11·2, B21) is applied to

Ω|yobs, β̃, ymiss, y
∗ with a Jacobian of |Ω22|. The resulting distributions of interest are

Ω11·2|yobs, β̃, ymiss, y
∗ ∼ IW(ν1 + n1 + n3, R11·2), (16)

B21|Ω11·2, yobs, β̃, ymiss, y
∗ ∼ MN (3×1)(R

−1
22 R21,Ω11·2 ⊗R−122 ), (17)
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where ε̃i,1:4 = (ỹi,1:4 − X̃i,1:4β̃), R = (Q +
∑

N1∪N3

ε̃i,1:4ε̃
′
i,1:4) is partitioned to be conformable with

Q, and R11·2 = R11 −R12R
−1
22 R21. Note that Ω22 does not need to be sampled again. In addition,

the quantities from (16) and (17) depend on the missing data, while draws from (13) to (15) do

not. The two matrices Ω and Ω22 are drawn separately to minimize the dependence on the missing

data. Now, sampling of Ω can proceed by drawing from (13) to (17).

Sampling ỹi,2

From (7), the conditional distributions of ỹi,2 are easily recognized as

yi,2|yobs, β̃,Ω, y∗ ∼ N (ηi, ω
2
i ) for i ∈ N3, (18)

where ηi and ω2
i are the conditional mean and variance of yi,2.

4 Application

Studies suggest that higher urban spatial structure, including residential density, is related

to lower vehicle usage (Brownstone and Fang, 2009; Brownstone and Golob, 2009; Cervero and

Kockelman, 1997; Dunphy and Fisher, 1996; Fang, 2008). As a result, residential density is one

parameter in reducing fuel consumption of automobiles or influencing household travel behavior.

Policies targeting residential density can complement traditional ones such as limiting vehicle us-

age by total mileage driven or enforcing fuel efficiency on vehicles. Improved understanding of

this relationship can influence city development, zoning decisions, congestion growth, and project

evaluations. However, vehicle usage data commonly contains a large proportion of missing values

due to the lack of vehicle ownership. If these missing values are not modeled correctly or simply

omitted from the sample, estimates of interest will suffer from misspecification errors.

The sample selection model is used to jointly study the effects of residential density on vehicle

usage and holdings in California. One possible causal relationship suggests that denser areas in-

crease the cost of operating vehicles. Residential areas with more houses per square mile commonly

have narrow streets, congested roads, and limited parking spaces, which contribute to higher vehicle

fuel consumption and operating costs when traveling around these neighborhoods, especially for less

fuel-efficient vehicles. As a result, households will tend to drive less on average and switch to more

fuel-efficient vehicles. The data is obtained from the 2001 National Household Travel Survey from

which a subsample 2,297 households from California is used. Table 3 provides detailed summary

statistics. Outcomes of interest are the annual mileage driven with trucks and cars (measures of
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vehicle usage) and the number of trucks and cars owned by a household (measures of vehicle hold-

ings). They are modeled jointly with exogenous covariates such as residential density, household

size, income, home ownership status, and education levels.

Variable Description Mean SD

Dependent variables

TMILE Mileage per year driven with trucks (1,000 miles) 7.14 10.97
CMILE Mileage per year driven with cars (1,000 miles) 8.90 10.00
TNUM Number of trucks owned by the household 0.72 0.79
CNUM Number of cars owned by the household 1.10 0.82

Exogenous covariates

DENSITY Houses per square mile 2564.99 1886.09
BIKES Number of bicycles 0.97 1.23
HHSIZE Number of individuals in a household 2.69 1.44
ADLTS Number of adults in a household 1.99 0.79
URB Household is in an urban area 0.93 0.25
INC1 Household income is between 20K and 30K 0.11 0.31
INC2 Household income is between 30K and 50K 0.21 0.41
INC3 Household income is between 50K and 75K 0.19 0.39
INC4 Household income is between 75K and 100K 0.13 0.33
INC5 Household income is greater than 100K 0.22 0.41
HOME Household owns the home 0.69 0.46
HS Highest household education is a high school degree 0.31 0.46
BS Highest household education is at least a bachelor’s degree 0.46 0.50
CHILD1 Youngest child is under 6 years old 0.17 0.37
CHILD2 Youngest child is between 6 and 15 years old 0.18 0.38
CHILD3 Youngest child is between 15 and 21 years old 0.06 0.23
LA Household lives in Los Angeles MSA 0.42 0.49
SAC Household lives in Sacramento MSA 0.08 0.27
SD Household lives in San Diego MSA 0.09 0.28
SF Household lives in San Francisco MSA 0.23 0.42

Table 3: Descriptive statistics based on 2, 297 observations.

The model is given by

yi,1 = β0,1 + log(DENSITYi)β1,1 + x′iβ1 + εi,1, (19)

yi,2 = β0,2 + log(DENSITYi)β1,2 + x′iβ2 + εi,2,

y∗i,3 = β0,3 + log(DENSITYi)β1,3 + x′iβ3 + εi,3,

y∗i,4 = β0,4 + log(DENSITYi)β1,4 + x′iβ4 + εi,4,

for i = 1, . . . , 2, 297 households, where yi,1 and yi,2 are annual mileage driven with trucks and cars,
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y∗i,3 and y∗i,4 are the latent variable representations for the number of trucks and cars owned (yi,3 and

yi,4), and x′i is a row vector of exogenous covariates. The equation subscript j is omitted from x′i

since the same covariates are used in every equation, and the covariate log(DENSITYi) is separated

to emphasize that it is a variable of interest. The error structure is (εi,1, εi,2, εi,3, εi,4)
′ ∼ N (0,Ω).

The selection variables are the number of trucks and cars a household owns, which have categories

of zero, one, or more than two. Incidental truncation is modeled as follows: yi,1 is observed if and

only if yi,3 6= 0, and yi,2 is observed if and only if yi,4 6= 0. Grouping households that own more

than two trucks and cars (2.26% and 4.48% of the sample, respectively) with households that own

two trucks and cars is for estimation convenience, because the transformed cutpoints do not need

to be sampled. The two combined groups are assumed to be similar, so this grouping should not

affect the analysis.

The model estimates are in Table 4, and the marginal effects with respect to residential density

are in Table 5. The quantities of interest are obtained by iterating the algorithm 110,000 times,

discarding the first 10,000 iterations for burn-in, and taking the ergodic averages over the associated

draws. Prior hyperparameters are set to reflect non-informativeness since the effects of residential

density and other covariates are not known a priori.

For the truck and car mileage equations, the posterior means for the coefficients of

log(DENSITY ) are −0.41 and −0.25 with posterior standard deviations of 0.32 and 0.23, re-

spectively. The signs suggest that households located in denser neighborhoods, all else equal, are

associated with lower truck and car usage on average. For example, the marginal effects from Table

5 show that a 50% increase in residential density is associated with a 168.18 and 98 decrease in

annual mileage driven with trucks and cars, respectively. These estimates are small despite in-

creasing residential density by as much as 50%. The results suggest that residential density has

a small economic impact on vehicle usage. Also, the differences in magnitudes suggest that less

fuel-efficient vehicles are more sensitive to residential density changes than fuel-efficient vehicles on

average. The results are consistent with the intuition that households would want to drive less as

overall vehicle operating costs increased, which is particularly true for less efficient vehicles. How-

ever, the posterior standard deviations are close in magnitude to the coefficient estimates, which

suggest some uncertainty in the relationship between residential density and vehicle usage for trucks

and cars. This finding is somewhat contrary to the conclusions in Brownstone and Fang (2009)

and Fang (2008), where the vehicle usage variables are modeled as censored (Tobit-type) outcomes

instead of potential outcomes. The authors find that residential density does affect truck utilization

in a significant way but not for car utilization. This difference arises due to the different modeling

strategies.

Marginal effects are presented in Table 5 since the coefficients in the ordered equations are
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Variable TMILE CMILE TNUM CNUM

Mean SD Mean SD Mean SD Mean SD

log(DENSITY ) -0.41 (0.32) -0.25 (0.23) -0.07 (0.02) -0.02 (0.02)
BIKES -0.16 (0.28) 0.03 (0.20) 0.08 (0.02) -0.01 (0.01)
HHSIZE 0.45 (0.52) 0.73 (0.42) 0.05 (0.03) -0.06 (0.03)
ADLTS -0.63 (0.68) 0.28 (0.53) 0.09 (0.04) 0.17 (0.03)
URB 0.43 (1.48) -0.69 (1.22) -0.14 (0.08) 0.19 (0.08)
INC1 2.53 (1.67) -1.35 (1.02) 0.18 (0.08) 0.09 (0.06)
INC2 1.28 (1.46) 1.15 (0.88) 0.41 (0.07) 0.11 (0.05)
INC3 2.56 (1.49) 1.65 (0.91) 0.49 (0.07) 0.26 (0.06)
INC4 2.60 (1.60) 0.74 (1.01) 0.59 (0.08) 0.24 (0.07)
INC5 3.63 (1.58) 1.86 (0.97) 0.61 (0.08) 0.31 (0.06)
HOME -0.61 (0.90) -1.26 (0.56) 0.21 (0.04) 0.10 (0.04)
HS -0.41 (0.98) 1.28 (0.70) 0.02 (0.05) 0.11 (0.04)
BS -2.04 (1.03) 0.85 (0.71) -0.20 (0.05) 0.17 (0.05)
CHILD1 1.71 (1.45) 0.56 (1.07) 0.12 (0.08) 0.12 (0.07)
CHILD2 1.24 (1.31) 0.61 (0.98) 0.08 (0.07) 0.06 (0.06)
CHILD3 1.32 (1.51) 0.01 (1.07) 0.04 (0.08) -0.02 (0.07)
LA 2.71 (0.99) 1.51 (0.74) -0.14 (0.05) 0.03 (0.05)
SAC 2.09 (1.40) 1.74 (1.03) -0.15 (0.08) 0.07 (0.07)
SD 1.26 (1.42) 0.07 (1.02) -0.18 (0.08) 0.10 (0.07)
SF 1.58 (1.17) -0.06 (0.81) -0.27 (0.06) 0.15 (0.05)

Table 4: Model estimates. Posterior means and standard deviations of the coefficients are reported.

difficult to interpret. The estimates suggest that when residential density increases by 50%, the

probability of not holding any trucks increases by 1.318%, while the probability of holding one and

two or more trucks decrease by 0.637% and 0.681%, respectively. The effects on car holdings is

practically on the same order of magnitude, but there is sizable uncertainty in the estimates as the

posterior standard deviations are large. These estimates are similar to the findings in Fang (2008)

and approximately half the size of the estimates in Brownstone and Fang (2009).

5 Concluding remarks

This paper develops an efficient method to estimate multivariate limited dependent variable

models with incidentally truncated data. The estimated model contains two continuous dependent

variables of interest with incidental truncation, where the observability for each variable depends on

a corresponding ordered selection variable. While such models are easily described mathematically,

estimation is often difficult due to the intricate pattern in missing outcomes with two selection

mechanisms and the discrete nature of the selection variables. These problems result in evaluations
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∆Pr(TNUM = 0) ∆Pr(TNUM = 1) ∆Pr(TNUM ≥ 2)
13.18 -6.37 -6.81
(3.35) (1.67) (1.72)

∆Pr(CNUM = 0) ∆Pr(CNUM = 1) ∆Pr(CNUM ≥ 2)
2.88 -0.23 -2.64

(2.89) (0.26) (2.65)

∆TMILE ∆CMILE
-168.14 -98.00

(130.70) (93.85)

Table 5: Marginal effects of increasing DENSITY by 50%. The changes in probabilities are in
10−3 units, and the changes in truck and car mileage are in annual miles.

of high-dimensional likelihoods, identification issues, and computationally-inefficient algorithms.

This paper extends the Markov chain Monte Carlo estimation algorithm developed in Chib et al.

(2009) to efficiently simulate the joint posterior distribution of interest. A central aspect of the

algorithm is that it only includes a small subset of the missing data in the MCMC sampler, which

significantly improves the convergence. Also, despite not having the “complete” data, the resulting

sampling distributions are well-known.

The model is applied to estimate the effects of residential density on vehicle usage and holdings

in the state of California. Results suggest that large increases in residential density are not strongly

associated with changes in vehicle utilization and probability of holding cars, but they are strongly

related to changes in truck holdings. This finding associated with vehicle utilization, especially for

truck usage, is contrary to the literature and demonstrates that the sample selection framework

can reveal new conclusions in the data.
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