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Abstract

In this paper, we address the estimation of the parameters of the two dimensional

sinusoidal signal model. The proposed method is the two dimensional extension of the one

dimensional noise space decomposition method. The proposed methods provide consistent

estimators of the unknown parameters and they are non-iterative in nature. We propose a

pairing algorithm also, which helps in identifying the frequency pair. It is observed that the

mean squares errors of the proposed estimators are quite close to the asymptotic variance

of the least squares estimators.

Key Words and Phrases: Sinusoidal model, Prony’s algorithm, Monte Carlo Simulation;

Strong Consistency.

1 Introduction

In this paper, we consider the following two-dimensional sinusoidal model

y(s, t) =
p∑

k=1

(
A0

k cos(sλ0
k + tµ0

k) + B0
k sin(sλ0

k + tµ0
k)
)

+ e(s, t) (1)

s = 1, . . . ,M ; t = 1, . . . , N,

where A0
ks and B0

ks are the unknown amplitudes, λ0
ks and µ0

ks are the unknown frequencies

and λ0
k, µ

0
k ∈ (0, π). The additive component {e(s, t)} is from a independent and identically

distributed (i.i.d.) random field, and the number of components p is assumed to be known.

Given a sample {y(s, t), s = 1, . . . ,M ; t = 1, . . . , N}, the problem is to estimate A0
k, B0

k, λ0
k

and µ0
k, k = 1, . . . , p.

The first term on the right hand side of (1) is known as the signal component. The detection

and estimation of the signal component in presence of additive noise is an important and
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Figure 1: The image plot of a simulated

dataset.
Figure 2: The image Plot of a real dataset.

classical problem in Statistical Signal Processing. It is observed in Zhang and Mandrekar

(2001) and in Yuan and Subba Rao (1993) that such models can be used in modeling black

and white (BW) regular textures. Figure 1 represents the 2-D image plot of simulated y(s, t)

whose grey levels at (s, t) is proportional to the value of y(s, t). Our problem is to extract

the regular texture from the contaminated one. Figure 2 represents the image plot of a real

texture. The data given in Figure 2 have been analyzed by Nandi, Prasad and Kundu (2010)

quite effectively using model (1). The best estimator, as expected, is the least squares estimator

(LSE). The LSEs are strongly consistent and asymptotically normally distributed. But it is

well known that finding the least square estimators of the frequencies is a numerically difficult

problem and the procedure tends to be computationally intensive. The function required to be

optimized is highly non-linear in its parameters even in case of one dimensional model and one

needs to use an iterative procedure. Due to the presence of several local minima, convergence

might be a tricky problem. Recently, Nandi, Prasad and Kundu (2010) proposed an efficient

algorithm to estimate the unknown parameters of (1) which provides estimators asymptotically

equivalent to the least squares estimators. In this paper, we develop a non iterative procedure

to estimate the unknown frequencies of model (1) extending the one-dimensional (1-D) noise

space decomposition (NSD) method proposed by Kundu and Mitra (1995). The proposed two

dimensional (2-D) NSD method provides consistent estimators of the unknown frequencies.

Zhang and Mandrekar (2001), Kundu and Gupta (1998), Nandi and Kundu (1999) and

Bansal, Hamedani and Zhang (1999) considered model (1) with B0
k = 0, whereas Zhang (1991)

considered the model with sine term only i.e. with A0
k = 0, and with i.i.d. errors. This is a basic

model in many fields, such as antennae array processing, geophysical perception, biomedical

spectral analysis etc.
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Kundu and Gupta (1998) and Bansal, Hamedani and Zhang (1999) assumed the errors to be

i.i.d. and obtained the strong consistency and the asymptotic normality of the LSEs. Bansal,

Hamedani and Zhang (1999) obtained some sufficient conditions on the non-linear function

(deterministic part) under which the LSEs are strongly consistent and asymptotically normally

distributed. These sufficient conditions are satisfied by harmonic type functions, which are also

of interest in one dimensional models where the sufficient conditions provided by Wu (1981)

and Jennrich (1969) are not satisfied. Kundu and Gupta (1998) obtained the theoretical results

when min(M,N) → ∞, whereas Bansal, Hamedani and Zhang (1999) proved the same results

when MN → ∞. Zhang (1991) showed that a 2-D ARMA process is an appropriate model

of 2-D sinusoids in white noise and presented a time domain analysis technique for resolving

several closely spaced 2-D sinusoids in white noise. In Nandi and Kundu (1999), the errors

are finite order 2-D moving average process and the error variance is finite and they mainly

considered the LSEs of the different parameters and study their large sample properties.

The organization of this paper is as follows. Some preliminary ideas are given in section 2.

Here we provide a different formulation of model (1) and briefly discuss the Prony’s estimators

and its extension in two dimension. The 2-D NSD method for model (1) is discussed in section

3. Two pairing algorithms are proposed in section 4. The consistency results of the proposed

estimators are provided in section 5. Numerical results are provided in section 6 and finally we

conclude the paper in section 7.

2 Preliminaries

In this section, we first provide an equivalent formulation of the signal component of model (1)

using complex exponentials. Then, we briefly discuss the Prony’s method, which was proposed

in 1795, to find the non-linear parameters on a similar one-dimensional model in noiseless

situation.

We write model (1) as y(s, t) = m(s, t) + e(s, t), where m(s, t) is the signal component.

Then we observe that using complex exponentials, m(s, t) can be written as

m(s, t) =
2p∑

k=1

c0
ke

i(sγ0

k
+tδ0

k
) (2)

with

i =
√
−1, C2k =

A0
k + iB0

k

2
, C2k−1 =

A0
k − iB0

k

2
, k = 1, . . . , p;

γ2k = −λk, γ2k−1 = λk, δ2k = −µk, δ2k−1 = µk, k = 1, . . . , p.

Now γ0
k , δ0

k ∈ (−π, π)\{0} and c0
k, k = 1, . . . , 2p are complex-valued. This form is quite useful

in tackling the technical details.
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2.1 Different Other Estimators

The LSE of the unknown parameters are obtained by minimizing the following residual sum of

squares with respect to unknown parameters Ak, Bk λk and µk, k = 1, . . . , p.

M∑

s=1

N∑

t=1

(
y(s, t) −

p∑

k=1

[Ak cos(sλk + tµk) + Bk sin(sλk + tµk)]

)2

.

In section 6, we compare the LSE and another estimator, known as approximate LSE (ALSE)

with the proposed NSD estimators. The ALSE of λk and µk, k = 1, . . . , p are obtained by

maximizing the 2-D periodogram function defined as follows;

I(λ, µ) =
1

MN

∣∣∣∣∣

M∑

s=1

N∑

t=1

y(s, t)e−j(sλ+tµ)

∣∣∣∣∣

2

.

The maximization is done locally and sequentially under the constraints

|A0
1|2 + |B0

1 |2 ≥ |A0
2|2 + |B0

2 |2 ≥ · · · ≥ |A0
p|2 + |B0

p |2.

required to resolve the identifiability issues. Once the non-linear frequencies are obtained,

corresponding linear parameters Aks and Bks are estimated as

Ãk =
2

MN

M∑

s=1

N∑

t=1

y(s, t) cos(sλ̃k + tµ̃k),

B̃k =
2

MN

M∑

s=1

N∑

t=1

y(s, t) sin(sλ̃k + tµ̃k),

where λ̃k and µ̃k are the ALSEs of λk and µk respectively. The ALSE’s are asymptotically

equivalent to the LSE’s with the same rate of convergence (Kundu and Nandi; 2003).

2.2 Prony’s Method

Prony’s (1795) idea of fitting the sum of exponentials to the data has been extensively used

in Signal Processing and Numerical Analysis. The method is described in several text books

(Barrodale and Oleski; 1981, Kay; 1988) in details. The proposed 2-D NSD method is based

on 1-D NSD method and the later uses some concepts of Prony’s method. So we describe it

here briefly. Suppose m1(1), . . . ,m1(N) are N data points from

m1(t) =
q∑

k=1

αke
jβkt, t = 1, . . . , N where βi 6= βk, i 6= k,
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as Prony’s method was proposed for noiseless data. Prony observed that there exists q + 1

constants, say, g1, . . . , gq+1 such that it satisfies

g1m1(1) + g2m1(2) + · · · + gq+1m1(q + 1) = 0

g1m1(2) + g2m1(3) + · · · + gq+1m1(q + 2) = 0
...

...
...

...

g1m1(N − q) + g2m1(N − q + 1) + · · · + gq+1m1(N) = 0

and there is a one - one correspondence between g = (g1, . . . , gq+1) and β = (β1, . . . , βq) subject

to the condition
∑q+1

i=1 g2
i = 1 and g1 > 0. Then the following q-degree polynomial

g1 + g2x
2 + · · · + gq+1x

q = 0

has roots eiβ1 , eiβ2 , . . . , eiβq . Thus β1, . . . , βq can be estimated once g1, . . . , gq+1 are estimated.

It is also observed that gks are independent of α1, . . . , αq, k = 1, . . . , q. Since Prony’s algorithm

is applicable to noiseless data, several problem specific adoptions have been considered and the

method can be used to estimate the starting values of the nonlinear parameters of any iterative

scheme.

The above idea can be extended for the 2-D case also. We concentrate on the form (2) of

m(s, t). We write the signal component {m(s, t), s = 1, . . . ,M ; t = 1, . . . , N} of the model (1)

in the following matrix form




m(1, 1) · · · m(1, N)
...

... · · ·
m(M, 1) · · · m(M,N)


 = MS, (say). (3)

Note that there exists a vector a = (a1, . . . , a2p+1), with |a|2 = 1 and a1 > 0, such that




m(1, 1) · · · m(1, N)
...

... · · ·
m(M, 1) · · · m(M,N)







a1 0 · · · 0
... a1 · · · ...
...

...
...

...

a2p+1
... · · · 0

0 a2p+1 · · · a1
... 0 · · · ...

0 0 · · · a2p+1




= 0 (4)

= MSA, (say).
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Similarly there exists a vector b = (b1, . . . , b2p+1), with |b|2 = 1 and b1 > 0, such that




b1 0 · · · 0
... b1 · · · ...
...

...
...

...

b2p+1
... · · · 0

0 b2p+1 · · · b1
... 0 · · · ...

0 0 · · · b2p+1







m(1, 1) · · · m(1, N)
...

... · · ·
m(M, 1) · · · m(M,N)


 = 0

= BMS, (say).

Consider the two polynomial equations

B1(z) = a1 + a2z + · · · + a2p+1z
2p = 0, (5)

B2(z) = b1 + b2z + · · · + b2p+1z
2p = 0, (6)

then the equation (5) has the roots eiγ1 , . . . , eiγ2p and the equation (6) has the roots eiδ1 , . . . , eiδ2p .

Thus the roots are basically in the form exp(±iµk).

3 Two-Dimensional NSD Method

In this section first we propose the 2-D NSD method to estimate the non-linear frequencies of

the 2-D sinusoidal model (1). Like the Prony’s method presented in section 2, we will use the

form (2) for developing the algorithm. The proposed method which is basically an extension

of 1-D NSD method to two-dimension, is as follows.

From the sth row of the data matrix Y, described in equation (3), construct the matrix As

for any N − 2p ≥ L ≥ 2p as follows,

As =




y(s, 1) · · · y(s, L + 1)
...

...
...

y(s,N − L) · · · y(s,N)


 .

Obtain the (L + 1) × (L + 1) matrix B as

B =
1

(N − L)M

M∑

s=1

As
HAs.

Suppose the singular value decomposition of B is

B =
L+1∑

i=1

λiuiui
H ,

6



where λ1 ≥ · · · ≥ λL+1 are the ordered eigen values of B and ui is the normalized eigen vector

corresponding to λi.

Now using the same idea as Kundu and Mitra (1995), construct the estimated signal sub-

space S and the estimated noise subspace N as follows:

S = {u1 : · · · : u2p} and N = {u2p+1 : · · · : uL+1}.

We use the estimated noise space N to estimate a = (a1, . . . , a2p+1), the constants to construct

the polynomial equation. Consider (L + 1) × (L + 1 − p) matrix B1 as follows:

B1 = [u2p+1 : · · · : uL+1] =




b1,1 · · · b1,L+1−2p
...

...
...

bL+1,1 · · · bL+1,L+1−2p


 .

Now the aim is to obtain an basis of B1, which is of the same form as matrix A in equation

(4). Partition the matrix B1 as follows:

BT
1 = [BT

1k : BT
2k : BT

3k ]

for k = 0, 1, . . . , L − 2p, where BT
1k, BT

2k and BT
3k are of the orders (L + 1 − 2p) × k, (L + 1 −

2p) × (2p + 1) and (L + 1 − 2p) × (L − k − 2p) respectively. Consider the matrix

[BT
1k : BT

3k ] .

Since it is a random matrix, it is of rank (L − 2p) (full rank) almost surely. Therefore, there

exists an L − 2p + 1 column vector Xk+1 6= 0, such that
[
B1k

B3k

]
Xk+1 = 0.

Consider the (2p + 1) vector âk+1 = (âk+1,1, . . . , âk+1,2p+1), where

(
âk+1

)T
= B12Xk+1.

By proper normalization, we can make âk+1,1 > 0 and ||âk+1||2 = 1 for k = 0, 1, . . . , L − 2p.

Therefore, there exist vectors X1, . . . ,XL−2p+1 such that

B1 [X1 : . . . : XL−2p+1 ] =




â1,1 0 · · · 0
... â2,1 · · · ...

â1,2p+1
... · · · âL−2p+1,1

0 â2,2p+1 · · · ...
... 0 · · · ...

0 0 · · · âL−2p+1,2p+1




.
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In the noiseless situation â1 = . . . = â2p+1 = â. So it is reasonable to use any one of âk, k =

0, 1, . . . , L − 2p or all of them to estimate ν1, . . . , ν2p. One can consider the average of all the

âks and use it as an estimate of a. We have considered that â for which the prediction error is

minimum. To obtain the prediction errors we consider the following method:

From model (1), we obtain

M∑

s=1

y(s, t) =
p∑

k=1

M∑

m=1

{
A0

k cos(sλ0
k + tµ0

k) + B0
k sin(sλ0

k + tµ0
k)
}

+
M∑

s=1

e(s, t), (7)

and we also obtain

y1(t) =
p∑

k=1

{
a0

k cos(tµ0
k) + b0

k sin(tµ0
k)
}

+ e1(t) = m2(t) + e1(t), (say) (8)

where

a0
k = A0

k

∑

s

cos(sλ0
k) + B0

k

∑

s

sin(sλ0
k), b0

k = −A0
k

∑

s

sin(sλ0
k) + B0

k

∑

s

cos(sλ0
k),

and e1(t) =
∑

s e(s, t). Similarly as the form in equation (2), m2(t) is also written as

m2(n) =
2p∑

k=1

d0
ke

itδ0

k , d0
2k =

a0
k + ib0

k

2
, d0

2k−1 =
a0

k − ib0
k

2
. (9)

Now for all i = 1, . . . , 2p + 1, consider âi and solving the polynomial equation (5) obtain the

corresponding δ1, . . . , δ2p. Then the linear parameters of the corresponding one dimensional

model (8) are obtained and finally we obtain the prediction error of this model (8).

Exactly in the same way b can be estimated using the columns of the data matrix Y and

from the roots of the polynomial equation (6), we obtain the estimates of β1, . . . , βp.

4 Pairing Algorithm

In this section we propose two pairing algorithms to estimate the pairs {(λk, µk); k = 1, . . . , p}
for the model (1). One algorithm is based on p! search. It is computationally efficient for small

values of p, say p = 2, 3 and the other is based on p2-search, so it is efficient for large values of

p, i.e. when p is greater than 3. Suppose the estimates obtained using the method in section 3

are {λ̂(1), . . . , λ̂(p)} and {µ̂(1), . . . , µ̂(p)}.

4.1 Algorithm 1

Consider all possible p! combination of pairs {(λ̂(i), µ̂(i)) : i = 1, . . . , p} and calculate the sum

of the periodogram function for each combination as

I(λ,µ) =
p∑

k=1

1

MN

∣∣∣∣∣

M∑

m=1

N∑

n=1

y(m,n)e−j(mλk+nµk)

∣∣∣∣∣

2

.
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Consider that combination as the paired estimates of {(λi, µi) : i = 1, . . . , p} for which this

I(λ,µ) is maximum.

4.2 Algorithm 2

Consider the periodogram function I1(λ, µ) of each pair (λi, µk), i = 1, . . . , p, k = 1, . . . , p.

I1(λ, µ) =
1

MN

∣∣∣∣∣

M∑

m=1

N∑

n=1

y(m,n)e−j(mλ+nµ)

∣∣∣∣∣

2

.

Compute I1(λ, µ) over {(λ̂(i), µ̂(k)), i, k = 1, . . . , p}. Choose the largest p values of I(λ̂(i), µ̂(k))

and the corresponding {(λ̂(k), µ̂(k)), k = 1, . . . , p} are the paired estimates of {(λk, µk), k =

1, . . . , p}.

5 Consistency Results

In this section we establish the strong consistency of the frequency estimators obtained by 2-D

NSD method. We prove the results by using the form (2). To prove the strong consistency

we need the following assumptions as in the line of Rao, Zhao and Zhou (1994) or Kundu and

Mitra (1995) on the parameters of the model (1).

Assumption 1 {e(s, t)} is an array of independent and identically distributed real valued ran-

dom variables with mean zero and finite variance σ2.

Assumption 2 λ1, . . . , λp are distinct and so also are µ1, . . . , µp.

Assumption 3 A0
1, . . . , A

0
p and B0

1 , . . . , B0
p are arbitrary real numbers not identically equal to

zero.

Theorem 1 Under the Assumptions 1 and 2, the estimators λ̂ = (λ̂1, . . . , λ̂p) and µ̂ =

(µ̂1, . . . , µ̂p) obtained by the method described in section 3 are strongly consistent estimators

of λ0 = (λ0
1, . . . , λ

0
p) and µ0 = (µ0

1, . . . , µ
0
p) respectively.

To prove Theorem 1, we need the following lemmas.

Lemma 1 Let Q = ((Qik)) and W = ((Wik)) be two r × r Hermitian matrices with spectral

decomposition

Q =
r∑

i=1

γiqiq
H
i , γ1 ≥ . . . ≥ γr,

W =
r∑

i=1

δiwiw
H
i , δ1 ≥ . . . ≥ δr,
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where γis and δis are eigen values of Q and W respectively and qi and wi are the orthonormal

eigenvectors of Q and W associated with γi and δi respectively, for i = 1, . . . , r. Further assume

that

δnh−1+1 = · · · = δnh
= δ̃h; 0 = n0 < n1 < · · · < ns = p; h = 1, . . . , s;

δ̃1 > δ̃2 > · · · δ̃s

and that |qik −wik| < α, i, k = 1, . . . , r, then there exists a constant K independent of α such

that

(1) |γi − δi| < Kα, i = 1, . . . , r,

(2)
nh∑

i=nh−1+1

qiq
H
i =

nh∑

i=nh−1+1

wiw
H
i + C(h),

with

C(h) = ((C
(h)
lk )), |C(h)

lk | ≤ Kα.

Proof of Lemma 1 The proof mainly follows from von Neumann’s (1937) inequality. For

details see Bai, Miao and Rao (1990).

Lemma 2 Let gn(x) be a sequence of polynomials of degree l, with roots x
(n)
1 , . . . , x

(n)
l for each

n. Let g(x) be a polynomial of degree l, with roots x1, . . . , xl. If gn(x) → g(x) as n → ∞ for

all x, then with proper rearrangement the roots of gn(x), x
(n)
k converge to the roots of g(x), i.e.

to xk, k = 1, . . . , l.

Proof of Lemma 2 See Bai (1986).

Proof of Theorem 1 We note that using form (2)

y(s, t) =
2p∑

k=1

c0
ke

j(sγ0

k
+tδ0

k
) + e(s, t)

=
2p∑

k=1

g0
kse

jtδ0

k + e(s, t), t = 1, . . . , N,

where g0
ks = c0

ke
jsγ0

k , k = 1, . . . , 2p and s = 1, . . . ,M . Now consider the (u, v)th element of the

matrix 1
N−LAH

s As for any s. The y(s, t) and e(s, t) being real-valued, we have

((
1

N − L
AH

s As

))

u,v

=
1

N − L

N−L+1∑

w=1

ȳ(s, u + w)y(s, v + w)
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=
1

N − L

N−L+1∑

w=1




2p∑

k=1

ḡ0
kse

−j(u+w)δ0

k + ē(s, u + w)






2p∑

k=1

g0
kse

j(v+w)δ0

k + e(s, v + w)




=
1

N − L

N−L+1∑

w=1




2p∑

k=1

ḡ0
kse

−j(u+w)δ0

k






2p∑

k=1

g0
kse

j(v+w)δ0

k




+
1

N − L

N−L+1∑

w=1

ē(s, u + w)
2p∑

k=1

g0
kse

j(v+w)δ0

k

+
1

N − L

N−L+1∑

w=1

e(s, v + w)
2p∑

k=1

ḡ0
kse

−j(u+w)δ0

k

+
1

N − L

N−L+1∑

w=1

ē(s, u + w)e(s, v + w),

= T1(s) + T2(s) + T3(s) + T4(s)

Now we observe that

T1(s) =
1

N − L





N−L+1∑

w=1




2p∑

k=1

|g0
ks|2ejδ0

k
(v−u)





+
N−L+1∑

w=1




2p∑

k 6=l

ḡ0
ksg

0
lmejδ0

l
(v+w)−jδ0

k
(u+w)









=
2p∑

k=1

|g0
ks|2ejδ0

k
(v−u) + O

(
1

N − L

)

(For fixed L and large N)

Now by the law of iterated logarithm (Chung; 1974) of M-dependent sequence, we say that

T2(s) = O

(
log log(N − L)

N − L

)1/2

= T3(s),

T4(s) =

{
σ2 if u = v

0 if u 6= v, s = 1, . . . ,M.

Hence

lim
N→∞

1

N − L
AH

s As = σ2IL+1 + Ω(L)HDsΩ
(L) a.s.,

where

Ω(L) =




e−jδ0

1 · · · e−j(L+1)δ0

1

...
...

...

e−jδ0

2p · · · e−j(L+1)δ0

2p




and

Ds = diag{|g1s|2, |g2s|2, · · · |g2ps|2}.
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IL+1 is the identity matrix of order L + 1. Therefore, averaging over all rows,

lim
N→∞

1

M(N − L)

M∑

s=1

AH
s As = σ2IL+1 + Ω(L)HDΩ(L)

= S (say),

where D =
∑M

s=1 Dm. Note that due to Assumption 2, the rank of the matrix Ω(L) is 2p and

due to Assumption 3, the rank of D is also 2p. Let the ordered eigen values of S be

λ(1) ≥ λ(2) ≥ · · · λ(p) > λ(p+1) = · · · λ(L+1) = σ2

and suppose the singular value decomposition of S is

S =
L+1∑

k=1

λ2
(k)sks

H
k .

Here sk is the orthonormal eigen vector corresponding to the eigen value λ(k). Therefore using

Lemma 1, we have
L+1∑

k=2p+1

ûiû
H
i −→

L+1∑

k=2p+1

sis
H
i

i.e. the vector space generated by (û2p+1, . . . , ûL+1) converges to the vector space generated

by (s2p+1, . . . , sL+1). Now similarly as Kundu and Mitra (1995), it can be shown that the

vector space generated by (û2p+1, . . . , ûL+1) has a unique basis of the form




â1,1 0 · · · 0
... â2,1 · · · ...

â1,2p+1
... · · · âL−2p+1,1

0 â2,2p+1 · · · ...
... 0 · · · ...

0 0 · · · âL−2p+1,2p+1




,

with âk,1 > 0 and ||âk|| = 1, where âk = (âk,1, . . . , âk,2p+1) for k = 1, . . . , L−2p+1. Similarly

the vector space generated by (s2p+1, . . . , sL+1) has a unique basis of the form




a1 0 · · · 0
... a1 · · · ...

a2p+1
... · · · a1

0 a2p+1 · · · ...
... 0 · · · ...

0 0 · · · a2p+1




,
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with a1 > 0 and ||ak|| = 1, ak = (a1, . . . , a2p+1). This implies that

âk → a a.s., k = 1, . . . , L − p + 1.

Therefore, using Lemma 2, we can conclude that the roots obtained from the polynomial

equation (5) with âk, are consistent estimators of δ0
1 , . . . , δ0

2p for k = 1, . . . , L − 2p + 1.

To prove the strong consistency of γ̂1, . . . , γ̂2p, consider the tth column in place of sth row.

Then using the same technique as above, it can be shown that γ̂1, . . . , γ̂2p are strongly consistent

estimators of γ0
1 , . . . , γ0

2p.

6 Numerical Experiments

In section 3 we have developed a method to estimate the frequencies of the 2-D sinusoidal

models. The large sample properties of the estimators are examined in the previous section.

In this section, we study the small sample properties of the estimators using simulated data.

All the computations are performed at the Indian Institute of Technology, Kanpur on Sun

Workstation using the random number generator of Press et al.(1993). NAG subroutines are

used for eigen decomposition and to obtain the roots of different polynomial equations. The

numerical experiments have been conducted for different values of σ2, the error variance.

We consider the following model with two components for the simulation study:

y(s, t) = A0
1 cos(sλ0

1 + tµ0
1) + B0

1 sin(sλ0
1 + tµ0

1)

+A0
2 cos(sλ0

2 + tµ0
2) + B0

2 sin(sλ0
2 + tµ0

2) + e(s, t), (10)

s = 1, . . . , 30; t = 1, . . . , 30;

with

A0
1 = 4.0, B0

1 = 5.0, λ0
1 = 2.0, µ0

1 = 1.0,

A0
2 = 3.5, B0

2 = 5.5, λ0
2 = 2.5, µ0

2 = 1.5.

The error random variables e(s, t)s are i.i.d. normal random variables with mean zero and

variance σ2. We consider σ = 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0 and 2.0. For each σ we generate

1000 different data sets using different sequences of e(s, t) and the frequencies are estimated

using the method described in section 3. We obtain the average estimates and the mean squared

errors over one thousand replication. We have also calculated the ALSEs and the LSEs for the

frequencies of the model (10) maximizing locally the 2-D periodogram function and minimizing

the residual sum of squares respectively. The mean squared errors (MSEs) of the LSEs and the

ALSEs and the asymptotic variances (ASYVs) of the least squares estimators are also reported

for comparison. The asymptotic variances (ASYV) are obtained using the distribution obtained

13



for the model (1) in Kundu and Gupta (1998) using the true parameter values. All these results

are reported in Table 1. For different σ, we have reported the ALSEs, the NSD estimators, the

LSEs and the ASYVs in the columns. The mean squared errors of the corresponding estimators

are given in the brackets in the next row. As the model (10) has two components we have used

Algorithm 2 described in section 4.2 to obtain the final estimates of the frequencies.

From the results of simulation of the model (10), it is observed that the proposed 2-D NSD

method works quite well for different values of σ, the error variance. For small values of σ, the

NSD estimators work better than the ALSEs and for large σ both the ALSEs and the NSD

estimators perform almost identically. In case of one dimensional model the performances of

the NSD estimators depends on L, the extended order. But it has been observed in simulation

study that the performances of the 2-D NSD estimators do not depend much on the choice

of L. It works better for small values of L (≤ M/3 or ≤ N/3). For all L, less than equal to

10, the NSD estimators work almost in a similar way in terms of MSEs. As L increases, its

performances deteriorate. Also the computational cost is very high if L is large as compared

to small L. Though the ALSEs are computed as the local maxima of the 2-D periodogram

function, the computational cost is still very high as compared to the NSD estimators. For L less

than 20 i.e. 2M/3, the ALSEs are more computationally expensive than the NSD estimators.

7 Conclusions

In this chapter, we have considered the estimation of the frequencies of the the 2-D sinusoidal

model under the assumption of i.i.d. errors. Though the LSE is the most reasonable estimator,

it is well known that obtaining the LSEs even in 1-D, is a difficult problem. We have developed

an consistent non-iterative procedure to estimate the unknown parameters of the 2-D sinusoidal

model (1) which is an extension of the 1-D NSD method. We have proposed two pairing

algorithms to estimate the final set of frequencies. It has been observed that the proposed

method provides consistent estimators. Numerical results indicate that the 2-D NSD estimators

can be used as the starting values to obtain the LSEs for the sinusoidal model (1) in most of

the cases. Also for the 2-D sinusoidal model the proposed estimators work better than the

ALSEs.

Recently, Prasad and Kundu (2009) used three dimensional superimposed sinusoidal model

to analyze colored textures. It seems the proposed 2-D NSD method can be extended to three

dimension also. Work is in progress, it will be reported later.
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Table 1: The ALSEs, the NSD estimators, the LSEs, the corresponding MSEs and the asymp-

totic variances of the different parameters of the 2-D sinusoidal model.

σ Para- ALSE NSD estimator LSE ASYV

meter

λ1 1.99699 2.00001 1.99999

(9.08479e-06) (3.54279e-09) (5.39972e-11) 7.2267387e-11

µ1 1.00029 1.00000 0.999994

.01 (8.61867e-08) (1.61219e-09) (5.52318e-11) 7.2267387e-11

λ2 2.49917 2.50001 2.50002

(6.75802e-07) (2.63496e-09) (2.40655e-11) 6.9716774e-11

µ2 1.49932 1.50000 1.50001

(4.57080e-07) (8.79792e-10) (2.45539e-11 ) 6.9716774e-11

λ1 1.99698 2.00001 1.99999

(9.12686e-06) (3.13326e-08) (4.87039e-10) 6.5040645e-10

µ1 1.00029 1.00000 0.999999

.03 (8.61407e-08) (1.48746e-08) (4.84410e-10) 6.5040645e-10

λ2 2.49917 2.50001 2.50001

(6.75478e-07) (2.26150e-08) (2.33181e-10) 6.2745098e-10

µ2 1.49932 1.50000 1.50000

(4.57967e-07) (7.75861e-09) (2.28176e-10) 6.2745098e-10

λ1 1.99698 2.00002 2.00000

(9.14752e-06) (8.77772e-08 ) (1.40601e-09) 1.8066845e-09

µ1 1.00029 1.00000 1.00000

.05 (8.68718e-08) (4.05905e-08) (1.41209e-09) 1.8066845e-09

λ2 2.49918 2.50001 2.50001

(6.75214e-07) (5.56449e-08) (6.58749e-10) 1.7429194e-09

µ2 1.49933 1.50000 1.50000

(4.54628e-07) (2.21050e-08) (6.51090e-10) 1.7429194e-09

λ1 1.99697 2.00002 2.00000

(9.19954e-06) ( 3.31397e-07) (5.46929e-09) 7.2267388e-09

µ1 1.00029 1.00000 0.999999

0.1 (9.84439e-08) (1.59495e-07) (5.61064e-09) 7.2267388e-09

λ2 2.49918 2.50001 2.50001

(6.83887e-07) (2.26631e-07) (2.43253e-09) 6.9716783e-09

µ2 1.49932 1.50000 1.50000

(4.64469e-07) (9.38960e-08) (2.43484e-09 ) 6.9716783e-09

(continued...)15



σ Para- ALSE NSD estimator LSE ASYV

meter

λ1 1.99696 1.99999 2.00000

(9.38446e-06) (3.16364e-06) (4.90887e-08) 6.5040652e-08

.3 µ1 1.00029 0.99999 0.999999

(2.11111e-07) (1.48538e-06) (4.81352e-08) 6.5040652e-08

λ2 2.49918 2.50000 2.50001

(7.34819e-07) (2.25009e-06) (2.35643e-08) 6.2745102e-08

µ2 1.49932 1.49998 1.49999

(5.08247e-07) (7.75322e-07) (2.29973e-08) 6.2745102e-08

λ1 1.99696 2.00000 1.99998

(9.68857e-06) (9.18530e-06) (1.41363e-07) 1.8066847e-07

µ1 1.00029 1.00000 1.00002

0.5 (4.36193e-07) (4.08143e-06) (1.41096e-07) 1.8066847e-07

λ2 2.49918 2.50001 2.50000

(8.28642e-07) (5.46881e -06) (6.58413e-08) 1.7429194e-07

µ2 1.49932 1.50003 1.50000

(6.02746e-07) (2.19510e-06) (6.57252e-08) 1.7429194e-07

λ1 1.99694 1.99969 1.99999

(1.11344e-05) (3.84807e-05) (5.33798e-07) 7.2267403e-07

µ1 1.00030 0.99991 1.00001

1.0 (1.49700e-06) (1.78891e-05) (5.34425e-07) 7.2267403e-07

λ2 2.49918 2.50009 2.49999

(1.28682e-06) (2.20381e-05) (2.81330e-07) 6.9716793e-07

µ2 1.49931 1.49990 1.50000

(1.02375e-06) (8.93373e-06) (2.82741e-07) 6.9716793e-07

λ1 1.99690 1.99979 1.99993

(1.66416e-05) (1.64697e-04) (2.14585e-06) 2.8906954e-06

µ1 1.00033 0.99981 1.00005

2.0 (5.70992e-06 ) (7.68182e-05) (2.15722e-06) 2.8906954e-06

λ2 2.49917 2.49967 2.50001

(3.10050e-06) (9.20901e-05) (1.04708e-06) 2.7886711e-06

µ2 1.49928 1.50013 1.49998

(2.68293e-06) (4.02589e-05) (1.03805E-06) 2.7886711E-06
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