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Abstract
We evaluate the performance of the Dirichlet process mixture (DPM) and the latent class model
(LCM) in identifying autism phenotype subgroups based on categorical autism spectrum disorder
(ASD) diagnostic features from the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition Text Revision. A simulation study is designed to mimic the diagnostic features in the ASD
dataset in order to evaluate the LCM and DPM methods in this context. Likelihood based
information criteria and DPM partitioning are used to identify the best fitting models. The Rand
statistic is used to compare the performance of the methods in recovering simulated phenotype
subgroups. Our results indicate excellent recovery of the simulated subgroup structure for both
methods. The LCM performs slightly better than DPM when the correct number of latent
subgroups is selected a priori. The DPM method utilizes a maximum a posteriori (MAP) criterion
to estimate the number of classes, and yielded results in fair agreement with the LCM method.
Comparison of model fit indices in identifying the best fitting LCM showed that adjusted
Bayesian information criteria (ABIC) picks the correct number of classes over 90% of the time.
Thus, when diagnostic features are categorical and there is some prior information regarding the
number of latent classes, LCM in conjunction with ABIC is preferred.
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1. INTRODUCTION
Autism Spectrum Disorders (ASD) are a group of developmental disabilities characterized
by impairments in socialization and communication, as well as by unusual behaviors or
interests [1]. There have been some efforts to understand and characterize subgroups within
the ASD spectrum [2, 3, 4, 5] in order to assist in earlier identification of cases and to tailor
intervention efforts. Since 2000, the South Carolina Autism and Developmental Disabilities
Monitoring Network (SC ADDM) has been conducting ongoing, multiple-source, records-
based surveillance of ASD [6] within the framework of the Centers for Disease Control and
Prevention’s (CDC) ADDM [7]. On children with a previous diagnosis of ASD and on those
at risk of having ASD, information on early developmental concerns, regression or plateaus
in development, problem behaviors, presence of associated behaviors, and previous
diagnoses were collected [6]. The collected data represent a heterogenous collection of
autism diagnostic features (behaviors). The goal of this study is to identify phenotype
subgroups within the ASD spectrum. The word phenotype is used in the sense of behavioral
phenotype [8].

Methods such as hierarchical clustering which are based on dissimilarity of individual
characteristics have been proposed to identify subgroups or clusters of observations using
characteristics that subjects share in observed data. Latent class models (LCM), Dirichlet
process mixtures (DPM) and other mixture models are also used for similar purposes. When
the measured characteristics are in continuous or ordinal scale, hierarchical cluster analysis
methods [9] as well as mixture model approaches [10, 11, 12] are used. Similarly, when the
measured individual characteristics are categorical, LCM [13] or DPM [14] are often used to
identify subgroups/clusters [4, 15, 16, 17, 18]. Hierarchical clustering with flexible-beta
algorithm has also been adopted for categorical variables [19, 20]. When the variables for
clustering are a mixture of continuous and categorical, methods such as converting variables
to homogeneous types, analyzing variables separately and finding a weighted average of
standardized dissimilarity measures [21] have been suggested. While LCM makes the
assumption that the number of clusters is known/fixed a priori, DPM does not require such
an assumption. Traditionally, model fit indices such as Akaike information Criteria (AIC) or
Bayesian information criteria (BIC) have been used to identify LCM. However, there is no
consensus on what model fit index identifies the best fitting LCM. The key contribution of
this study is that it jointly uses the partitioning from DPM and information criteria to
identify phenotype subgroups from categorical features data. In addition, it is not clear
whether DPM or LCM has superior performance than the other when the observed variables
are categorical; especially, when the categorial variables are characterized by “absent”
values (atypical values that do not occur in the majority of the study population) as in our
data example.

The objectives of the study four three fold. First, to evaluate and compare LCM and DPM in
identifying phenotype subgroups/clusters using simulated data that mimics characteristic
variables from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
Text Revision (DSM-IV-TR). Second, to compare the performance of fit indices such as
Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC) and adjusted BIC
(ABIC) in picking the best fitting LCM. Third, to use DPM partitioning to choose optimal
number of latent classes for LCM. Fourth, to use data from 806 confirmed and suspected
cases of ASD and their diagnostic and associated features to identify phenotype subgroups
using both LCM and DPM.
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2. DATA EXAMPLE
The ASD data example used in this manuscript consists of de-identified information from
the SC ADDM surveillance project on a total of 806 children (413 ASD confirmed and 393
ASD suspected cases) aged 8 years in the surveillance years 2000, 2002, and 2004 (birth
years 1992, 1994, and 1996, respectively). A more detailed description of the SC ADDM
study can be found in [6]. In brief, the ADDM Network uses a standardized case definition
based on the presence of a particular number and quality of behaviors (social,
communication, and unusual behaviors) from the DSM-IV-TR for autistic disorder,
Asperger disorder, or pervasive developmental disorder not otherwise specified (PDD-
NOS). For example, autistic disorder, the most severe end of the spectrum, requires a total of
6 or more of the DSM-IV-TR criteria including at least two social, 1 communication, 1
unusual behavior (see Table 1). Additional associated behaviors are not used in the
confirmation of case status but are identified in order to further characterize and describe the
children [6, 7]. The DSM-IV-TR criteria and associated features are given in Table 1.
Among this sample of children, 598(74%) were males and 208(26%) were females. The
racial composition was 324(40%) white, 366(45.5%) black, 12(1.5%) other and 104(12.9%)
unknown racial/ethnic groups.

LCM and DPM analyses were applied to the DSM-IV-TR criteria and associated features to
identify homogenous subgroups of ASD. Associations between the emergent subgroups and
demographic characteristics were assessed via multinomial logistic regression. Odds ratios
(ORs) and confidence intervals (CIs) were calculated to evaluate the associations.

3. METHODS
Among the several methods that have been proposed to identify clusters of observations
based on characteristics that subjects shared in observed data, we present LCM and DPM.
These methods have been developed as methods for discovering subpopulations with similar
response profiles and as a flexible way of modeling the correlation of categorical
multivariate data [13, 14, 17, 18].

3.1. Latent Class Models (LCM)
Let y denote the entire collection of observed diagnostic features data, where yi = {yi1,
…,yiJ} is the complete features for subject i for i = 1, 2,…,N. Let ηk denote the probability
of membership in latent class k and let zi denote the latent class to which subject i belongs,
where zi may take an integer value in {1,…,K}. We assume that a latent class exists in
which, if it were observed, it would explain the relationship among the features (yij). The
variable yij may take an integer value in {0,…Cj − 1} where Cj ≥ 2. Thus, Cj represents the
number of possible categories for yij. Without loss of generality, we assume Cj = 2 for all j.
Given the latent class, yij is modeled as a Bernoulli random variable with probability

where βjk is an unknown latent class-specific parameter whose collection is denoted β =
{β11,…,βjk}. Due to local independence assumption [13], the features in yi are independent
within each latent class. Thus, the joint probability φ(yi) = Pr(yi1,…,yiJ) can be expressed as,
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(1)

The latent class model may be fitted by maximizing the likelihood function

with respect to ηk and βjk using the EM algorithm [22]. The EM algorithm involves iterating
between posterior probabilities of latent class membership

One challenge with LCM is model selection among models with different numbers of latent
classes [23]. Currently, there is no consensus in the literature regarding a single statistical
index that identifies the most appropriate number of classes in a given population [24].
Thus, we build a series of models with a successive number of classes. Selection of the
optimal model utilizes measures of goodness of fit (see section 3.4). Another challenge with
fitting latent class models is their vulnerability to converging on local rather than global
solutions. Moreover, identifiability and estimability are additional challenges. These
challenges may be minimized using multiple random sets of starting values and multiple
final stage optimization to avoid local maxima and to ensure that all values converge on
identical solutions. If most of the observed likelihood ratio statistics converge to the same
value, this can be considered as sufficient evidence for model identifiability [13].

LCM was implemented in SAS via the procedure LCA Version 1.2.4 [25]. A maximum of
500 iterations were considered with 100 different random starting values. Convergence was
evaluated using maximum absolute deviation with a criterion of less than 0.000001. In order
to handle sparsness issues in the estimation of paramters, optimal Bayesian stabilizing priors
are used [13]. The data derived priors applied to both πjk and ηk help to avoid parameter
estimates on the boundry values of zero and one. These priors for latent class membership
(ηk) as well as item response probabilities (πjk) are decided based on how strongly we want it
to influence the parameter estimates of the latent class model. Collins and Lanza (2010)
recommend a prior strength of 1 which essentially adds a small amount of pseudo-cases to
each class, in order to improve estimation by biasing estimates away from zero. The prior
for πjk also acts like adding a small amount of pseudo-cases to each response category for
each class, in order to improve estimation by biasing it away from zero or one solutions for
some πjk’s. These are similar to Bayes constant in the latent class clustering functionality in
LatentGOLD [26].

3.2. Dirichlet Process Mixtures (DPM)
Continuing with the established notation, the collection of latent class membership variables
z = {z1,…,zN} represents the partition of subjects into clusters, where the term “cluster” is
used synonymously with “latent class”. Hence, z is termed the cluster partition variable. In

Gebregziabher et al. Page 4

Comput Stat Data Anal. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hierarchical notation, the augmented Dirichlet process mixture of Bernoulli models is given
by,

where πjk is the probability that a subject in cluster k will exhibit diagnostic feature j. The
probability mass function P(z) assigns prior probability over all possible cluster partitions,
where α is a fixed tuning parameter, Γ(·) is the gamma function, and nk is the number of
subjects assigned to the kth cluster. The associated likelihood and posterior density/mass
functions are given by,

respectively, where y and π are the collections of diagnostic feature indicators {yij} and their
probabilities {πjk}, and nkj is the number of subjects in cluster k that exhibit feature j. The
posterior statistics akj and bkj are given by akj = a + nkj, and bkj = b + nk − nkj.

In order to identify phenotype clusters in these data, the cluster partition variable z was
estimated. The estimate for z was taken to be the cluster partition that maximized the
marginal posterior mass function P(z|y), or the maximum a posteriori (MAP) estimate. The
Polya urn gibbs sampler [14, 27] was used to draw samples from the marginal posterior
distribution over z which was computed with a uniform (0, 1) prior (a = b = 1). The sample
value with greatest posterior mass over 50000 iterations was taken as the MAP estimate. The
DPM analysis was performed in R Version 2.11.0 with the package profdpm.

3.3. Relationship between Class Membership and Covariates
After identifying the phenotype subgroups through the latent class model, association
between class membership and covariates can be assessed via multinomial logistic
regression [28]. Suppose xi = (xi1,…, xip)′ be a vector of covariates for the ith subject. The
probability of belonging to the kth latent class (k = 1,…, K) can be expresses as a function of
xi by,

where K is the reference group and βk = (β1k,…, βpk)′ is a p × 1 vector of log oddsratio
parameters. The log-odds ratio parameters could be estimated jointly with the latent class
model parameters or separately after modal assignment of latent classes. Since there is
conditional independence between yi and xi within a latent class, these log oddsratios can be
used to measure the association between phenotype subgroups (latent class) and observed
covariates that were not used in the latent class model. In the AS-D data example, this will
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help to study the association of autism subgroups with demographic variables such as race
and gender.

3.4. Model Assessment and Comparison
Discovering phenotype subgroups using LCM requires proper model s-election with the
optimal number of subgroups [23, 29]. Several methods have been suggested. For example,
statistical indices such as AIC [30], BIC [31], consistent AIC (CAIC) [32] and adjusted BIC
(ABIC) [33] and an entropy measure [34]. These statistics account for both model fit
(deviance) and model complexity by penalizing models with a larger number of parameters.
The criteria are compared across competing models and the lowest value on each criterion
indicates the best fitting model. AIC is often used in LCM applications [35]. However,
Woodruffe [36] showed that AIC is not theoretically consistent and consequently may not
select the correct model when sample size is large. On the other hand, BIC has been shown
to have a consistent property [37] that will lead to a correct choice of model for large sample
size and is considered to be one of the most reliable indicators in determining the number of
latent classes [24]. Nylund et al (2007) made comparisons among several methods of
deciding number of latent classes via simulation study. They concluded that BIC performed
the best of the ICs and the bootstrap likelihood ratio test proved to be a very consistent
indicator of classes across all of the models they considered. Similarly, CAIC tends to favor
a model with fewer parameters since it penalizes over-parameterization more severely than
BIC or AIC. Another approach based on the posterior class membership probabilities is
entropy (R2). It evaluates how well each of the classes is separated and represented by the
data with values ranging from 0 to 1. Values approaching or exceeding 0.80 are preferred.
We will make comparisons among these methods in terms of their performance in picking
the correct number of classes in LCM via simulation studies.

After partitioning the subjects into clusters via DPM and estimating latent classes via LCM,
we will use the method of Rand [38] to compute an index of agreement between the
estimated and true cluster partitions by LCM and DPM. The Rand index is the proportion of
subject pairs that are consistently clustered in the true (simulated) and estimated cluster
partitions and can take values in the interval [0, 1], where one indicates perfect agreement. A
pair of subjects that is clustered consistently either occur in the same cluster or in separate
clusters, in both partitions.

4. SIMULATION STUDY
4.1. Data Generation and Simulation Parameters

Simulated data sets that mimic the ASD data example were used to evaluate LCM and
DPM. Preliminary results (from latent class models of k = 1 to k = 5 classes), indicated the
presence of four or five phenotype subgroups in our ASD data example. Latent Class
Analysis (LCA) was used to estimate the latent class membership probabilities ηk and latent
class-specific probabilities, πjk, for each diagnostic feature (j = 1,…,J and k = 4, 5). The
estimated probabilites were used to simulate 100 new datasets for each latent class number
(K = 4, K = 5). Each new dataset consisted of N = 806 subjects whose latent class was drawn
according to the estimated latent class probabilities ηk, and diagnostic features yij was drawn
according to the Bernoulli probability πjk, for j = 1,…, 24. Hence, the simulated, or ‘true’
latent class of each subject was available for evaluating the correctness of the estimated
latent classes/cluster partition. Information criteria based on CAIC, BIC and ABIC will be
used to select the best fitting LCM, while MAP will be used to estimate the classes for
DPM. The method of Rand will be used to compute an index of agreement between the
estimated and true cluster partitions.
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5. RESULTS
5.1. Simulation Results

The Dirichlet process mixture and latent class model methods were used to estimate the
cluster partitions. DPM partitions were obtained for each of the 200 (K = 4 and K = 5)
simulated datasets and for each of three values of the precision parameter α ∈{1, 1/50,
1/500}. Smaller values of the precision parameter place additional penalty on partitions with
many clusters. Table 2 gives the distribution of estimated number of clusters for each
combination of α and K values. With a precision index of 1/50, the four class model was
identified correctly in 97% of the data sets, while the five classes model was correctly
identified in 86% of the datasets. When the precision index was reduced to 1/500, the four
classes model was identified correctly in 99% of the datasets while the five classes model
was identified in 80% of the datasets.

Figure 1 depicts the statistical indices based on likelihood information criteria and deviance
for the LCM estimates for the partitions of the simulated datasets. The AIC, BIC, ABIC and
deviance divided by two (D/2) are reported. The error bars represent intertertile range of the
distribution of these indices across the simulated data sets. The minimum values for the BIC
and ABIC correctly identified the true simulated latent classes for both the 4 and 5 class
populations. Additionally, the distribution of the estimated number of classes by goodness of
fit statistics for the four and five class simulated datasets are depicted in Figure 2. ABIC
identified the correct model over 90% of the time for both the 4 and 5 classes models. BIC
identified over 90% for the 4 classes model but under 50% for the 5 classes model while
AIC was correct in only 50% or less for both models.

Figure 3 illustrates the computed Rand indices between the estimated and true (simulated)
cluster partitions for the LCM and DPM analyses of the four and five classes simulated
datasets. The LCM estimates performed best in both the four and five classes simulated
datasets. However, empirical confidence intervals for the difference in Rand index between
the DPM and best performing LCM estimates indicated that the difference was not
significant.

5.2. ASD Data Results
Selection of the best fitting model was based on goodness of fit statistics and on whether the
model reflected conceptually meaningful and coherent subgroups that account for the
heterogeneity in the study population. Model fit indices for LCM under different number of
class assumptions are reported in Table 5 (See Appendix). After comparing models with one
to seven classes, the best fitting LCM had 4 classes based on BIC and 5 classes based on a
combination of BIC and ABIC. Given that the simulation study favored ABIC as the
preferred criteria and the fact that DPM also preferred the 5 classes model, we selected the 5
classes model. The minimum entropy R2 was 0.84 for this model indicating a very good fit
(results not tabulated). Each of the LCM models were estimated under 100 different random
starting values and they were sufficiently well identified with 100%, 91% and 85% of the
likelihood ratio statistics converging to the same value for K=4, K=5 and K=3 respectively.

The best fitting five classes or clusters model is described by the DSM-IV-TR criteria and
associated features in Table 3, which shows the estimated probabilities of item response
given latent class, π̂jk. An item was highly likely to characterize the cluster if the probability
of item response was 0.8 or higher. It was considered as likely if π̂jk was in [0.6, 0.8). It was
considered chance, unlikely or very unlikely if π̂jk was in [0.4, 0.6), [0.2, 0.4) and less than
0.2 respectively.
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Using the criteria highly likely (≥ 0.8) and likely [0.6–0.8), Cluster 1 (35% of sample) is the
least affected, with no diagnostic criteria or associated features occurring at a probability ≥
0.8, and only the DSM-IV-TR diagnostic communication criteria 2a and 2b in the lower
probability range [0.6–0.8). Cluster 3 (6.8% of sample) is mildly affected, with some
associated features but no diagnostic criteria at a probability ≥ 0.8. The high probability
associated features are abnormality in mood or affect, and hyperactivity/attention problems.
DSM-IV-TR diagnostic social interaction (1d) and unusual behavior criteria (3b) occur in
the lower probability range [0.6–0.8) along with the associated features aggression and
argumentative/oppositional/defiant behaviors. Cluster 4 (moderately affected, 21% of
sample) is the first cluster with a DSM-IV-TR diagnostic criterion appearing in the
probability range ≥ 0.8. This is the communication criteria 2a, along with the associated
features aggression, argumentative/oppositional/defiant behaviors, and hyperactivity/
attention problems. Lower probability [0.6–0.8) characteristics are the DSM-IV-TR social
interaction (1d) and communication criteria (2b) and the associated features abnormality in
mood or affect, delayed motor movement, and temper tantrums. Cluster 2 (highly affected,
21% of sample) has an increasing number of DSM-IV-TR diagnostic criteria in the ≥ 0.8
probability range (social interaction 1a, 1d; communication 2a), but picks up criteria from all
categories in the [0.6–0.8) probability range (social interaction 1b; communication 2b, 2c;
unusual behaviors 3b, 3c, 3d) as well as the associated feature hyperactivity/attention
problems. Cluster 5 (16.2% of sample) is the very highly affected group, with probability ≥
0.8 for DSM-IV-TR criteria from all categories (social interaction 1a, 1b, 1d;
communication 2a, 2b; unusual behaviors 3b, 3c), as well as the associated features delayed
motor movement, hyperactivity/attention problems, and odd response to sensory stimuli.
Additionally, all characteristics from Table 1 except for three (self-injurious behavior, lack
of fear or excessive fear, and staring spells or seizure-like activity) fall in the lower
probability range [0.6–0.8). Additional illustration and confirmation of the level of
expression of the DSM criteria and associated behaviors in the 5 classes is given by the heat
maps in Figure 4. The clusters from the (least affected to the (highly affected are labeled
from A to E respectively and the number of people assigned to the cluster is proportional to
the size of the heat map box.

Examining estimated latent class membership by identified case status (confirmed ASD
versus suspected ASD) indicated that the percentage of confirmed cases increases with
increasing symptom severity (14.8% in the least affected, 30.9% in the mildly affected,
41.1% in the moderately affected, 91.7% in the highly affected and 100% in the very highly
affected groups). While intellectual disability (ID) was not used as a clustering factor, it is
interesting to note the proportions of children with intellectual disability in each cluster. Of
the 806 children in the sample, 735 had information on cognitive ability and they were
distributed as follows: 47.7% in the least affected, 17.0% in the mildly affected, 44.2% in the
moderately affected, 60.6% in the highly affected and 57.0% in the very highly affected. The
corresponding estimates for DPM are provided in the heat map for DPM (see Figure A.5 and
additional online tables).

Maximum likelihood estimates of probability of class membership by number of latent
classes and their corresponding standard errors are reported in Table 6 (See Appendix). The
classification probabilities from DPM were also very similar (see supplementary online
files).

Table 4 shows odds ratios (ORs) and accompanying confidence intervals (CIs) for the
associations between the emergent subgroups and demographic characteristics from a
multinomial logistic regression analysis with cluster 1 (least affected) as the reference group.
These were obtained using modal assignment of latent classes. The results indicate that there
were highly significant positive association between male gender and these phenotypes. For
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instance, males were at an almost two fold risk of being in the very highly, highly or mildly
affected cluster than females. On the other hand, black race was negatively associated with
these phenotypes. Blacks had 80% lower odds to be in the very highly affected subgroup
(class 5) than whites. Similarly, blacks were 70%, 80% and 60% less likely to be in the
highly (class 2), mildly (class 3) and moderately affected (class 4) groups respectively.
However, being in other racial groups (Asians, American Indians, etc) was not associated
with these phenotype subgroups.

6. DISCUSSION
In this study we investigated the performance of the Dirichlet process mixture (DPM) and
latent class models (LCM) in identifying ASD phenotype subgroups based on DSM-IV-TR
criteria and ASD associated features. Our results indicate excellent recovery of the true
subgroup structure in the simulated data for both methods. The LCM method performs
slightly (though not significantly) better than the DPM method when the correct number of
latent subgroups is selected a priori. DPM which utilizes a maximum a posteriori (MAP)
criterion to estimate the number of classes yielded results that mostly agree with LCM. The
simulation results indicate that, adjusted BIC identified the correct latent class model over
90% of the time, while the maximum a posteriori (MAP) estimate gave promising results for
the DPM method.

Most cluster analyses of similar datasets in the past have identified a 2 grouping cluster,
with one group consisting of lower-functioning, more symptomatic children and a second
group of higher-functioning children [3, 2]. But, the analysis of our ASD data resulted in
five phenotype subgroups, ranging from least affected to very highly affected individuals.
The least affected cluster contained no DSM-IV-TR diagnostic criteria nor associated
features at a probability of 80% or more. Diagnostic features appeared across the clusters
with increasing probability, until ultimately the very highly affected cluster contained DSM-
IV-TR diagnostic criteria from each of the social interaction, communication, and unusual
behaviors subgroups, as well as multiple associated features with probability of 80% or
more.

The key clinical message that stands out from this analysis is that the five phenotype
subgroups identified by LCM range from least affected with no diagnostic criteria and no
associated features to the very highly affected with diagnostic features from the three core
areas that define an ASD: language, social interaction, and repetitive, ritualistic behaviors.
The very highly affected subgroup had the greatest number of associated behaviors as well.
This spectrum-like model follows the proposed ASD spectrum definition for the DSM-V to
be published sometime in the next few years in which the specific diagnoses of “autistic
disorder”, “PDD-NOS”, and “Asperger disorder” may no longer be used. This spectrum
model of increasing diagnostic criteria and associated features gives the clinician a sense of
the child’s prognosis.

Latent class models (LCM) have been applied in identification of sub-populations or
phenotype subgroups in several studies. For example, in Foroud et al [15], 13 tests for
alcoholic diagnosis were conducted and 830 individuals were surveyed and a 4-latent-class
phenotype was chosen. In Pickles et al. [4], using data from 2373 patients on 15 diagnostic
tests for autism (each with three categories), 3- and 4-latent-class model were chosen.
Similarly, Sullivan et al. [16] had 2914 subjects (twins) whom were assessed by 14 major
depression symptoms (all binary) and a 7 latent classes model was selected. Satten et al. [35]
also used LCM to select latent classes of the 6 and 12 short loci. LCM is also used to
identify obsessive-compulsive disorder subgroups based on observed individual level
comorbidity data [39]. Some of these studies used the likelihood ratio [4, 15, 16] and others
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used A-IC [35] to select their respective best fitting latent class model. Our results reveal
that adjusted BIC is a reasonable fit index to identify the correct model with the appropriate
number of classes. This is consistent with results in Lyund et al (2007). In a study
comparing the bootstrap likelihood ratio test (BLRT) with with some of the commonly used
approaches, Lyund et al (2007) concluded that BIC performed the best of the ICs and the
bootstrap likelihood ratio test (BLRT) proved to be a very consistent indicator of classes.
Looking at their results for the 15 item simple and 10 item complex models, for samples
sizes bigger than 500 (similar to our scenario of 24 items and n=806), both BIC and adjusted
BIC identified the true number of classes more than 99% of the time while BLRT identified
about 95%. Moreover, our results are further confirmed by DPM, which does not require
specifying K a priori since it results in partitions that make up the possible classes.

Other approaches include agglomerative hierarchical cluster analysis, mixture models and
latent class mixed models. Such methods have been applied to gene expression data for the
detection of subgroups of samples with similar expression profiles across genes or for the
detection of subgroups of genes with similar expression profiles across samples. One special
strategy of hierarchical cluster analysis which exhibits a good recovery for categorical data
which are characterized by many “absent” variables [19] where “absent” refers to behaviors
that are atypical and do not occur in the majority of the study subjects is the flexible-beta
clustering (FBC). Association between clusters is done using flexible-beta method [20]. On
the other hand, association between observations is done using commonly used measures
that accept asymmetric binary variables such as Jaccard and Kulcynski coefficients [19, 41].
Within each method, the number of clusters is determined by finding the breaking point
below which further branching is ignored [19]. However, this method is not easy to
implement and does not have clear model assessment criteria to select the best fit.

Moreover, in agglomerative hierarchical cluster analysis each observation starts as its own
cluster and at successive steps of the algorithm, clusters are merged until only a single
cluster remains. Although the approach is appealing for visualizing the data, it can be
unstable for classification because once an observation is assigned to a cluster it cannot be
removed. To deal with this, methods to reallocate already assigned observations have been
developed. An alternative approach is to use model-based methods that split the dataset.
Such methods can be more stable when the object is to find a few important clusters [21].
There are also other approaches that can be used for similar purposes [11, 10, 43, 42]. A
head to head comparison of all these methods could be a topic of further research.

Several measures for partition comparison have been proposed, including the Rand [38],
adjusted Rand [44], Fowlkes and Mallows [45], and Wallace [46] indices. Each of these
statistics enumerate some proportion of observation pairs that satisfy some condition, such
as being clustered together or separately in the two partitions under scrutiny. The adjusted
Rand further corrects for the expected number of pairs that meet a criterion. Hence, the
adjusted Rand is suitable when the magnitude of the index is the object of inference. When
the Rand index is used to compare several estimated partitions against a known partition,
then the adjustment is not necessary, and the interpretation is simpler. That is why the
(unadjusted) Rand index was selected for partition comparison in this study.

From both the simulation study and the data example, we conclude that jointly using LCM
with ABIC could be beneficial in modeling individual differences in which subjects are
assumed to belong to one of a finite number of subgroups. It is also important that involving
experts with experience and familiarity with prior literature in the subject matter, as we did,
play a role in deciding the number of classes.
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Appendix A. Additional Figures
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Figure A.5.
Heat Map for the five class DPM. The level of dark color indicates the severity of the
classes where (least affected is less dark and (highly affected is the darkest. The number of
people assigned to the cluster is proportional to the size of the heat map box

Appendix B. Additional Tables
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Table B.5

Fit Indices for LC Models with different number of classes for the Autism data example
(AIC= Akaike Information Criteria, BIC=Bayesain Information Criteria, ABIC=Adjusted
BIC).

Model Fit Statistics for LCM

Classes (K) AIC BIC ABIC

1 13709 13822 13746

2 11451 11779 11623

3 11106 11453 11218

4 10823 11287 10973

5 10762 11344 10950

6 10692 11390 10971

7 10656 11473 10990
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Highlights for COMSTA 5035

• evaluated Dirichlet Process Mixture (DPM) and Latent Class Model (LCM)

• Applied DPM and LCM to autism-spectrum-disorder (ASD) and simulated
datasets

• LCM performed slightly better than DPM in recovering simulated subgroups.

• Jointly used partitioning (DPM) and information criteria to identify subgroups.
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Figure 1.
Information criteria and deviance for the latent class analysis of the four and five class
simulated datasets. Y-axis is value of the IC and x-axis is the number of estimated latent
classes.
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Figure 2.
Distribution of the estimated number of classes by Information criteria for the four and five
class simulated datasets. The X axis shows the counts of the estimated number of clusters as
a function of the true simulated number of clusters (Y-axis) for different types of
information criteria (legend).
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Figure 3.
Box and whisker plots of the Rand indices between the estimated and true (simulated)
cluster partitions, computed for each LCM and DPM analysis across the four and five class
simulated datasets. Higher values indicate better classification.
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Figure 4.
Heat Map for the five class LCM. The level of dark color indicates the severity of the
classes where (least affected is less dark and (highly affected is the darkest. The number of
people assigned to the cluster is proportional to the size of the heat map box
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Table 1

DSM-IV-TR and associated behaviors identified in SC ADDM.

DSM-IV-TR items Corresponding Behaviors

Social Interaction

DSM1a Deficits in non-verbal behavior

DSM1b Poor peer relationships

DSM1c Failure to share interests with others

DSM1d Poor social or emotional reciprocity

Communication

DSM2a Delayed spoken language

DSM2b Conversational deficits

DSM2c Repetitive language

DSM2d Deficits in imaginative play/imitation

Unusual behavior

DSM3a Restricted Interests

DSM3b Routines and rituals

DSM3c Stereotyped mannerisms

DSM3d Preoccupation with parts of objects

Associated Behaviors

hyper Hyperactivity, attention problems

DMM Delayed Motor Movement

Mood Abnormality in mood or affect

EDS Abnormality in Eating or Drinking or Sleeping

tantrum Temper tantrums

argue Argumentative, oppositional, defiant

aggress Aggression

cog Abnormality in cognitive skills

SS Odd response to Sensory Stimuli

SIB Self-Injurious Behavior

fear Lack of fear or excessive fear

seizure Staring spells or seizure-like activity
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Table 4

Odds Ratio and 95% CI for Phenotypes/clusters by gender (1=Male, 0=Female) and race (1=White, 2=Black,
3=Other).

LCM

Phenotype Male Black Other

1 1.0(NA) 1.0(NA) 1.0(NA)

2 1.9(1.2,3.2) 0.3(0.2,0.5) 3.6(0.4,33.8)

3 1.8(0.8,3.9) 0.2(0.1,0.4) 2.6(0.2,43.4)

4 1.0(0.7,1.6) 0.4(0.3,0.7) 2.7(0.3,26.9)

5 2.1(1.2,3.6) 0.2(0.1,0.3) 2.7(0.3,26.7)

DPM

Phenotype Male Black Other

1 1.0(NA) 1.0(NA) 1.0(NA)

2 2.0(1.2,3.5) 0.2(0.1,0.4) 0.9(0.2,4.5)

3 2.1(0.9,4.6) 0.2(0.1,0.5) 1.0(0.1,9.7)

4 1.3(0.8,2.0) 0.4(0.2,0.6) 0.8(0.2,3.9)

5 2.4(1.4,4.3) 0.2(0.1,0.3) 0.8(0.1,5.1)
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