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Abstract

Racial differences in prostate cancer incidence and mortality have been reported. Several authors 

hypothesize that African Americans have a more rapid growth rate of prostate cancer compared to 

Caucasians, that manifests in higher recurrence and lower survival rates in the former group. In 

this paper we propose a Bayesian piecewise mixture model to characterize PSA progression over 

time in African Americans and Caucasians, using follow-up serial PSA measurements after 

surgery. Each individual's PSA trajectory is hypothesized to have a latent phase immediately 

following surgery followed by a rapid increase in PSA indicating regrowth of the tumor. The true 

time of transition from the latent phase to the rapid growth phase is unknown, and can vary across 

individuals, suggesting a random change point across individuals. Furthermore, some patients may 

not experience the latent phase due to the cancer having already spread outside the prostate before 

undergoing surgery. We propose a two-component mixture model to accommodate patients both 

with and without a latent phase. Within the framework of this mixture model, patients who do not 

have a latent phase are allowed to have different rates of PSA rise; patients who have a latent 

phase are allowed to have different PSA trajectories, represented by subject-specific change points 

and rates of PSA rise before and after the change point. The proposed Bayesian methodology is 

implemented using Markov Chain Monte Carlo techniques. Model selection is performed using 

deviance information criteria based on the observed and complete likelihoods. Finally, we 

illustrate the methods using a prostate cancer dataset.
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1. Introduction

Prostate cancer is the most frequently diagnosed cancer in men, and the second leading 

cause of cancer-specific death among men in the United States. For reasons that remain 

unclear, prostate cancer incidence rates are significantly higher in African Americans (AA) 
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than in Caucasians (CC). Mortality from prostate cancer is also two to three times greater 

among AA than among similarly aged CC (American Cancer Society, 2010).

Since the advent of the PSA screening era, men are more often diagnosed at an earlier stage 

of disease. This has led to an increase in surgery over the past two decades (American 

Cancer Society, 2010; Lu-Yao et al., 1993). However, approximately 30-35% of these 

surgically treated patients will have pathologically detected disease outside the prostate and 

25-30% will ultimately develop disease progression (Freedland et al., 2003; Lu-Yao et al., 

1996). Outcome data of men treated with surgery demonstrate more advanced tumors and 

higher recurrence rates among AA compared to similarly aged CC (Moul et al., 1996; 

Powell et al., 1999). The observed differential in the recurrence rates following surgery 

could be a manifestation of an earlier or a more aggressive disease progression in AA 

compared to CC.

In the medical literature, recurrence of prostate cancer after surgery is defined as a 

progressive or sustained elevation of serum prostate-specific antigen (PSA); and is based on 

an elevated PSA level of 0.4 ng/ml. Current studies in the medical literature are based on 

analyses of time to recurrence, focusing only on the time from surgery to the time when the 

PSA measurement exceeded the threshold (0.4 ng/ml.). Given that PSA is a moving target, 

serial measures of PSA in time describe a dynamic process rather than a static one, and can 

contribute towards understanding the pattern by which the threshold was attained. This 

paper develops a Bayesian piecewise mixture model to characterize PSA progression over 

time in AA and CC. Each individual's PSA trajectory is hypothesized to have a latent phase 

immediately following surgery followed by a rapid increase in PSA indicating regrowth of 

the tumor. The true time of transition from the latent phase to the rapid growth phase is 

unknown, and can vary across individuals; suggesting a random change point across 

individuals. The PSA profiles of AA may be characterized by an earlier change point or a 

steeper rise during the tumor regrowth phase or both.

Bayesian change point methods have been successfully applied to CD4 counts to predict the 

timing of HIV viral rebound (Kiuchi et al., 1995), to pre-diagnosis PSA profiles for 

predicting cancer onset (Bellera et al. 2008; Slate and Lark, 2001), and to model cognitive 

ability over time preceding diagnosis of dementia (Hall et al., 2003). Among patients 

undergoing surgery for prostate cancer, nearly one-thirds of the men will have 

pathologically detected disease that had already spread outside the prostate gland (Freedland 

et al., 2003). For these men, surgery will be useless and these patients may experience a 

rapid increase in PSA immediately following surgery, without going through a latent phase. 

We propose a two-component mixture model to accommodate patients with, as well as, 

without a latent phase. Within the framework of this mixture model, patients who do not 

have a latent phase are allowed to have different rates of PSA rise; patients who have a 

latent phase are allowed to have different PSA trajectories, represented by subject-specific 

change point, PSA value at the change point and rates of PSA rise before and after the 

change point. We use simulation-based approach that exploits recent advances in Markov 

Chain Monte Carlo (MCMC) techniques, to implement the proposed Bayesian methodology. 

Section 2 describes the model formulation. In section 3 we present details of the Bayesian 

analysis, specifically prior models for the various parameters, and details of the MCMC 
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technique for posterior analyses. Section 4 presents results of data analyses of a cohort of 

prostate cancer patients. Finally, section 5 contains some concluding remarks and an 

appraisal of the approach adopted in the current article in contrast to other approaches used 

in this context.

2. Piecewise mixture model

2.1. Study description

The specific study involved patients who were surgically treated between 2001 and 2006 for 

clinically localized prostate cancer at Harper Hospital in Detroit, Michigan. Postoperative 

follow-up included serum PSA level measurements (along with digital rectal examination) 

every 3 months for the first two years, and every 6 months thereafter. We retained 94 men 

who had an undetectable serum PSA level (defined as an assay value of 0.05 ng/ml) right 

after surgery, no preoperative or postoperative hormonal and/or radiation therapy, race CC 

or AA, and who had experienced recurrence on or before 2009. In this study, 68% were CC; 

47% had local, and 53% had regional stage disease. Mean pre-surgery PSA was 14.5 ng/ml 

(range 2.8-62.8 ng/ml). Median follow-up for these patients was 36 months (range 8-97 

months). All PSA measurements recorded at or before the first recurrence were included in 

the analysis.

2.2. PSA trajectories

After surgery, PSA levels are undetectable and go through a latent phase (characterized by 

very slow change in PSA) and then start to increase again at variable rates across 

individuals, with close to exponential patterns once PSA rise begins. For this reason, we 

applied a base 2 logarithmic transformation to the PSA measurements. As pointed out by 

Bellera et al. (2008), this transformation has several advantages. First, it allows one to model 

the individual patient trajectories as piecewise linear before and after the change point 

within individuals. Second, the trajectories tend to be smoother than when plotted on the 

original PSA scale. The base 2 logarithmic transformation also has scientifically useful 

interpretation; the log2PSA growth rate is equivalent to the number of PSA doublings per 

month, and its reciprocal corresponds to the PSA doubling time, a quantity of interest to 

clinicians.

Figure 1 presents a log2PSA trajectory over time for a given individual i; the time origin is 

at surgery. We are primarily interested in estimating the log2PSA rate of change during the 

latent phase (i.e. slope of the first line), the log2PSA rate of rise during the rapid phase (i.e. 

slope of the second line), the change point or time of transition, and the variability 

associated with these parameters in the population. Furthermore, we are interested in 

assessing whether these parameters differ by race, after adjusting for cancer stage at 

diagnosis and pre-surgery PSA.

2.3. Model formulation

A piecewise linear model was used to model the slow change in log2PSA before the 

transition time and rapid change in log2PSA after the transition time. Each patient is allowed 

to have a different log2PSA trajectory, represented by a subject-specific slope before the 
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transition point, a subject-specific transition point, a subject-specific log2PSA value at the 

transition point and a subject-specific slope after the transition point. However, not all 

patients have a latent phase. Some patients may have pathologically detected disease that 

had already spread outside the prostate gland. For these patients, surgery will be useless and 

they may experience a rapid increase in PSA immediately following surgery, without going 

through a latent phase. A straight line model for log2PSA was used to model the rapid phase 

for such patients. Therefore, we used a two component mixture (M = 2) model to model the 

log2PSA growth; specifically, we used mixture probabilities p and 1 − p to accommodate 

patients both with and without a latent phase, respectively.

Let yij, i = 1, …, n; j = 1, …, ni, be the log2 PSA value for subject i at follow-up j, and tij the 

time (in months) at which the jth follow-up occurred. Allowing for the mixed trajectories, 

we consider the following model for yij

(1)

where the functions x− and x+ correspond to min(x, 0) and max(x, 0), respectively. For 

subject i, zi is an unobserved indicator variable that takes the value 1 if subject i has a latent 

phase and 0 otherwise. If a subject has a latent phase (zi = 1), the term b1i,1(tij − ri,1) 

corresponds to the linear model for log2 PSA before the transition time, and b2i(tij− ri,1) 

corresponds to the linear model for log2 PSA after the transition time; thereby giving rise to 

a piecewise linear model. Specifically, ri,1 is the change point or time of transition, ai is the 

log2 PSA at the change point, b1i,1 and b2i are the log2 PSA rates of change before and after 

the change point. In contrast, if subject i has rapid PSA growth right after surgery without a 

latent phase (zi = 0), only b2i(tij − ri,0) is used to model the trajectory, and ri,0 = 1 represents 

that PSA rise started immediately after surgery. The term b1i,0(tij− ri,0)−= 0 since tij ≥ ri,0 = 1 

for all j, and b1i,0 is set to 1 for identifiability.

We assume that the yij|zi's are normally distributed, with mean μziij and variance σ2, where

3. Bayesian analysis

Let a = (a1, ⋯, an)′, b1 = (b11,1,⋯,b1n,1)′, b2 = (b21, ⋯, b2n)′, and r = (r1,1,⋯, rn,1)′.

Assume
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The observed data associated with this model is y = (y1, ⋯,yn)′, where yi is a ni × 1 vector of 

serial log2PSA values for subject i, and the corresponding latent indicator z = (z1, ⋯, zn) 

constitutes missing data. Following the EM terminology, the likelihood l(y|θ) is often called 

the observed likelihood, while l(y,z|θ) is called the complete likelihood. The observed 

likelihood function can be written as

(2)

where θ = (a, b1, r, b2, p, σ2)′ and ϕ(·|μziij, σ
2) is the normal pdf. By introducing the latent 

indicator z = (z1, ⋯, zn), the above can be interpreted as a missing data model and the 

corresponding complete likelihood can then be written as

(3)

In order to carry out the Bayesian analysis, next we describe the prior models for the various 

parameters. Let  denote the vector of hyperparameters 

characterizing the log2 PSA trajectory. The mixture parameter p is also thought to be a 

hyperparameter characterizing the distribution of . We selected non-informative priors for 

these hyperparameters, specifically we chose μa ∼ N(−2, 100), μb1 ∼ N(0.05,100), μb2 ∼ 

N(0.1,100), μr ∼ N(0,10000), and non-informative Jeffrey's prior for p (p ∼ Beta(0.5,0.5)). 

We further assumed that  where IG(·,·) denotes the 

Inverse Gamma distribution. Additionally, all group of parameters described above are 

assumed to be stochastically independent.

Elicitation of the prior parameters has remained an inherent part of the prior selection 

process. Since a strong prior information can drive the direction of analysis in a significant 

manner, it is imperative that reasonably accurate information on the prior parameters be 

obtained wherever possible. In our context, one naive but often useful prior elicitation 

method may consist of extracting summary information (e.g. mean, variance) on rate of PSA 

rise, and transition time from historical data or previous case studies and then translating the 

information into parameter values for the prior distributions. In situations where such 

information is unavailable, one acceptable strategy is to make the prior information 

sufficiently “diffused” (by assuming a large variance) relative to the likelihood, so that the 

prior has minimal impact on the posterior distribution. This is the strategy we adopted in our 

prior selection process.

Regression Models

The model in (1) can be extended to include covariates. In our analyses, we considered the 

following three models:

Model 1. Uses the model specification in (1). No covariate adjustment is considered.
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Model 2. This model incorporates race as a covariate. Specifically, the parameters 

corresponding to transition time, log2PSA value at the transition time, log2PSA rates of 

change before and after the transition time, and mixture probability were allowed to 

vary by race.

Model 3. This model additionally adjusts for cancer stage at diagnosis, and pre-

operative PSA. Specifically, the parameters corresponding to transition time, log2PSA 

value at the transition time, and log2PSA rates of change before and after the transition 

time were allowed to vary by stage and pre-operative PSA.

The regression coefficients are typically modeled as independent Normal or t variables, 

unless there is apriori reason to envision them as skewed. In the latter case skew-normal or 

skew-t are reasonable prior choices for the regression parameters. We chose non-informative 

normal priors for the regression coefficients in the above models.

3.1. Posterior Analysis

The simple conjugate form for all the parameters allowed us to write the full conditional 

posterior distribution in closed form (Hall et al., 2003). We adopted the simulation-based 

Markov-chain Monte Carlo (MCMC) technique that relies on generating random draws from 

the relevant full conditional distributions in an iterative manner. For the mixture model, we 

obtained draws from the model parameters given the indicator, zi. Given the indicator zi, the 

mixture model reduces to a regular hierachical model.

3.1.1. Model Selection—Formal model selection was carried out using the Deviance 

Information Criterion popularized by Spiegelhalter et al. (2002). The deviance D(θ) = − 2 

log p(y|θ) is used as a general measure of goodness of fit. It is natural to estimate the 

expected deviance function Eθ|y(D(θ)), evaluated under the posterior distribution and 

consider it as a Bayesian goodness of fit diagnostic. In a Bayesian numerical integration 

scheme with direct generation of posterior observations, this quantity can be estimated by 

the average deviances over the posterior realizations {θl : l = 1, ⋯, L}, expressed as,

The effective number of parameters (pD) in a model can be thought of as D̄ − D(θ̂), where θ̂ 

is the posterior mean, E[θ|y]. A corresponding Deviance Information Criterion (DIC) 

propagated by Spiegelhalter et al. (2002) based on this construction is DIC = D̄ + pD. DIC 

can be easily computed in a MCMC setting, in terms of the readily available posterior 

quantities. In comparing across models, smaller values of DIC are preferred.

In developing DIC, Spiegelhalter et al. (2002) mostly focused on the case of generalized 

linear models, although they concluded their seminal paper with a discussion of the 

possibilities of extending this notion to models like mixtures of distributions. The ensuing 

discussion of their article pointed out the possible difficulties of defining DIC precisely in 

these scenarios. In particular, Celeux et al. (2000) and DeIorio and Robert (2002) described 
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some possible inconsistencies in the definition of a DIC for mixture models. For instance, in 

the mixture case, the above definition of DIC quite often leads to a negative value of pD. 

Celeux et al. (2006) proposed alternative definitions of DIC for mixture models. Unlike the 

mixture model case in Celeux et al. (2006)'s paper, the μziij in our study is a function of zi, 

the transition time, log2PSA at the transition time, log2PSA rates of change before and after 

the transition time, and times tij for subject i.

In this study, we consider three different DIC constructions. The first is based on 

Spiegelhalter et al.'s approach (we call this DIC0). Additionally, we consider adaptations of 

Celeux et al. (2006) that rely on the observed (DIC1) and complete (DIC2) likelihoods in our 

setting. For computing DIC0,

where , and 

 and σ2(l) the results from the lth MCMC iteration.

We define D(θ̂) using the posterior mode of the unobserved indicator zi. Since zi is either 1 

or 0, the posterior mode is 1 if 1{z̄i≥0.5}, and D(θ̂) is computed as

where μ̄
1ij = āi + b̄

1i,1(tij − r̄i,1)−+ b̄
2i(tij− r̄i,1)+,μ̄

0ij = āi + b̄
2i(tij−1), and āi, b̄

1i,1,b̄
2i, r̄i,1, z̄i 

and σ2̄ are the posterior means for the corresponding parameters.

For computing DIC1, we rely on the observed likelihood, l(y|θ), under the assumption that it 

can be computed in closed form. Note that D̄ is clearly and uniquely defined, even though it 

requires MCMC simulations to be computed approximately, and

In general for mixture models, the definition of D(θ^) may not be unique because θ is not 

always identifiable and the posterior mean can then be a very poor estimator. However, in 

our case, the subject-specific trajectories uniquely identify zi and D(θ^) is obtained as
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where p̄i is the posterior mean for pi.

A third version of DIC (DIC2) is based on using the complete likelihood. Using l(y,z|θ), we 

can set D̄ as the posterior expected value (over the missing data) of the joint deviance, and D̄ 

can be obtained using

Since the zi is identified by the entire trajectory of subject i, we use the likelihood of subject 

i to define P(zi = 1 |θ, y) such that

In addition to the difficulty of choosing θ^ as mentioned above, we now have the problem of 

defining the fixed point deviance, D(θ^), in connection with the missing data structure. 

Using similar motivations as in Celeux et al. (2006), we first define a complete data DIC, by 

defining the complete data estimator E[θ|y,z], and then integrate this quantity to obtain DIC. 

This requires the computation of a posterior expectation for each value of z. Specifically 

then, for each lth MCMC iteration, we obtain z(l), calculate the posterior mean θ(̄l) = E[θ|y, 

z(l)], and define D(θ̂) as

where  are the posterior means given (y, z(l)).

4. Data Analysis

As described in section 2.1, the analytic cohort comprised of PSA trajectories of 94 patients 

who met the inclusion criteria. We considered as covariates race (African American vs. 

Caucasian), stage at diagnosis (local or regional), and serum PSA (in ng/ml) prior to surgery 

(continuous variable), all of which are established predictors of prostate cancer recurrence. 

The analysis was carried out in WinBUGS version 1.4.1 (Lunn et al., 2000). The choice of 

priors (described in section 3) was fairly non-informative for the mean as well as the 

variance parameters. We found that the choice of hyperparameters in the prior distributions 
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had little influence on the marginal posterior distributions. We ran two independent parallel 

chains with different starting values. The chains were run with a burn in of 20000 iterations, 

and additional 70000 iterations for inference. With a thinning interval of 50, posterior 

distributions for the parameters were based on 2000 iterations. Point estimates of parameters 

were calculated using the mean and median of the posterior distribution; we also obtained 

95% credible intervals. The convergence of the Markov chain was assessed visually by track 

plots and autocorrelation plots, and by the Gelman-Rubin Diagnostic criterion.

4.1. Results

Table 1 presents the posterior summary statistics for the model parameters. Results from 

model 2 describe the unadjusted effect of race, and that from model 3 the adjusted (i.e. stage 

and pre-operative PSA adjusted) effect of race on PSA trajectories. Based on both models 2 

and 3, race does not significantly affect PSA trajectory. During the latent phase, PSAs 

remain virtually unchanged for both AA and CC. The average transition time for AA is 18.1 

months after surgery (95% credible interval: 12.5 to 23.6 months) and that for CC is 18.6 

months (95% credible interval: 15.0 to 22.2 months). The average rate of rise in log2 PSA in 

the rapid phase is also similar for both groups. Posterior distributions of all the parameters 

turned out to be fairly symmetric.

Table 2 presents the DIC values for model comparison. In computing DIC0, an alternative to 

pD for measuring model complexity is half the posterior variance of the deviance (pV), 

which can be obtained based on posterior simulations as . 

Gelman et al. (2004) recommends using pV based on robustness and accuracy 

considerations. The current version of winBUGS also uses pV for computing DIC in the case 

of mixture models. For the sake of completeness, in addition to DIC1 and DIC2, we 

therefore present in Table 2 two versions of DIC0 using pD and pV. Both DIC0(pV) and DIC1 

favor model 1 over the other two models, but DIC2 favors model 2. DIC0(pd), in contrast 

picks model 3 as the best. The corresponding pD values associated with all three models are 

negative (specifically, −80, − 22, and −67, for models 1, 2, and 3, respectively). Thus 

DIC0(pD) may not be a good choice here.

Our model also allowed us to obtain posterior distribution of the indicator variable, zi(i = 1, 

⋯, n). Subjects with large posterior means are more likely to be classified as having a latent 

phase. We used the cutoff of 0.8 to classify subjects as having a latent phase or not; i.e. if the 

posterior mean of zi is larger than 0.8, subject i is said to have a latent phase. Otherwise, 

subject i is said to have rapid PSA rise immediately after surgery. Figure 2 shows the 

subject-specific predicted log2PSA profiles based on model 1 using the threshold of 0.8 for 

twelve randomly selected patients. The predicted trajectories fit the observed data very well 

for both groups of patients who may or may not have a latent phase. It is evident though that 

most patients experience a latent phase (point estimate of p based on model 1 is 90%, 95% 

credible interval: 80-100%).
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5. Concluding Remarks

In this article, we have proposed a Bayesian piecewise mixture model to analyze PSA 

trajectories after surgery for prostate cancer. We believe this model can also be used after 

other treatments, such as radiotherapy, because PSA levels after radiotherapy typically 

decrease and then start to increase again at variable times and rates across individuals. Our 

model allows us to account for between as well as within-subject variabilities. In addition, it 

allows us to accommodate complex features, such as the presence of a random change point 

across subjects, as well as mixture of patient populations with and without a latent phase.

To the extent we trust our model specification, our approach offers some flexibility in 

modelling. In the clinical literature, serial PSA data is often handled by using a simplistic 

approach that independently estimates individual PSA profiles; population estimates are 

then obtained by pooling individual estimates using a simple average (D'Amico et al., 2003; 

Pollack et al., 1994). This approach does not adequately account for the PSA variability. By 

using the observed change point as the true change point, the variability is completely 

ignored. Another approach uses a smooth function of time to model the longitudinal PSA 

values (Ulm, 1991). However, the major drawback of this approach is that the model does 

not accord with the underlying biological process. A quadratic model allows for a smooth 

transition, however, it assumes that the PSA pattern is symmetric about the change point, 

which is in contradiction with the typical PSA profile after surgery. Use of a higher degree 

polynomial is also biologically implausible, since post surgery PSA values are typically 

characterized by a single inflection point prior to giving any additional therapy. Our model 

also allows the flexibility to accommodate patients for whom surgery might have been 

useless (cancer spread outside the prostate gland that can only be confirmed pathologically). 

These patients may experience a rapid increase in PSA immediately following surgery, 

without going through a latent phase. The two-component mixture model proposed in this 

paper allows us to accommodate patients both with and without a latent phase, while 

estimating the change point for patients experiencing a latent phase, within the same 

modelling framework. Patients with a latent phase are allowed to have different PSA 

trajectories, represented by a subject-specific rate of PSA rise before the change point, a 

subject-specific change point, and a subject-specific rate of rise after the change point. The 

Bayesian paradigm provides a unified framework for carrying out estimation and predictive 

inference. Further, it lends itself readily to straightforward model selection procedures. The 

possibility of entertaining a flexible modelling environment and the ease of implementation 

make this, in our view, an appealing approach to analyze serial PSA data.
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Figure 1. 
Circles indicate observed log2PSA values for an individual. The horizontal axis represents 

time (in months) after surgery.
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Figure 2. 
Predicted log2PSA profiles (solid line) based on model 1 of twelve randomly selected 

subjects. Circles indicate observed log2PSA values. The horizontal axis represents time (in 

months) after surgery.
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Table 2
DIC for model comparison

DIC0(pD) DIC0(pV) DIC1 DIC2

Model 1 332 765 474 653

Model 2 290 783 480 642

Model 3 251 785 481 654
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