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Abstract

P(enalized)-splines and fractional polynomials (FPs) have emerged
as powerful smoothing techniques with increasing popularity in several
fields of applied research. Both approaches provide considerable flexi-
bility, but only limited comparative evaluations of the performance and
properties of the two methods have been conducted to date. We thus
performed extensive simulations to compare FPs of degree 2 (FP2)
and degree 4 (FP4) and P-splines that used generalized cross valida-
tion (GCV) and restricted maximum likelihood (REML) for smoothing
parameter selection. We evaluated the ability of P-splines and FPs to
recover the “true” functional form of the association between continu-
ous, binary and survival outcomes and exposure for linear, quadratic
and more complex, non-linear functions, using different sample sizes
and signal to noise ratios. We found that for more curved functions
FP2, the current default implementation in standard software, showed
considerably bias and consistently higher mean squared error (MSE)
compared to spline-based estimators (REML, GCV) and FP4, that
performed equally well in most simulation settings. FPs however, are
prone to artefacts due to the specific choice of the origin, while P-
splines based on GCV reveal sometimes wiggly estimates in particular
for small sample sizes. Finally, we highlight the specific features of the
approaches in a real dataset.

Keywords: generalized additive models, GAMs, simulation, smooth-
ing



1 Introduction

Numerous complex regression techniques are available to flexibly model the
functional form of a continuous covariate’s effect on outcome. Particularly
smoothing approaches, that encompass a broad range of techniques and avoid
assumptions of a particular functional form of a relationship between inde-
pendent variables and outcome have been well-established in the statistical
literature, see e.g. Fahrmeir and Tutz (2001), Hastie et al. (2003), Wood
(2006b) and Ruppert et al. (2003).

Most smoothing approaches fit into the framework of generalized addi-
tive models (GAMs) (Hastie and Tibshirani 1990) or their extensions (e.g.
Fahrmeir et al. 2004). GAMs replace the linear predictor in a generalized
linear model (Fahrmeir and Tutz 2001) by a sum of smooth functions of the
individual covariates. Some of the most widely used choices for the smooth
functions in GAMs are P(enalized)-splines (e.g. Fahrmeir and Tutz 2001,
Wood 2006b), and fractional polynomials (Royston and Sauerbrei 2008).

P-splines approximate an unknown function f by a polynomial spline
which can be written as a linear combination of some basis functions. For
flexibility, typically a relatively large number of basis functions is used. To
prevent overfitting a roughness penalty on the regression coefficients is used.
Fractional polynomials (FPs) approximate f by the sum of power transfor-
mations of the covariates. FPs are more flexible than ordinary polynomials
as they allow negative and non-integer powers.

Due to the availability of easy to use software, both, P-splines and FPs
have extensively been utilized in various applications (e.g. Strasak et al.
2009, Eisen et al. 2004, Andre et al. 2004, Stansfeld et al. 2005, Shlipak
et al. 2006, Beatty 2009, Ugarte, Goicoa, and Militino 2009, Ellner, Seifu,
and Smith 2002, Henley and Peirson 2001, Peterson et al. 2003, Finch et al.
2007). However, despite their popularity only very limited comparisons of
the performance and properties of the two methods have been conducted to
date. A comparison of P-splines, restricted cubic splines and FPs in Cox
proportional hazards models based on a real single dataset (Govindarajulu
et al. 2007) found that P-splines and restricted cubic splines were closer
to each other than either was to the FPs. However, the true functional
relationship of exposures and outcome was not known. A simulation study
(Royston and Sauerbrei 2005) and a case study (Royston and Sauerbrei 2008)
compared FPs to pure regression splines with an ad hoc choice of knots,
without applying penalties or adaptive knot selection, thus not providing



relevant insights.

We therefore compared the performance of P-splines and FPs in extensive
simulations and in real data to provide guidance to the practitioner. We
focused on assessing the ability of the estimators to recover the nonlinear
functional relationship between independnet and dependent variables rather
than on prediction. To be practically relevant, the comparison is based on
standard implementations of both methods (STATA for FPs, and R and
BayesX for P-splines). In section 2, we briefly describe GAMs, P-splines and
fractional polynomials. In section 3 we compare the methods in simulated
data for continuous, binary and survival outcomes. In section 4 we apply
both approaches to data on malnutrition in children from the National Family
Health Survey from India. Conclusions and recommendations are presented
in section 5.

2 Methods

2.1 Generalized additive models (GAMs)

There is a large literature on flexibly modeling and estimating the effect of
continuous covariates on outcome (e.g. Hastie, Tibshirani, and Friedman
2003, Fahrmeir and Tutz 2001, Wood 2006b). The vast majority of ap-
proaches fits into the framework of generalized additive models (GAMs), see
Hastie and Tibshirani (1990). GAMs assume that the distribution of the re-
sponse variable y given covariates x = (z1,...,x,)" belongs to an exponential
family. A link function g relates the expected value p of y to the covariates
through

g(p) =n= filz1) + ...+ fp(z), (1)

where fi,..., f, are known, possibly nonlinear functions. The additive de-
composition of the covariate effects in (1) allows for good interpretability
of the effects and circumvents the curse of dimensionality (Hastie and Tib-
shirani 1990). There are two main approaches for modeling the functions
fi,..., fp, local polynomial regression and basis functions approaches. Here
we focus on basis functions approaches because both spline based estimators
and FPs are variants of this class.

The basis function approach assumes that an unknown function f in (1)



can be approximated by a linear combination of basis functions, By, ..., Bk,

f(x) = BiBul(o), (2)

where B = (f1,...,0k) is a vector of unknown regression coefficients. Typ-
ically K is a large number to capture the variability of the data. Overfitting
is avoided by either a roughness penalty, that is applied to the regression
coefficients to ensure smoothness of (2), or alternatively, by parsimonious
selection of basis functions using variable selection methods. P-splines use
a roughness penalty approach, while FPs use variable selection methods for
adaptive basis functions selection.

In the next two subsections we discuss P-splines and FPs in more detail
for the simple model y = f(x) + €.

2.2 P-splines

P-splines as introduced by Eilers and Marx (1996) approximate the unknown
function f by a polynomial spline of degree [ with equally spaced knots

Tmin = Ko < K1 < ... < Em-1 < Em = Tmaz

over the domain of z. Because of the equal spacing of knots x; = 2 +h- 7,
j=0,...,m, where h = (T;pae — Tmin)/m. A spline has the following two
properties:

e In each of the intervals [k, kj41], 7 = 0,...,m — 1 the spline f is a
polynomial of degree [, and

e at the knots k; (the interval boundaries) the spline is [ — 1 times con-
tinuously differentiable.

A spline can be written in terms of a linear combination of K = m + [ basis
functions (De Boor 2001). The most widely used bases are the truncated
power series basis and the B-spline basis. Using a truncated power series
basis the function f is

m—1
f(z) = Bo+ Brz + ...+ Bt + Y Bty 1), (3)
j=1
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where l
T L

In a simple regression spline approach, the unknown regression coefficients
0 are estimated using standard inference techniques for linear or generalized
linear models. The crucial problem with such regression splines is the choice
of the number and the position of the knots. A small number of knots
may result in a function space which is not flexible enough to capture the
variability of the data. A large number may lead to overfitting. As a remedy
Eilers and Marx (1996) propose to define a large number of knots (usually
between 10 and 40) to ensure enough flexibility. Sufficient smoothness of
the fitted curve is achieved through a roughness penalty on the regression
coefficients.

Using a truncated power series basis, overfitting is prevented using a
quadratic ridge type penalty

m—1
PO =AY 8L (4)
j=1
leading to the penalized least squares criterion
n m—1
PLS(B,0) =Y (i — f(@:))> + XD B}, (5)
i=1 =1

to be minimized with respect to 8 = (B, ..., 0k-1)" in (3). Smoothness is
controlled by the “smoothing parameter” A > 0. Small values of A produce a
close fit to the data, while large values of X yield smooth function estimates.

Despite their simplicity P-splines based on a truncated power series ba-
sis in combination with penalty (4) are rarely used in practice, due to the
numerical instability of the highly collinear basis functions. In all available
P-spline software packages (e.g. mgcv of R, BayesX) a local B-splines basis is
used instead. There is a close relationship between B-splines and truncated
polynomials as B-splines can be computed as differences of truncated powers
(Eilers and Marx 2004). For instance B-spline basis functions of degree one
are computed as

Bj(l’, ].) = tj_Q(ZL', 1) — Qtj_l(l', ].) + tj(ll', 1) = A2t]‘($, 1),



with ¢; defined in (2.2). B-spline basis functions of degree [ are given by
Bj(w,1) = —1" A (2, 1)/ (RUD).

For non-equally spaced knots the formulas for computing B-splines are more
involved and based on so called divided differences (De Boor (2001)). Extra
knots k_y,...,k_1 left to kg and Ky, y1, ..., Kmyy right to k,, are required, so
that the truncated polynomials in the above formula are properly defined to
compute all basis functions B; close to the left and right borders. Now the
spline f may be written as

f@) =" BBilx,1).

The local basis also gives rise to alternative penalization. The widely used
approach by Eilers and Marx (1996) penalizes the sum of squared d-th order
differences

K
2
PN =X (A%8) (6)
k=d+1
were A? is the difference operator of order d. The default in most imple-

mentations (e.g. mgecv in R, BayesX) is d = 2, leading to the penalized least
squares criterion

n

PLS(B.N) =D (yi— fla)* + 1 > (A%6)°. (7)

i=1 k=d+1

The penalized least squares criteria (5) and (7) are equivalent, i.e. they
produce the same estimates, when d = [ 4+ 1 and A\, = (I!h!)\, where Ay,
is the smoothing parameter in (5) and )\, is the smoothing parameter in (7)
(Scholz 2004).

A closely related approach by O’Sullivan (1986) replaces the discrete
penalty (6) by the integral of squared second order derivatives,

P(\) = / (f"(2))? de.

While P-splines are defined on a somewhat heuristic basis, they work well
in practice and are widely used. Recently, researchers have also studied their
asymptotic properties, see e.g. Kauermann et al. (2009).
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P-splines are closely related to smoothing splines (Reinsch 1967, Green
and Silverman 1994, Hastie and Tibshirani 1990). A smoothing spline is
derived from the penalized least squares criterion

n

PLS(N) = S (s — f(:)* + A / (f"(2))? de (8)

1=1

where f is assumed to be a smooth function with two continuous derivatives.
The function f that minimizes (8) is a natural cubic spline. Smoothing
splines are special cases (with 7 = 1) of thin plate regression splines defined
for a r-dimensional covariate x (Wood 2003). The original smoothing spline
is rarely used in practice because in order to minimize (8) a knot has to be
placed at every distinct covariate value. In the extreme, there are as many
knots (and basis functions) as there are observations. As a remedy Wood
(2003) proposes a low rank (optimal) approximation to smoothing or more
generally, thin plate splines. This low rank approximation is also the default
smoother in the mgcv package of R (see below for more comments on available
software) that we use in our simulation study and the data example.

The choice of the smoothing parameter A strongly affects the resulting
fit of any P-spline. Three main approaches to choose A are available: first,
A is estimated by minimizing some goodness of fit criterion, such as AIC or
GCV (Wood 2000, Wood 2003, Wood 2004, Wood 2006b, Belitz and Lang
2008). Second, the P-spline is re-expressed as a linear mixed model, and A
is estimated via restricted maximum likelihood (REML; Ruppert, Wand,
and Carroll 2003, Wand 2003, Fahrmeir, Kneib, and Lang 2004, Kauer-
mann, Krivobokova, and Fahrmeir 2009). Finally, a fully Bayesian version
of P-splines in combination with Markov chain Monte Carlo simulation tech-
niques can be used to simultaneously estimate the regression coefficients and
the smoothing parameters (Lang and Brezger 2004, Brezger and Lang 2006,
Jullion and Lambert 2007).

For all above mentioned approaches easy to use statistical software is
available. Smoothing parameter estimation based on minimizing GCV can
be done in a very efficient, fast and stable way using the mgcv package of R,
see Wood (2006a) and Wood (2006b). Estimation via REML is supported in
the current version of mgev (without resorting to the connection with mixed
models) or within the software package BayesX (Brezger et al. 2005 and
Belitz et al. 2009). BayesX also implements the full Bayesian approach and
supports Cox proportional hazards survival models which are not covered in



the mgcv package. Cox survival models with splines can also be estimated
using the function coxph of the R package survival.

2.3 Fractional Polynomials (FPs)

FPs approximate the unknown function f by a linear combination of M
polynomials 2?7, j = 1,..., M. In ordinary polynomials the powers p; are
restricted to positive integer values, but within the FP modeling framework
non-positive and fractional values for p; are possible. A typical set of admis-
sible powers is given by p; € {—2,—1,-0.5,0,0.5,1,2,3} where z° denotes
In(x). More formally, an F'P of degree M is defined as

FPy(z) = Zﬂjhj(x),

where [y, ..., By are (regression) coefficients and h; is recursively defined as
ho (ZL’) =1

_ [ Pj # Pj-1 )
hi(z) = { hj_1(x)in(x)  pj =pj_1.

Note that this definition allows repeated powers. For instance, for M =
2,p1 # pe we obtain the fractional polynomial

FPy(x) = praP + foa??
and for M = 2,py = py,
FPy(x) = B1aP* + BoxPin(z).

FPs of degree 2, i.e. M = 2, are the default setting in all available implemen-
tations of FPs. Software for fitting additive models based on FPs is available
for the statistical computing platforms STATA (function mfp), SAS (macro
mfp8) and R (function fp of the package mfp), see Sauerbrei et al. (2006).
The R implementation is restricted to FPs of degree 2, i.e. M = 2.

An obvious limitation of the definition (9) is the requirement x > 0 due
to 2% := In(z). A covariate with negative values is automatically shifted in
implementations by x = x + d to guarantee positivity. However, estimation



results are sensitive to the choice of the origin §, as we show in simulations
and application.

For prespecified order M the regression parameters 3; and the polynomial
powers p;,j = 1,..., M are estimated by an algorithm described in Sauerbrei
and Royston (1999) and Ambler and Royston (2001), and outlined here for

FPs of order 2:

o Test the best fitting FP of order 2 against the null model using a >
distributed test statistic with 4 degrees of freedom (dfs). In case of non-
significance, the algorithm terminates and the null model is selected.

e Test the best fitting FP of order 2 against a linear fit using a x? dis-
tributed test statistic with 3 df. In case of non-significance, a linear fit
for x is assumed to be adequate and the algorithm terminates.

e Test the best fitting FP of order 2 against the best fitting FP of order
1 based on a x? distribution with 2 df. In case of significance the order
2 FP, otherwise the order 1 FP is chosen as the best fit.

In additive models with multiple covariates the algorithm is combined
with a backfitting type algorithm, see Sauerbrei and Royston (1999) for de-
tails. There are several criticisms of the above sequential testing approach
to model selection. First, the test statistics that are used do not have a
x? distribution (Sauerbrei and Royston 1999). Second, the overall type one
error of the procedure may be inflated. To date investigations of both issues
are limited (Ambler and Royston 2001).

3 Simulation study

3.1 Simulation setup

We compare FPs and P-splines in extensive simulations for continuous, bi-
nary and survival outcomes. We applied FPs with degrees M = 2 (henceforth
FP2), the default setting of FP implementations in statistical software pack-
ages, and degree M = 4 (FP4). We used the function mfp in the software
package STATA to fit the FPs. P-splines were fit to continuous and bi-
nary outcomes with the mgcv package of R (Wood 2006b) using the default
smoother, which is a low rank approximation to the smoothing spline, see
also section 2.2. We used generalized cross validation (GCV, the default in
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mgcv) and restricted maximum likelihood (REML) to select smoothing pa-
rameters. Survival models are not supported in mgcv we thus used the R
package coxph and the software BayesX (remlreg objects) to fit these mod-
els. coxph uses AIC for smoothing parameter selection, while BayesX uses
REML.

The comparison was based on data simulated from the following functions
of the covariate x that are also depicted in Figure 1:

Linear: fi(z) = —0.9z

Quadratic: fo(z) = 0.7 (x — 2.5)? (10)
Localmode:  f3(z) = 242 - exp(—27)

Doublemode:  fy(x) = 1.3 - (242 - exp(—2x) + 0.11 - 2?)

The four functions were scaled such that they all had the same range of 4
units.

For each function f; in (10), we generated outcome data y from the fol-
lowing four models for one hundred equally spaced design points z between
0.05 to 5:

i) Gaussian model y = f;(x) + &, where ¢ ~ N(0,0?). We choose four
different values for the error standard deviation: ¢ = 0.3675, 0 = 0.735,
o = 1.1025 and o = 1.47 to obtain various magnitudes of signal to noise
ratio (SNR).

ii) Binomial model y ~ B(1, ) with

7 =exp(c- f;(x))/ exp(l +c- fi(2)),

c = 1,0.75,0.5,0.25 is a scaling factor chosen to imitate the SNRs of
the Gaussian case.

iii) A survival model (similar to Bender, Augustin, and Blettner 2005),
with hazard rate A(t) = Ao(t) exp[0.5f;(z)] where the baseline hazard
Ao(t) is given by

_ focos(x)+12 z<27
Aolt) = { 2.9 v > 2

To obtain censored observations, we generated independent censoring
times C' ~ Exp(0.2).
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iv) Gaussian, Binomial and survival models with the additive predictor
n = fi(z1) + fo(z2) + f3(x3) + fa(xs), where each z; was comprised of
one hundred equally spaced points between 0.05 to 5. Error variances
or scaling factors of functions are identical to those specified in i)-iii).

For each of these settings 500 replicated data sets with four different sam-
ple sizes n = 100, 500, 1000, 2000 were simulated. In summary, we compared
the performance of the following approaches: FP2, FP4, P-splines with GCV,
REML for continuous and binary outcomes, and FP2, FP4, P-splines based
on AIC, REML for survival data.

The goodness of the fit was measured by the empirical mean squared error

MSE(f;) = 1/523 <fj(1's) - fj(x8)>2,

where summation is over all design points x4, ..., xg, with S = 100.

3.2 (Gaussian responses

Figure 2 plots average estimated functions, i.e. the mean of fj over all repli-
cations, with the true curves for the additive model iv) for o = 0.735 and
n = 100,500, 1000. Results for the single predictor models i)-iii) and other
values of o and n were similar and are not shown here but are available at

http://www.uibk.ac.at/statistics/personal/lang/publications/fp_ sim_ summary.pdf.

All estimators are unbiased for the linear and quadratic functions in (10)
for all choices of sample size, SNR and model type (single or additive pre-
dictor). FP4s and the P-spline estimators also showed very little bias for
the localmode and doublemode function. An exception is the case n = 100,
here these estimators are more biased, particularly at the modes of the func-
tions. As expected, the bias decreased for large SNR (figures not shown). A
inspection of some individual estimates (figure 3) reveals a tendency to un-
derfitting for FP4s for small sample sizes (n = 100), whereas P-splines based
on GCV (to a lesser extent also REML) tended to overfit, and produce very
unsmooth estimates. The FP2 estimates for the localmode and doublemode
function were considerably biased for all sample sizes and values of 0. The
observed patterns are also reflected in the MSE estimates (table 1). The
estimates based on FP4 resulted in a lowest log(vV MSE), followed closely
by P-splines based on GCV and REML. FP2s, however, had a considerably
higher log(vV M SE) for the localmode and doublemode function.
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Average coverage rates of 95% confidence intervals were below the nom-
inal level for the more curved functions doublemode and localmode for all
estimators (table 2). FP4 and P-splines based on GCV and REML were
closer to the nominal level (with coverage rates around 85-90%) than FP2.
The coverage decreased with sample size for FP4 and the P-splines estima-
tors, due to too narrow confidence intervals (figure 4). The undercoverage
of FP2 reflects lack of fit. For the quadratic and linear function the nominal
level was kept by the P-spline estimators whereas FPs produced conservative
confidence intervals.

3.3 Binomial responses

Overall, results for binomial responses are similar to the Gaussian case. How-
ever, we obtained a considerable number of unreliable results with the FP2
and FP4 estimators and, to a lesser extent, with the P-splines based on
GCV (figure 5), especially for small sample sizes n = 100 and n = 500. This
is illustrated by figure 5 a) which shows a particular FP4 estimate for the
doublemode function f; in (10) and scaling factor ¢ = 0.75. Results are
somewhat improved for n = 500 for all function types. The problem appears
less frequently for the quadratic and linear function. The reason for this
problematic behavior of the FPs is that the support of the design values x is
close to zero. The FP basis functions with negative power have an asymptote
at zero, and thus yield extremely high values close to zero, which distorts the
fitted functions. After shifting all x by adding one unit, the problem dis-
appears (panel b) in figure 5), although the FP based estimates still miss
important features of the exposure curves in many cases, see panel c).

The P-spline estimator based on GCV also reveals convergence problems
showing sometimes extremely rough estimated functions, see figure 5, panel
d). These problems are most pronounced for the additive model iv) with
small sample size, n = 100, but occur for all SNRs and all function types.
Remarkably, P-splines based on REML do not have convergence problems
and almost all estimates produce reasonable results (panel e).

The median log(vV MSE) values show a similar pattern to Gaussian re-
sponses (Table 1). After shifting the covariate values away from zero, results
were mostly similar for FP4, and P-splines based on GCV and REML. For
small sample size, n = 100, the greater stability of the P-splines based on
REML however results in better estimates. Of note, the MSEs are much
larger for FP2 and FP4 on the original scale (data not shown).
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The coverage rates of pointwise credible intervals are given in table 2
and illustrated in figure 4. Again, similar to the Gaussian case, FP4 has
better coverage than the other approaches even for the more curved functions
doublemode and localmode.

3.4 Survival models

Figure 6 and table 1 show average estimated functions and estimates of
log(v/ MSE) for the Cox-proportional hazards model with the additive pre-
dictor iv) and n = 100,500, 1000 (the case n = 2000 is not shown as results
were similar to the setting with n = 1000).

For small sample size, n = 100, P-splines based on AIC are very rough
and the results are not reliable. The most stable and best estimator for
small sample size are P-splines based on REML. Acceptable results are also
obtained with FP4 while FP2 shows strong bias for the doublemode and
localmode function — f3 in (10).

For sample sizes n > 500 all estimators are almost unbiased for the
quadratic and linear functions, f, and f; respectively, in 10. For the lo-
calmode and doublemode functions, FP2 estimators again show strong bias
while FP4, P-splines with AIC and REML recover the important features
of these functions. However, compared to the Gaussian and binomial out-
comes, even with FP4, AIC and REML a noticeable bias can be observed,
particularly at the modes of the functions. The best estimator for sample
size n > 500 is the P-spline based on AIC followed by FP4 and the P-spline
based on REML.

Average coverage rates of pointwise credible intervals are typically far
beyond the nominal level (table 2). Only P-splines with smoothing parameter
chosen via AIC for the quadratic and linear function produced adequate
coverage. The reason for the undercoverage of FP4 is exemplified in figure
4. We observe that undercoverage is a result of confidence intervals that
become narrower towards the center of the covariate support although the
observations are uniformly distributed over the whole range. In the center
the confidence interval almost collapses to a point. This phenomenon was not
observed for FPs with Gaussian and binomial responses. The undercoverage
of FP2 and P-splines with REML is caused by the biased estimates.
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3.5 Simulation summary

We briefly summarize our findings regarding the performance of the methods.

e Quality of fit: The performance of the P-spline based estimators and
fractional polynomials of degree 4, FP4, is similar, with FP4 resulting
in slightly lower MSE. Fractional polynomials of degree 2, FP2s, do not
adequately capture relationships that are more complex than quadratic.

e Coverage rate of confidence intervals: Coverage rates of FP4 are close
to or above the nominal level for Gaussian and binomial outcomes, but
not for survival models. Coverage rates for the P-spline estimators are
often below the nominal level for the more complex functions for all
types of outcomes. In survival models P-splines based on REML shows
undercoverage even for the less curved functions. Coverage rates of
FP2 are often below the nominal level, due to the large bias of the
estimator.

e Stability of estimators: The most stable estimator are P-splines based
on REML. Particularly for small sample sizes (n = 100) and more
complex functions, the FP estimators strongly depend on the covariate
support. P-splines with GCV and (for survival models) AIC are also
prone to unstable behavior, i.e. bumpy estimates, for small sample
sizes. Note that the similar behavior of GCV and AIC is not surprising
as both goodness of fit criteria are equivalent in large samples.

o Computing time: The mgcv function of R used in the simulations of
Gaussian and binomial responses is extremely fast, producing results
in (milli)seconds. The FP estimators are sometimes up to 200 times
slower (table 3). For survival models computing times of all estimation
procedures are similar (table 4). However, computing time is a function
of both the estimation algorithm as well as the implementation. In
particular, for coxph of R and BayesX there is room for improvement, as
coxph uses a simple grid search to find the AIC best model and BayesX
uses a standard Newton algorithm for optimization. The limitation for
fractional polynomials seems to be the computer intensive stepwise
selection type estimation algorithm.
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4 Data example

In this section we apply P-splines and FPs to data from the second Na-
tional Family Health Survey (NFHS-2) from India, conducted in 1998 and
1999 (see http://www.nfhsindia.org/). Our analysis focuses on the impact of
malnutrition in approximately 30000 children born in the 3 years preceding
the survey. The effect of malnutrition is usually measured by comparing the
anthropometric status of children in a given population to a reference pop-
ulation of well nourished children. Here we focus on stunting or insufficient
height for a given age. The outcome variable is defined as
H - MH
z2=—) (11)
o

where H refers to a child’s height at a certain age, and MH and o refer to
the median and the standard deviation of height in the reference population,
respectively. We fit the following additive model to the data

z = o+ filage) + fa(vacnumb) + fs(border) + fi(eduem)+
fs(bmimo) + fe(biage) + f7(hhs) + fs(ai) + ¢,

where fi,..., fs are unknown nonlinear functions of the child’s age (age),
the number of vaccinations after the child’s birth (vacnumb), the birth order
(border), the mother’s years of education (educm), the mother’s body mass
index (bmimo), the mother’s age at birth (biage), the household size (hhs)
and an asset index of the household’s wealth (ai). The errors € are assumed
to be i.i.d. Gaussian with common variance o2 across subjects. This model
is similar to a model used in Belitz et al. (2010), but with fewer covariates
and without considering spatial heterogeneity.

We fit model (4) with the mgcv function in R. The smoothing parameters
were estimated by GCV and REML. Since GCV and REML produced similar
results we only present those based on REML. The spline based estimates
were compared to FP2 and FP4 estimates, obtained from the mfp function
in STATA.

Figure 7 presents the estimated functions based on the three estimators
REML (solid line), FP2 (dotted lines) and FP4 (dashed lines). For REML
pointwise 95% confidence intervals are included. Overall the estimated func-
tional forms for individual variables agreed with the literature (e.g. Belitz
et al. 2010). P-splines, FP2 and FP4, produced very similar estimates of the
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effects of three variables, border, educmy and biage. However, for age, bmimo
and hhs we observed pronounced differences between the methods (figure 8).
The top row of figure 8 shows that the estimated bump around age 25-30
months obtained with the spline estimator captures a distinct feature in the
data, and is not an artefact of the method. The very narrow confidence bands
and the fact that the observations are evenly distributed over the age range
indicate that this bump is not caused by outlying observations. Moreover
the bump can be explained by a change in the reference standard used in
the computation of the outcome variable z in equation (11). Before the age
of 24 months z is obtained by comparing the children’s height to the heights
of middle class US white children. After 24 months z was computed based
on a cross-section of the overall US population, whose nutritional status is
worse than that of white middle class US children, thus causing an apparent
improvement in the nutritional status of the Indian children. However, this
change in the effect of age is missed by the FP2 and FP4 estimators as they
are not flexible enough to capture such local phenomena.

To further investigate the behavior of the three methods, we simulated
outcome variables from the model y = f(age) + ¢ and € ~ N(0,2.17), where
f(age) was the P-spline based on REML fitted model for the India dataset.
Figure 9 further highlights that FP2 and FP4 are not able to detect the
underlying structure of the effect of age on outcome.

The three methods also differ in the estimated effects for brimo and hhs,
although the differences are less pronounced. The spline based estimator
adapts better to the data revealing monotonic decreasing respectively in-
creasing effects of bmimo and hhs rather than the almost linear fits obtained
with FP2 and FP4. However, the partial residuals show that all approaches
give reasonable estimates (middle and bottom panel of figure 8).

Of note is the estimated effect of FP2 for ai, in the right bottom panel
of figure 8. This behavior of FP2 arises since the minimum of ai is negative,
and the software automatically adds a constant  to the variable to guarantee
positive values. As already mentioned FPs are not invariant to the choice of
origin of a covariate, which causes the behavior of the estimates seen in the
figure. Indeed, if we replace a? by ai + 2, and re-fit the model, this artefact
disappears, see figure 10.

Finally we point out that both approaches could be combined. The esti-
mated spline functions for vacnumb, border, educm and ai could be replaced
by the simpler and better interpretable FPs. For border, educm and ai FP4
results in a linear fit, while for vacnumb a parametric fit with basis functions
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vacnumb=2, vacnumb=?log(vacnumb) and vacnumb?® is obtained.

5 Conclusion

We compared P-splines and fractional polynomials (FPs), two widely used
smoothing techniques in empirical science, in extensive simulations and a real
data application. The simulations show that the spline-based estimators and
fractional polynomials of sufficiently large degree (we used FPs of degree 4)
performed similarly in most settings. FPs of degree 2, however, showed con-
siderable bias and consistently higher MSEs compared to all other estimators.
Moreover, the real data example revealed that very complex functional forms
can not be detected by fractional polynomials of any degree. We also showed
that FPs are prone to artefacts because of the dependence of results on the
covariate support, while P-splines based on GCV (or AIC in the survival
models) reveal sometimes wiggly estimates. The most stable estimators were
produced by P-splines based on REML for smoothing parameter selection.

Our findings suggest that P-splines are more suited to exploratory data
analysis because of their greater flexibility than FPs. The latter may be of
great value in subsequent analysis to simplify models for better interpretabil-
ity.

We see several directions for future research. Currently, FPs are estimated
in a rather ad hoc procedure that is largely in the spirit of stepwise procedures
for linear models. These procedures are not favored by statisticians because of
their rather limited theoretical support, see for instance Miller (2002). Hence
there is need for alternative estimation methods. A promising approach is a
Bayesian version of FPs that has been published recently by Sabanés Bové
and Held (2010). Another problem with FPs, that has been ignored in the
literature is the sometimes strong dependence of results on the covariate
range. A possible remedy could be a mapping of observed covariate values in
a “save” interval such that the observed problems are less likely to happen.

Although, the behavior of splines based estimators is better understood,
the best criterion or approach for smoothing parameter selection is still not
entirely clear. Our findings suggest that selection of the smoothing parameter
based on REML is more stable than GCV and AIC, however, to date no
theoretical results exist to support that finding.
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f; Gaussian Binomial Logit Survival
J " FP2 | FP4 | GCV | REML | FP2 | FP4 | GCV | REML | FP2 | FP4 | AIC | REML

100 | 0.012 | 0.012 | 0.021 | 0.018 | 0.043 | 0.042 | 0.146 | 0.074 | 0.015 | 0.015 | 4.479 0.029
500 | 0.004 | 0.002 | 0.006 | 0.004 | 0.014 | 0.011 | 0.03 0.028 0.02 0.02 0.05 0.028
h 1000 | 0.005 | 0.001 | 0.003 | 0.002 | 0.006 | 0.005 | 0.013 | 0.011 | 0.016 | 0.016 | 0.021 0.034
2000 | 0.008 | 0.001 | 0.002 | 0.001 | 0.004 | 0.003 | 0.007 | 0.004 0.022 | 0.022 0.01 0.065
100 0.07 | 0.063 | 0.072 | 0.068 | 0.265 | 0.815 | 0.338 | 0.189 | 0.041 | 0.041 | 4.488 0.047
500 | 0.038 | 0.011 | 0.021 | 0.022 0.05 | 0.048 | 0.062 | 0.057 | 0.026 | 0.026 | 0.049 0.039
b 1000 | 0.019 | 0.006 | 0.013 | 0.012 | 0.029 | 0.022 | 0.034 | 0.029 0.023 | 0.023 | 0.02 0.045
2000 | 0.02 | 0.003 | 0.008 | 0.008 | 0.015 | 0.01 | 0.019 | 0.016 0.021 | 0.021 | 0.011 | 0.066
100 | 0.308 | 0.222 | 0.21 0.251 0.39 | 0.403 | 0.409 | 0.319 | 0.153 | 0.153 | 5.115 0.12
500 | 0.193 | 0.04 | 0.057 | 0.059 | 0.108 | 0.107 | 0.134 | 0.156 0.079 | 0.079 | 0.051 0.09
Is 1000 | 0.188 | 0.02 | 0.039 0.04 0.101 | 0.032 | 0.076 | 0.082 0.086 | 0.086 | 0.02 0.082
2000 | 0.186 | 0.014 | 0.031 0.03 0.09 | 0.017 | 0.054 | 0.051 0.092 | 0.092 | 0.011 0.18
100 0.49 | 0.149 | 0.225 | 0.252 | 0.763 | 0.768 | 0.56 0.4 0.184 | 0.184 | 4.587 | 0.138
500 | 0.461 | 0.037 | 0.076 | 0.079 0.32 | 0.085 | 0.159 | 0.189 0.137 | 0.137 | 0.05 0.074
fa 1000 | 0.459 | 0.025 | 0.058 0.06 0.292 | 0.031 0.1 0.107 0.145 | 0.145 | 0.021 | 0.066
2000 | 0.458 | 0.021 | 0.049 | 0.049 | 0.289 | 0.017 | 0.062 | 0.059 0.144 | 0.144 | 0.012 | 0.187

Table 1: FEstimated median log(vV MSE) of the multivariate models with medium SNR (o = 0.735 for
Gaussian responses, scaling factor ¢ = 0.75 for Binomial outcome, scaling factor ¢ = 0.5 for survival
models). Numbers in boldface represent the respective smallest median of four algorithms for each row and
distribution.
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f n Gaussian Binomial Logit Survival
FP2 | FP4 | GOV | REML | FP2 | FP4 | GCV | REML | FP2 | FP4 | AIC | REML
100 | 0.999 | 0.999 | 0.939 | 0944 | 0.988 | 0.987 | 0.94 | 0.939
f 500 | 0.992 | 0.999 | 0.944 | 0.947 | 0.986 | 0.998 | 0.932 | 0.925
Y 71000 [ 0.973 | 0.998 0.994 | 0.996 | 093 | 0.934
2000 | 0.938 | 0.997 | 0.926 | 0.934 | 0.993 | 0.999 | 0.936 | 0.956
0.976 | 0.979 [ 0.947 | 0.968 | 0:898 [ 074 | 0.945 [ 0.956 0.935
0.98 | 0.948 | 0.964 | 0.964 | 0.973 | 0.944 | 0.953 0.944
fa | 0.944 |
0.982 | 0.939 | 0.957 | 0.957 | 0.982 | 0.946 | 0.966 0.946
0.943 | 0.958 | 0.988 | 0.95 | 0.966
f 0.931 | 0.948
3 0.965
0.965
f 0.942
4 0.972
0.977

Table 2: Additive models with medium SNR (o = 0.735 for Gaussian responses, scaling factor ¢ = 0.75 for
Binomial outcome, scaling factor ¢ = 0.5 for survival models): Average coverage rates of 95% pointwise
confidence intervals. Cells corresponding to values below a 92.5% level (undercoverage) are marked with
dark grey and values larger than a 97.5% level (overcoverage) with light grey.
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REML GCV FP2 FP4 Scale n
1.61 21.3 10.065 148.064 c=1

1.75 5.27 7.361 84.763 c=0.75 100
2.02 2.52 6.699 70.632 c=0.5

1.97 2.3 4.927 45.266 c=0.25

3.42 4.42 28.972 | 475.539 | c=1

3.07 4.24 | 25.176 | 461.989 | ¢=0.75 500
2.66 3.71 23.714 370.146 c=10.5

2.94 3.88 15.613 145.761 c=0.25

5.71 6.85 | 47.018 1060.325 | ¢ =1

4.86 7.47 | 45.826 | 684.641 c=0.75 1000
5.51 6.97 | 42.552 | 661.518 | ¢c=10.5

4.81 5.89 33.548 | 413.669 | ¢=0.25

10.61 11.37 | 156.296 | 2380.226 | c =1

8.9 11.19 | 70.122 1668.426 | ¢ = 0.75 2000
9.02 12.19 | 65.174 1317.968 | ¢ = 0.5

8.23 11.83 | 52.296 | 885.402 | ¢=0.25

Table 3: Estimation times in seconds for the logit models with additive logit-
mean structure based on 10 replications. The results are obtained on a Intel
Core2 Duo CPU E6550 processor with 2.33GHz and 3.5GB RAM storage on
a Windows XP operating system.
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REML AIC FP2 FP4 n

180.18 | 4.28 | 37.203 | 458.634 100
154.57 | 13.48 | 69.08 1007.509 | 500
217.68 | 24.66 | 110.1 1882.827 | 1000
330.4 39.25 | 173.641 | 2832.071 | 2000

Table 4: FEstimation times in seconds for Cox regression models with n =
> fi(x;) based on 10 replications. The results are obtained on a Intel Core2
Duo CPU E6550 processor with 2.33GHz and 3.5GB RAM storage on a Win-

dows XP operating system.
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Figure 8: Malnutrition in India: FEstimated effects for the age of the child
(top row), the household size (middle row) and the mothers body mass in-
dex (bottom row). From left to right the estimates correspond to P-splines
based on REML, FP2 and FPJ. Shown are the estimated functions and 95%
confidence intervals and stick plots of means plus/minus standard deviations
of the corresponding partial residuals averaged over the distinct (or rounded)
covariate values.
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Figure 10: Malnutrition in India: FEstimated effects for age based on FP2
with 95% pointwise confidence intervals. The dark shaded area corresponds
to the estimate obtained with the original covariate values. The light shaded
area is the estimate obtained for the transformed covariate, i.e. the constant
2 is added to the values of ai.
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Comparing Penalized Splines and Fractional Polynomials for Flexible Modelling of
the Effects of Continuous Predictor Variables

Abstract

P(enalized)-splines and fractional polynomials (FPs) have emerged as powerful
smoothing techniques with increasing popularity in several fields of applied research.
Both approaches provide considerable flexibility, but only limited comparative
evaluations of the performance and properties of the two methods have been
conducted to date. We thus performed extensive simulations to compare FPs of
degree 2 (FP2) and degree 4 (FP4) and P-splines that used generalized cross
validation (GCV) and restricted maximum likelihood (REML) for smoothing parameter
selection. We evaluated the ability of P-splines and FPs to recover the “true”
functional form of the association between continuous, binary and survival outcomes
and exposure for linear, quadratic and more complex, non-linear functions, using
different sample sizes and signal to noise ratios. We found that for more curved
functions FP2, the current default implementation in standard software, showed
considerably bias and consistently higher mean squared error (MSE) compared to
spline-based estimators (REML, GCV) and FP4, that performed equally well in most
simulation settings. FPs however, are prone to artefacts due to the specific choice of
the origin, while P-splines based on GCV reveal sometimes wiggly estimates in
particular for small sample sizes. Finally, we highlight the specific features of the
approaches in a real dataset.
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