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.atAbstra
tP(enalized)-splines and fra
tional polynomials (FPs) have emergedas powerful smoothing te
hniques with in
reasing popularity in several�elds of applied resear
h. Both approa
hes provide 
onsiderable �exi-bility, but only limited 
omparative evaluations of the performan
e andproperties of the two methods have been 
ondu
ted to date. We thusperformed extensive simulations to 
ompare FPs of degree 2 (FP2)and degree 4 (FP4) and P-splines that used generalized 
ross valida-tion (GCV) and restri
ted maximum likelihood (REML) for smoothingparameter sele
tion. We evaluated the ability of P-splines and FPs tore
over the �true� fun
tional form of the asso
iation between 
ontinu-ous, binary and survival out
omes and exposure for linear, quadrati
and more 
omplex, non-linear fun
tions, using di�erent sample sizesand signal to noise ratios. We found that for more 
urved fun
tionsFP2, the 
urrent default implementation in standard software, showed
onsiderably bias and 
onsistently higher mean squared error (MSE)
ompared to spline-based estimators (REML, GCV) and FP4, thatperformed equally well in most simulation settings. FPs however, areprone to artefa
ts due to the spe
i�
 
hoi
e of the origin, while P-splines based on GCV reveal sometimes wiggly estimates in parti
ularfor small sample sizes. Finally, we highlight the spe
i�
 features of theapproa
hes in a real dataset.Keywords: generalized additive models, GAMs, simulation, smooth-ing
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1 Introdu
tionNumerous 
omplex regression te
hniques are available to �exibly model thefun
tional form of a 
ontinuous 
ovariate's e�e
t on out
ome. Parti
ularlysmoothing approa
hes, that en
ompass a broad range of te
hniques and avoidassumptions of a parti
ular fun
tional form of a relationship between inde-pendent variables and out
ome have been well-established in the statisti
alliterature, see e.g. Fahrmeir and Tutz (2001), Hastie et al. (2003), Wood(2006b) and Ruppert et al. (2003).Most smoothing approa
hes �t into the framework of generalized addi-tive models (GAMs) (Hastie and Tibshirani 1990) or their extensions (e.g.Fahrmeir et al. 2004). GAMs repla
e the linear predi
tor in a generalizedlinear model (Fahrmeir and Tutz 2001) by a sum of smooth fun
tions of theindividual 
ovariates. Some of the most widely used 
hoi
es for the smoothfun
tions in GAMs are P(enalized)-splines (e.g. Fahrmeir and Tutz 2001,Wood 2006b), and fra
tional polynomials (Royston and Sauerbrei 2008).P-splines approximate an unknown fun
tion f by a polynomial splinewhi
h 
an be written as a linear 
ombination of some basis fun
tions. For�exibility, typi
ally a relatively large number of basis fun
tions is used. Toprevent over�tting a roughness penalty on the regression 
oe�
ients is used.Fra
tional polynomials (FPs) approximate f by the sum of power transfor-mations of the 
ovariates. FPs are more �exible than ordinary polynomialsas they allow negative and non-integer powers.Due to the availability of easy to use software, both, P-splines and FPshave extensively been utilized in various appli
ations (e.g. Strasak et al.2009, Eisen et al. 2004, Andre et al. 2004, Stansfeld et al. 2005, Shlipaket al. 2006, Beatty 2009, Ugarte, Goi
oa, and Militino 2009, Ellner, Seifu,and Smith 2002, Henley and Peirson 2001, Peterson et al. 2003, Fin
h et al.2007). However, despite their popularity only very limited 
omparisons ofthe performan
e and properties of the two methods have been 
ondu
ted todate. A 
omparison of P-splines, restri
ted 
ubi
 splines and FPs in Coxproportional hazards models based on a real single dataset (Govindarajuluet al. 2007) found that P-splines and restri
ted 
ubi
 splines were 
loserto ea
h other than either was to the FPs. However, the true fun
tionalrelationship of exposures and out
ome was not known. A simulation study(Royston and Sauerbrei 2005) and a 
ase study (Royston and Sauerbrei 2008)
ompared FPs to pure regression splines with an ad ho
 
hoi
e of knots,without applying penalties or adaptive knot sele
tion, thus not providing2



relevant insights.We therefore 
ompared the performan
e of P-splines and FPs in extensivesimulations and in real data to provide guidan
e to the pra
titioner. Wefo
used on assessing the ability of the estimators to re
over the nonlinearfun
tional relationship between independnet and dependent variables ratherthan on predi
tion. To be pra
ti
ally relevant, the 
omparison is based onstandard implementations of both methods (STATA for FPs, and R andBayesX for P-splines). In se
tion 2, we brie�y des
ribe GAMs, P-splines andfra
tional polynomials. In se
tion 3 we 
ompare the methods in simulateddata for 
ontinuous, binary and survival out
omes. In se
tion 4 we applyboth approa
hes to data on malnutrition in 
hildren from the National FamilyHealth Survey from India. Con
lusions and re
ommendations are presentedin se
tion 5.2 Methods2.1 Generalized additive models (GAMs)There is a large literature on �exibly modeling and estimating the e�e
t of
ontinuous 
ovariates on out
ome (e.g. Hastie, Tibshirani, and Friedman2003, Fahrmeir and Tutz 2001, Wood 2006b). The vast majority of ap-proa
hes �ts into the framework of generalized additive models (GAMs), seeHastie and Tibshirani (1990). GAMs assume that the distribution of the re-sponse variable y given 
ovariates x = (x1, . . . , xp)
′ belongs to an exponentialfamily. A link fun
tion g relates the expe
ted value µ of y to the 
ovariatesthrough

g(µ) = η = f1(x1) + . . . + fp(xp), (1)where f1, . . . , fp are known, possibly nonlinear fun
tions. The additive de-
omposition of the 
ovariate e�e
ts in (1) allows for good interpretabilityof the e�e
ts and 
ir
umvents the 
urse of dimensionality (Hastie and Tib-shirani 1990). There are two main approa
hes for modeling the fun
tions
f1, . . . , fp, lo
al polynomial regression and basis fun
tions approa
hes. Herewe fo
us on basis fun
tions approa
hes be
ause both spline based estimatorsand FPs are variants of this 
lass.The basis fun
tion approa
h assumes that an unknown fun
tion f in (1)

3




an be approximated by a linear 
ombination of basis fun
tions, B1, . . . , BK ,
f(x) =

K
∑

k=1

βkBk(x), (2)where β = (β1, . . . , βK)′ is a ve
tor of unknown regression 
oe�
ients. Typ-i
ally K is a large number to 
apture the variability of the data. Over�ttingis avoided by either a roughness penalty, that is applied to the regression
oe�
ients to ensure smoothness of (2), or alternatively, by parsimonioussele
tion of basis fun
tions using variable sele
tion methods. P-splines usea roughness penalty approa
h, while FPs use variable sele
tion methods foradaptive basis fun
tions sele
tion.In the next two subse
tions we dis
uss P-splines and FPs in more detailfor the simple model y = f(x) + ε.2.2 P-splinesP-splines as introdu
ed by Eilers and Marx (1996) approximate the unknownfun
tion f by a polynomial spline of degree l with equally spa
ed knots
xmin = κ0 < κ1 < . . . < κm−1 < κm = xmaxover the domain of x. Be
ause of the equal spa
ing of knots κj = xmin +h · j,

j = 0, . . . , m, where h = (xmax − xmin)/m. A spline has the following twoproperties:� In ea
h of the intervals [κj, κj+1], j = 0, . . . , m − 1 the spline f is apolynomial of degree l, and� at the knots κj (the interval boundaries) the spline is l − 1 times 
on-tinuously di�erentiable.A spline 
an be written in terms of a linear 
ombination of K = m + l basisfun
tions (De Boor 2001). The most widely used bases are the trun
atedpower series basis and the B-spline basis. Using a trun
ated power seriesbasis the fun
tion f is
f(x) = β0 + β1x + . . . + βlx

l +

m−1
∑

j=1

βl+jtj(x, l), (3)4



where
tj(x, l) = (x − κj)

l
+ =

{

(x − κj)
l x > κj

0 else.In a simple regression spline approa
h, the unknown regression 
oe�
ients
βk are estimated using standard inferen
e te
hniques for linear or generalizedlinear models. The 
ru
ial problem with su
h regression splines is the 
hoi
eof the number and the position of the knots. A small number of knotsmay result in a fun
tion spa
e whi
h is not �exible enough to 
apture thevariability of the data. A large number may lead to over�tting. As a remedyEilers and Marx (1996) propose to de�ne a large number of knots (usuallybetween 10 and 40) to ensure enough �exibility. Su�
ient smoothness ofthe �tted 
urve is a
hieved through a roughness penalty on the regression
oe�
ients.Using a trun
ated power series basis, over�tting is prevented using aquadrati
 ridge type penalty

P (λ) = λ

m−1
∑

j=1

β2

l+j, (4)leading to the penalized least squares 
riterion
PLS(β, λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

m−1
∑

j=1

β2

l+j (5)to be minimized with respe
t to β = (β0, . . . , βK−1)
′ in (3). Smoothness is
ontrolled by the �smoothing parameter� λ ≥ 0. Small values of λ produ
e a
lose �t to the data, while large values of λ yield smooth fun
tion estimates.Despite their simpli
ity P-splines based on a trun
ated power series ba-sis in 
ombination with penalty (4) are rarely used in pra
ti
e, due to thenumeri
al instability of the highly 
ollinear basis fun
tions. In all availableP-spline software pa
kages (e.g. mg
v of R, BayesX) a lo
al B-splines basis isused instead. There is a 
lose relationship between B-splines and trun
atedpolynomials as B-splines 
an be 
omputed as di�eren
es of trun
ated powers(Eilers and Marx 2004). For instan
e B-spline basis fun
tions of degree oneare 
omputed as

Bj(x, 1) = tj−2(x, 1) − 2tj−1(x, 1) + tj(x, 1) = ∆2tj(x, 1),5



with tj de�ned in (2.2). B-spline basis fun
tions of degree l are given by
Bj(x, l) = −1l+1∆l+1tj(x, l)/(hll!).For non-equally spa
ed knots the formulas for 
omputing B-splines are moreinvolved and based on so 
alled divided di�eren
es (De Boor (2001)). Extraknots κ−l, . . . , κ−1 left to κ0 and κm+1, . . . , κm+l right to κm are required, sothat the trun
ated polynomials in the above formula are properly de�ned to
ompute all basis fun
tions Bj 
lose to the left and right borders. Now thespline f may be written as

f(x) =
K

∑

k=1

βkBk(x, l).The lo
al basis also gives rise to alternative penalization. The widely usedapproa
h by Eilers and Marx (1996) penalizes the sum of squared d-th orderdi�eren
es
P (λ) = λ

K
∑

k=d+1

(

∆dβk

)2 (6)were ∆d is the di�eren
e operator of order d. The default in most imple-mentations (e.g. mg
v in R, BayesX) is d = 2, leading to the penalized leastsquares 
riterion
PLS(β, λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

K
∑

k=d+1

(

∆dβk

)2
. (7)The penalized least squares 
riteria (5) and (7) are equivalent, i.e. theyprodu
e the same estimates, when d = l + 1 and λtr = (l!h!)λb where λtris the smoothing parameter in (5) and λb is the smoothing parameter in (7)(S
holz 2004).A 
losely related approa
h by O'Sullivan (1986) repla
es the dis
retepenalty (6) by the integral of squared se
ond order derivatives,

P (λ) =

∫

(f ′′(x))2 dx.While P-splines are de�ned on a somewhat heuristi
 basis, they work wellin pra
ti
e and are widely used. Re
ently, resear
hers have also studied theirasymptoti
 properties, see e.g. Kauermann et al. (2009).6



P-splines are 
losely related to smoothing splines (Reins
h 1967, Greenand Silverman 1994, Hastie and Tibshirani 1990). A smoothing spline isderived from the penalized least squares 
riterion
PLS(λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

∫

(f ′′(x))2 dx (8)where f is assumed to be a smooth fun
tion with two 
ontinuous derivatives.The fun
tion f that minimizes (8) is a natural 
ubi
 spline. Smoothingsplines are spe
ial 
ases (with r = 1) of thin plate regression splines de�nedfor a r-dimensional 
ovariate x (Wood 2003). The original smoothing splineis rarely used in pra
ti
e be
ause in order to minimize (8) a knot has to bepla
ed at every distin
t 
ovariate value. In the extreme, there are as manyknots (and basis fun
tions) as there are observations. As a remedy Wood(2003) proposes a low rank (optimal) approximation to smoothing or moregenerally, thin plate splines. This low rank approximation is also the defaultsmoother in the mg
v pa
kage of R (see below for more 
omments on availablesoftware) that we use in our simulation study and the data example.The 
hoi
e of the smoothing parameter λ strongly a�e
ts the resulting�t of any P-spline. Three main approa
hes to 
hoose λ are available: �rst,
λ is estimated by minimizing some goodness of �t 
riterion, su
h as AIC orGCV (Wood 2000, Wood 2003, Wood 2004, Wood 2006b, Belitz and Lang2008). Se
ond, the P-spline is re-expressed as a linear mixed model, and λis estimated via restri
ted maximum likelihood (REML; Ruppert, Wand,and Carroll 2003, Wand 2003, Fahrmeir, Kneib, and Lang 2004, Kauer-mann, Krivobokova, and Fahrmeir 2009). Finally, a fully Bayesian versionof P-splines in 
ombination with Markov 
hain Monte Carlo simulation te
h-niques 
an be used to simultaneously estimate the regression 
oe�
ients andthe smoothing parameters (Lang and Brezger 2004, Brezger and Lang 2006,Jullion and Lambert 2007).For all above mentioned approa
hes easy to use statisti
al software isavailable. Smoothing parameter estimation based on minimizing GCV 
anbe done in a very e�
ient, fast and stable way using the mg
v pa
kage of R,see Wood (2006a) and Wood (2006b). Estimation via REML is supported inthe 
urrent version of mg
v (without resorting to the 
onne
tion with mixedmodels) or within the software pa
kage BayesX (Brezger et al. 2005 andBelitz et al. 2009). BayesX also implements the full Bayesian approa
h andsupports Cox proportional hazards survival models whi
h are not 
overed in7



the mg
v pa
kage. Cox survival models with splines 
an also be estimatedusing the fun
tion 
oxph of the R pa
kage survival.2.3 Fra
tional Polynomials (FPs)FPs approximate the unknown fun
tion f by a linear 
ombination of Mpolynomials xpj , j = 1, . . . , M . In ordinary polynomials the powers pj arerestri
ted to positive integer values, but within the FP modeling frameworknon-positive and fra
tional values for pj are possible. A typi
al set of admis-sible powers is given by pj ∈ {−2,−1,−0.5, 0, 0.5, 1, 2, 3} where x0 denotes
ln(x). More formally, an FP of degree M is de�ned as

FPM(x) =
M

∑

j=1

βjhj(x),where β1, . . . , βM are (regression) 
oe�
ients and hj is re
ursively de�ned as
h0(x) = 1

hj(x) =

{

xpj pj 6= pj−1

hj−1(x) ln(x) pj = pj−1.

(9)Note that this de�nition allows repeated powers. For instan
e, for M =
2, p1 6= p2 we obtain the fra
tional polynomial

FP2(x) = β1x
p1 + β2x

p2and for M = 2, p2 = p1,
FP2(x) = β1x

p1 + β2x
p1ln(x).FPs of degree 2, i.e. M = 2, are the default setting in all available implemen-tations of FPs. Software for �tting additive models based on FPs is availablefor the statisti
al 
omputing platforms STATA (fun
tion mfp), SAS (ma
romfp8) and R (fun
tion fp of the pa
kage mfp), see Sauerbrei et al. (2006).The R implementation is restri
ted to FPs of degree 2, i.e. M = 2.An obvious limitation of the de�nition (9) is the requirement x > 0 dueto x0 := ln(x). A 
ovariate with negative values is automati
ally shifted inimplementations by x = x + δ to guarantee positivity. However, estimation8



results are sensitive to the 
hoi
e of the origin δ, as we show in simulationsand appli
ation.For prespe
i�ed order M the regression parameters βj and the polynomialpowers pj, j = 1, . . . , M are estimated by an algorithm des
ribed in Sauerbreiand Royston (1999) and Ambler and Royston (2001), and outlined here forFPs of order 2:� Test the best �tting FP of order 2 against the null model using a χ2distributed test statisti
 with 4 degrees of freedom (dfs). In 
ase of non-signi�
an
e, the algorithm terminates and the null model is sele
ted.� Test the best �tting FP of order 2 against a linear �t using a χ2 dis-tributed test statisti
 with 3 df. In 
ase of non-signi�
an
e, a linear �tfor x is assumed to be adequate and the algorithm terminates.� Test the best �tting FP of order 2 against the best �tting FP of order1 based on a χ2 distribution with 2 df. In 
ase of signi�
an
e the order2 FP, otherwise the order 1 FP is 
hosen as the best �t.In additive models with multiple 
ovariates the algorithm is 
ombinedwith a ba
k�tting type algorithm, see Sauerbrei and Royston (1999) for de-tails. There are several 
riti
isms of the above sequential testing approa
hto model sele
tion. First, the test statisti
s that are used do not have a
χ2 distribution (Sauerbrei and Royston 1999). Se
ond, the overall type oneerror of the pro
edure may be in�ated. To date investigations of both issuesare limited (Ambler and Royston 2001).3 Simulation study3.1 Simulation setupWe 
ompare FPs and P-splines in extensive simulations for 
ontinuous, bi-nary and survival out
omes. We applied FPs with degrees M = 2 (hen
eforthFP2), the default setting of FP implementations in statisti
al software pa
k-ages, and degree M = 4 (FP4). We used the fun
tion mfp in the softwarepa
kage STATA to �t the FPs. P-splines were �t to 
ontinuous and bi-nary out
omes with the mg
v pa
kage of R (Wood 2006b) using the defaultsmoother, whi
h is a low rank approximation to the smoothing spline, seealso se
tion 2.2. We used generalized 
ross validation (GCV, the default in9



mg
v) and restri
ted maximum likelihood (REML) to sele
t smoothing pa-rameters. Survival models are not supported in mg
v we thus used the Rpa
kage 
oxph and the software BayesX (remlreg obje
ts) to �t these mod-els. 
oxph uses AIC for smoothing parameter sele
tion, while BayesX usesREML.The 
omparison was based on data simulated from the following fun
tionsof the 
ovariate x that are also depi
ted in Figure 1:Linear: f1(x) = −0.9xQuadrati
: f2(x) = 0.7 · (x − 2.5)2Lo
almode: f3(x) = 24x · exp(−2x)Doublemode: f4(x) = 1.3 · (24x · exp(−2x) + 0.11 · x2)

(10)The four fun
tions were s
aled su
h that they all had the same range of 4units.For ea
h fun
tion fj in (10), we generated out
ome data y from the fol-lowing four models for one hundred equally spa
ed design points x between0.05 to 5:i) Gaussian model y = fj(x) + ε, where ε ∼ N(0, σ2). We 
hoose fourdi�erent values for the error standard deviation: σ = 0.3675, σ = 0.735,
σ = 1.1025 and σ = 1.47 to obtain various magnitudes of signal to noiseratio (SNR).ii) Binomial model y ∼ B(1, π) with

π = exp(c · fj(x))/ exp(1 + c · fj(x)),

c = 1, 0.75, 0.5, 0.25 is a s
aling fa
tor 
hosen to imitate the SNRs ofthe Gaussian 
ase.iii) A survival model (similar to Bender, Augustin, and Blettner 2005),with hazard rate λ(t) = λ0(t) exp[0.5fj(x)] where the baseline hazard
λ0(t) is given by

λ0(t) =

{

cos(x) + 1.2 x ≤ 2π
2.2 x > 2π.To obtain 
ensored observations, we generated independent 
ensoringtimes C ∼ Exp(0.2). 10



iv) Gaussian, Binomial and survival models with the additive predi
tor
η = f1(x1) + f2(x2) + f3(x3) + f4(x4), where ea
h xj was 
omprised ofone hundred equally spa
ed points between 0.05 to 5. Error varian
esor s
aling fa
tors of fun
tions are identi
al to those spe
i�ed in i)�iii).For ea
h of these settings 500 repli
ated data sets with four di�erent sam-ple sizes n = 100, 500, 1000, 2000 were simulated. In summary, we 
omparedthe performan
e of the following approa
hes: FP2, FP4, P-splines with GCV,REML for 
ontinuous and binary out
omes, and FP2, FP4, P-splines basedon AIC, REML for survival data.The goodness of the �t was measured by the empiri
al mean squared error(MSE),

MSE(f̂j) = 1/S

S
∑

s=1

(

fj(xs) − f̂j(xs)
)2

,where summation is over all design points x1, . . . , xS, with S = 100.3.2 Gaussian responsesFigure 2 plots average estimated fun
tions, i.e. the mean of f̂j over all repli-
ations, with the true 
urves for the additive model iv) for σ = 0.735 and
n = 100, 500, 1000. Results for the single predi
tor models i)-iii) and othervalues of σ and n were similar and are not shown here but are available athttp://www.uibk.a
.at/statisti
s/personal/lang/publi
ations/fp_sim_summary.pdf.All estimators are unbiased for the linear and quadrati
 fun
tions in (10)for all 
hoi
es of sample size, SNR and model type (single or additive pre-di
tor). FP4s and the P-spline estimators also showed very little bias forthe lo
almode and doublemode fun
tion. An ex
eption is the 
ase n = 100,here these estimators are more biased, parti
ularly at the modes of the fun
-tions. As expe
ted, the bias de
reased for large SNR (�gures not shown). Ainspe
tion of some individual estimates (�gure 3) reveals a tenden
y to un-der�tting for FP4s for small sample sizes (n = 100), whereas P-splines basedon GCV (to a lesser extent also REML) tended to over�t, and produ
e veryunsmooth estimates. The FP2 estimates for the lo
almode and doublemodefun
tion were 
onsiderably biased for all sample sizes and values of σ. Theobserved patterns are also re�e
ted in the MSE estimates (table 1). Theestimates based on FP4 resulted in a lowest log(

√
MSE), followed 
loselyby P-splines based on GCV and REML. FP2s, however, had a 
onsiderablyhigher log(

√
MSE) for the lo
almode and doublemode fun
tion.11



Average 
overage rates of 95% 
on�den
e intervals were below the nom-inal level for the more 
urved fun
tions doublemode and lo
almode for allestimators (table 2). FP4 and P-splines based on GCV and REML were
loser to the nominal level (with 
overage rates around 85-90%) than FP2.The 
overage de
reased with sample size for FP4 and the P-splines estima-tors, due to too narrow 
on�den
e intervals (�gure 4). The under
overageof FP2 re�e
ts la
k of �t. For the quadrati
 and linear fun
tion the nominallevel was kept by the P-spline estimators whereas FPs produ
ed 
onservative
on�den
e intervals.3.3 Binomial responsesOverall, results for binomial responses are similar to the Gaussian 
ase. How-ever, we obtained a 
onsiderable number of unreliable results with the FP2and FP4 estimators and, to a lesser extent, with the P-splines based onGCV (�gure 5), espe
ially for small sample sizes n = 100 and n = 500. Thisis illustrated by �gure 5 a) whi
h shows a parti
ular FP4 estimate for thedoublemode fun
tion f4 in (10) and s
aling fa
tor c = 0.75. Results aresomewhat improved for n = 500 for all fun
tion types. The problem appearsless frequently for the quadrati
 and linear fun
tion. The reason for thisproblemati
 behavior of the FPs is that the support of the design values x is
lose to zero. The FP basis fun
tions with negative power have an asymptoteat zero, and thus yield extremely high values 
lose to zero, whi
h distorts the�tted fun
tions. After shifting all x by adding one unit, the problem dis-appears (panel b) in �gure 5), although the FP based estimates still missimportant features of the exposure 
urves in many 
ases, see panel 
).The P-spline estimator based on GCV also reveals 
onvergen
e problemsshowing sometimes extremely rough estimated fun
tions, see �gure 5, paneld). These problems are most pronoun
ed for the additive model iv) withsmall sample size, n = 100, but o

ur for all SNRs and all fun
tion types.Remarkably, P-splines based on REML do not have 
onvergen
e problemsand almost all estimates produ
e reasonable results (panel e).The median log(
√

MSE) values show a similar pattern to Gaussian re-sponses (Table 1). After shifting the 
ovariate values away from zero, resultswere mostly similar for FP4, and P-splines based on GCV and REML. Forsmall sample size, n = 100, the greater stability of the P-splines based onREML however results in better estimates. Of note, the MSEs are mu
hlarger for FP2 and FP4 on the original s
ale (data not shown).12



The 
overage rates of pointwise 
redible intervals are given in table 2and illustrated in �gure 4. Again, similar to the Gaussian 
ase, FP4 hasbetter 
overage than the other approa
hes even for the more 
urved fun
tionsdoublemode and lo
almode.3.4 Survival modelsFigure 6 and table 1 show average estimated fun
tions and estimates of
log(

√
MSE) for the Cox-proportional hazards model with the additive pre-di
tor iv) and n = 100, 500, 1000 (the 
ase n = 2000 is not shown as resultswere similar to the setting with n = 1000).For small sample size, n = 100, P-splines based on AIC are very roughand the results are not reliable. The most stable and best estimator forsmall sample size are P-splines based on REML. A

eptable results are alsoobtained with FP4 while FP2 shows strong bias for the doublemode andlo
almode fun
tion −f3 in (10).For sample sizes n ≥ 500 all estimators are almost unbiased for thequadrati
 and linear fun
tions, f2 and f1 respe
tively, in 10. For the lo-
almode and doublemode fun
tions, FP2 estimators again show strong biaswhile FP4, P-splines with AIC and REML re
over the important featuresof these fun
tions. However, 
ompared to the Gaussian and binomial out-
omes, even with FP4, AIC and REML a noti
eable bias 
an be observed,parti
ularly at the modes of the fun
tions. The best estimator for samplesize n ≥ 500 is the P-spline based on AIC followed by FP4 and the P-splinebased on REML.Average 
overage rates of pointwise 
redible intervals are typi
ally farbeyond the nominal level (table 2). Only P-splines with smoothing parameter
hosen via AIC for the quadrati
 and linear fun
tion produ
ed adequate
overage. The reason for the under
overage of FP4 is exempli�ed in �gure4. We observe that under
overage is a result of 
on�den
e intervals thatbe
ome narrower towards the 
enter of the 
ovariate support although theobservations are uniformly distributed over the whole range. In the 
enterthe 
on�den
e interval almost 
ollapses to a point. This phenomenon was notobserved for FPs with Gaussian and binomial responses. The under
overageof FP2 and P-splines with REML is 
aused by the biased estimates.

13



3.5 Simulation summaryWe brie�y summarize our �ndings regarding the performan
e of the methods.� Quality of �t: The performan
e of the P-spline based estimators andfra
tional polynomials of degree 4, FP4, is similar, with FP4 resultingin slightly lower MSE. Fra
tional polynomials of degree 2, FP2s, do notadequately 
apture relationships that are more 
omplex than quadrati
.� Coverage rate of 
on�den
e intervals: Coverage rates of FP4 are 
loseto or above the nominal level for Gaussian and binomial out
omes, butnot for survival models. Coverage rates for the P-spline estimators areoften below the nominal level for the more 
omplex fun
tions for alltypes of out
omes. In survival models P-splines based on REML showsunder
overage even for the less 
urved fun
tions. Coverage rates ofFP2 are often below the nominal level, due to the large bias of theestimator.� Stability of estimators: The most stable estimator are P-splines basedon REML. Parti
ularly for small sample sizes (n = 100) and more
omplex fun
tions, the FP estimators strongly depend on the 
ovariatesupport. P-splines with GCV and (for survival models) AIC are alsoprone to unstable behavior, i.e. bumpy estimates, for small samplesizes. Note that the similar behavior of GCV and AIC is not surprisingas both goodness of �t 
riteria are equivalent in large samples.� Computing time: The mg
v fun
tion of R used in the simulations ofGaussian and binomial responses is extremely fast, produ
ing resultsin (milli)se
onds. The FP estimators are sometimes up to 200 timesslower (table 3). For survival models 
omputing times of all estimationpro
edures are similar (table 4). However, 
omputing time is a fun
tionof both the estimation algorithm as well as the implementation. Inparti
ular, for 
oxph of R and BayesX there is room for improvement, as
oxph uses a simple grid sear
h to �nd the AIC best model and BayesXuses a standard Newton algorithm for optimization. The limitation forfra
tional polynomials seems to be the 
omputer intensive stepwisesele
tion type estimation algorithm.
14



4 Data exampleIn this se
tion we apply P-splines and FPs to data from the se
ond Na-tional Family Health Survey (NFHS-2) from India, 
ondu
ted in 1998 and1999 (see http://www.nfhsindia.org/). Our analysis fo
uses on the impa
t ofmalnutrition in approximately 30000 
hildren born in the 3 years pre
edingthe survey. The e�e
t of malnutrition is usually measured by 
omparing theanthropometri
 status of 
hildren in a given population to a referen
e pop-ulation of well nourished 
hildren. Here we fo
us on stunting or insu�
ientheight for a given age. The out
ome variable is de�ned as
z =

H − MH

σ
, (11)where H refers to a 
hild's height at a 
ertain age, and MH and σ refer tothe median and the standard deviation of height in the referen
e population,respe
tively. We �t the following additive model to the data

z = β0 + f1(age) + f2(vacnumb) + f3(border) + f4(educm)+

f5(bmimo) + f6(biage) + f7(hhs) + f8(ai) + ε,where f1, . . . , f8 are unknown nonlinear fun
tions of the 
hild's age (age),the number of va

inations after the 
hild's birth (vacnumb), the birth order(border), the mother's years of edu
ation (educm), the mother's body massindex (bmimo), the mother's age at birth (biage), the household size (hhs)and an asset index of the household's wealth (ai). The errors ε are assumedto be i.i.d. Gaussian with 
ommon varian
e σ2 a
ross subje
ts. This modelis similar to a model used in Belitz et al. (2010), but with fewer 
ovariatesand without 
onsidering spatial heterogeneity.We �t model (4) with the mg
v fun
tion in R. The smoothing parameterswere estimated by GCV and REML. Sin
e GCV and REML produ
ed similarresults we only present those based on REML. The spline based estimateswere 
ompared to FP2 and FP4 estimates, obtained from the mfp fun
tionin STATA.Figure 7 presents the estimated fun
tions based on the three estimatorsREML (solid line), FP2 (dotted lines) and FP4 (dashed lines). For REMLpointwise 95% 
on�den
e intervals are in
luded. Overall the estimated fun
-tional forms for individual variables agreed with the literature (e.g. Belitzet al. 2010). P-splines, FP2 and FP4, produ
ed very similar estimates of the15



e�e
ts of three variables, border, educmy and biage. However, for age, bmimoand hhs we observed pronoun
ed di�eren
es between the methods (�gure 8).The top row of �gure 8 shows that the estimated bump around age 25-30months obtained with the spline estimator 
aptures a distin
t feature in thedata, and is not an artefa
t of the method. The very narrow 
on�den
e bandsand the fa
t that the observations are evenly distributed over the age rangeindi
ate that this bump is not 
aused by outlying observations. Moreoverthe bump 
an be explained by a 
hange in the referen
e standard used inthe 
omputation of the out
ome variable z in equation (11). Before the ageof 24 months z is obtained by 
omparing the 
hildren's height to the heightsof middle 
lass US white 
hildren. After 24 months z was 
omputed basedon a 
ross-se
tion of the overall US population, whose nutritional status isworse than that of white middle 
lass US 
hildren, thus 
ausing an apparentimprovement in the nutritional status of the Indian 
hildren. However, this
hange in the e�e
t of age is missed by the FP2 and FP4 estimators as theyare not �exible enough to 
apture su
h lo
al phenomena.To further investigate the behavior of the three methods, we simulatedout
ome variables from the model y = f(age) + ε and ε ∼ N(0, 2.17), where
f(age) was the P-spline based on REML �tted model for the India dataset.Figure 9 further highlights that FP2 and FP4 are not able to dete
t theunderlying stru
ture of the e�e
t of age on out
ome.The three methods also di�er in the estimated e�e
ts for bmimo and hhs,although the di�eren
es are less pronoun
ed. The spline based estimatoradapts better to the data revealing monotoni
 de
reasing respe
tively in-
reasing e�e
ts of bmimo and hhs rather than the almost linear �ts obtainedwith FP2 and FP4. However, the partial residuals show that all approa
hesgive reasonable estimates (middle and bottom panel of �gure 8).Of note is the estimated e�e
t of FP2 for ai, in the right bottom panelof �gure 8. This behavior of FP2 arises sin
e the minimum of ai is negative,and the software automati
ally adds a 
onstant δ to the variable to guaranteepositive values. As already mentioned FPs are not invariant to the 
hoi
e oforigin of a 
ovariate, whi
h 
auses the behavior of the estimates seen in the�gure. Indeed, if we repla
e ai by ai + 2, and re-�t the model, this artefa
tdisappears, see �gure 10.Finally we point out that both approa
hes 
ould be 
ombined. The esti-mated spline fun
tions for vacnumb, border, educm and ai 
ould be repla
edby the simpler and better interpretable FPs. For border, educm and ai FP4results in a linear �t, while for vacnumb a parametri
 �t with basis fun
tions16



vacnumb−2, vacnumb−2 log(vacnumb) and vacnumb3 is obtained.5 Con
lusionWe 
ompared P-splines and fra
tional polynomials (FPs), two widely usedsmoothing te
hniques in empiri
al s
ien
e, in extensive simulations and a realdata appli
ation. The simulations show that the spline-based estimators andfra
tional polynomials of su�
iently large degree (we used FPs of degree 4)performed similarly in most settings. FPs of degree 2, however, showed 
on-siderable bias and 
onsistently higher MSEs 
ompared to all other estimators.Moreover, the real data example revealed that very 
omplex fun
tional forms
an not be dete
ted by fra
tional polynomials of any degree. We also showedthat FPs are prone to artefa
ts be
ause of the dependen
e of results on the
ovariate support, while P-splines based on GCV (or AIC in the survivalmodels) reveal sometimes wiggly estimates. The most stable estimators wereprodu
ed by P-splines based on REML for smoothing parameter sele
tion.Our �ndings suggest that P-splines are more suited to exploratory dataanalysis be
ause of their greater �exibility than FPs. The latter may be ofgreat value in subsequent analysis to simplify models for better interpretabil-ity.We see several dire
tions for future resear
h. Currently, FPs are estimatedin a rather ad ho
 pro
edure that is largely in the spirit of stepwise pro
eduresfor linear models. These pro
edures are not favored by statisti
ians be
ause oftheir rather limited theoreti
al support, see for instan
e Miller (2002). Hen
ethere is need for alternative estimation methods. A promising approa
h is aBayesian version of FPs that has been published re
ently by Sabanés Bovéand Held (2010). Another problem with FPs, that has been ignored in theliterature is the sometimes strong dependen
e of results on the 
ovariaterange. A possible remedy 
ould be a mapping of observed 
ovariate values ina �save� interval su
h that the observed problems are less likely to happen.Although, the behavior of splines based estimators is better understood,the best 
riterion or approa
h for smoothing parameter sele
tion is still notentirely 
lear. Our �ndings suggest that sele
tion of the smoothing parameterbased on REML is more stable than GCV and AIC, however, to date notheoreti
al results exist to support that �nding.
17
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tions used for simulations.
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fj n

Gaussian Binomial Logit SurvivalFP2 FP4 GCV REML FP2 FP4 GCV REML FP2 FP4 AIC REML
f1

100 0.012 0.012 0.021 0.018 0.043 0.042 0.146 0.074 0.015 0.015 4.479 0.029500 0.004 0.002 0.006 0.004 0.014 0.011 0.03 0.028 0.02 0.02 0.05 0.0281000 0.005 0.001 0.003 0.002 0.006 0.005 0.013 0.011 0.016 0.016 0.021 0.0342000 0.008 0.001 0.002 0.001 0.004 0.003 0.007 0.004 0.022 0.022 0.01 0.065

f2

100 0.07 0.063 0.072 0.068 0.265 0.815 0.338 0.189 0.041 0.041 4.488 0.047500 0.038 0.011 0.021 0.022 0.05 0.048 0.062 0.057 0.026 0.026 0.049 0.0391000 0.019 0.006 0.013 0.012 0.029 0.022 0.034 0.029 0.023 0.023 0.02 0.0452000 0.02 0.003 0.008 0.008 0.015 0.01 0.019 0.016 0.021 0.021 0.011 0.066

f3

100 0.308 0.222 0.21 0.251 0.39 0.403 0.409 0.319 0.153 0.153 5.115 0.12500 0.193 0.04 0.057 0.059 0.108 0.107 0.134 0.156 0.079 0.079 0.051 0.091000 0.188 0.02 0.039 0.04 0.101 0.032 0.076 0.082 0.086 0.086 0.02 0.0822000 0.186 0.014 0.031 0.03 0.09 0.017 0.054 0.051 0.092 0.092 0.011 0.18

f4

100 0.49 0.149 0.225 0.252 0.763 0.768 0.56 0.4 0.184 0.184 4.587 0.138500 0.461 0.037 0.076 0.079 0.32 0.085 0.159 0.189 0.137 0.137 0.05 0.0741000 0.459 0.025 0.058 0.06 0.292 0.031 0.1 0.107 0.145 0.145 0.021 0.0662000 0.458 0.021 0.049 0.049 0.289 0.017 0.062 0.059 0.144 0.144 0.012 0.187Table 1: Estimated median log(
√

MSE) of the multivariate models with medium SNR (σ = 0.735 forGaussian responses, s
aling fa
tor c = 0.75 for Binomial out
ome, s
aling fa
tor c = 0.5 for survivalmodels). Numbers in boldfa
e represent the respe
tive smallest median of four algorithms for ea
h row anddistribution.
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f n

Gaussian Binomial Logit SurvivalFP2 FP4 GCV REML FP2 FP4 GCV REML FP2 FP4 AIC REML
f1

100 0.999 0.999 0.939 0.944 0.988 0.987 0.94 0.939 0.829 0.829 0.94 0.875500 0.992 0.999 0.944 0.947 0.986 0.998 0.932 0.925 0.264 0.663 0.932 0.4941000 0.973 0.998 0.92 0.922 0.994 0.996 0.93 0.934 0.087 0.229 0.93 0.3192000 0.938 0.997 0.926 0.934 0.993 0.999 0.936 0.956 0.001 0.011 0.936 0.192

f2

100 0.976 0.979 0.947 0.968 0.893 0.74 0.945 0.956 0.673 0.625 0.945 0.935500 0.9 0.98 0.948 0.964 0.964 0.973 0.944 0.953 0.537 0.644 0.944 0.6811000 0.823 0.982 0.939 0.957 0.957 0.982 0.946 0.966 0.421 0.516 0.946 0.4422000 0.705 0.984 0.924 0.943 0.958 0.988 0.95 0.966 0.296 0.356 0.95 0.24

f3

100 0.758 0.83 0.82 0.696 0.871 0.827 0.837 0.798 0.424 0.406 0.837 0.685500 0.419 0.918 0.9 0.893 0.931 0.948 0.871 0.803 0.316 0.59 0.871 0.6381000 0.292 0.914 0.858 0.866 0.774 0.965 0.92 0.89 0.23 0.487 0.92 0.4842000 0.2 0.88 0.786 0.802 0.54 0.965 0.895 0.892 0.158 0.334 0.895 0.216

f4

100 0.764 0.918 0.9 0.878 0.725 0.717 0.874 0.842 0.42 0.484 0.874 0.767500 0.418 0.929 0.869 0.871 0.742 0.942 0.908 0.865 0.394 0.64 0.908 0.771000 0.279 0.903 0.818 0.83 0.64 0.972 0.908 0.889 0.35 0.565 0.908 0.6232000 0.199 0.768 0.741 0.756 0.498 0.977 0.884 0.89 0.322 0.429 0.884 0.252Table 2: Additive models with medium SNR(σ = 0.735 for Gaussian responses, s
aling fa
tor c = 0.75 forBinomial out
ome, s
aling fa
tor c = 0.5 for survival models): Average 
overage rates of 95% pointwise
on�den
e intervals. Cells 
orresponding to values below a 92.5% level (under
overage) are marked withdark grey and values larger than a 97.5% level (over
overage) with light grey.
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on�den
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tion.
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Figure 5: Binomial additive model, s
aling fa
tor c = 0.75: Panel a): FP4estimate for a parti
ular repli
ation. Panel b): FP4 estimate based on a shiftof 
ovariate values by one unit. Panels 
)-e): Some individual fun
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REML GCV FP2 FP4 S
ale n1.61 21.3 10.065 148.064 c = 1 1001.75 5.27 7.361 84.763 c = 0.752.02 2.52 6.699 70.632 c = 0.51.97 2.3 4.927 45.266 c = 0.253.42 4.42 28.972 475.539 c = 1 5003.07 4.24 25.176 461.989 c = 0.752.66 3.71 23.714 370.146 c = 0.52.94 3.88 15.613 145.761 c = 0.255.71 6.85 47.018 1060.325 c = 1 10004.86 7.47 45.826 684.641 c = 0.755.51 6.97 42.552 661.518 c = 0.54.81 5.89 33.548 413.669 c = 0.2510.61 11.37 156.296 2380.226 c = 1 20008.9 11.19 70.122 1668.426 c = 0.759.02 12.19 65.174 1317.968 c = 0.58.23 11.83 52.296 885.402 c = 0.25Table 3: Estimation times in se
onds for the logit models with additive logit-mean stru
ture based on 10 repli
ations. The results are obtained on a IntelCore2 Duo CPU E6550 pro
essor with 2.33GHz and 3.5GB RAM storage ona Windows XP operating system.
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REML AIC FP2 FP4 n180.18 4.28 37.203 458.634 100154.57 13.48 69.08 1007.509 500217.68 24.66 110.1 1882.827 1000330.4 39.25 173.641 2832.071 2000Table 4: Estimation times in se
onds for Cox regression models with η =
∑

fi(xi) based on 10 repli
ations. The results are obtained on a Intel Core2Duo CPU E6550 pro
essor with 2.33GHz and 3.5GB RAM storage on a Win-dows XP operating system.
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Comparing Penalized Splines and Fractional Polynomials for Flexible Modelling of 
the Effects of Continuous Predictor Variables 
 
Abstract 
 
P(enalized)-splines and fractional polynomials (FPs) have emerged as powerful 
smoothing techniques with increasing popularity in several fields of applied research. 
Both approaches provide considerable flexibility, but only limited comparative 
evaluations of the performance and properties of the two methods have been 
conducted to date.  We thus performed extensive simulations to compare FPs of 
degree 2 (FP2) and degree 4 (FP4) and P-splines that used generalized cross 
validation (GCV) and restricted maximum likelihood (REML) for smoothing parameter 
selection. We evaluated the ability of P-splines and FPs to recover the “true” 
functional form of the association between  continuous, binary and survival outcomes 
and exposure for linear,  quadratic and more complex, non-linear functions, using 
different sample sizes and signal to noise ratios. We found that for more curved 
functions FP2, the current default implementation in standard software, showed 
considerably bias and consistently higher mean squared error (MSE) compared to   
spline-based estimators (REML, GCV) and FP4, that performed equally well in most 
simulation settings. FPs however, are prone to artefacts due to the specific choice of 
the origin, while P-splines based on GCV reveal sometimes wiggly estimates in 
particular for small sample sizes. Finally, we highlight the specific features of the 
approaches in a real dataset. 
 
 
 
 
 
 
 
 
 
 
ISSN 1993-4378 (Print) 
ISSN 1993-6885 (Online) 


