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Abstract
Studies of ocular disease and analyses of time to disease onset are complicated by the correlation
expected between the two eyes from a single patient. We overcome these statistical modeling
challenges through a nonparametric Bayesian frailty model. While this model suggests itself as a
natural one for such complex data structures, model fitting routines become overwhelmingly
complicated and computationally intensive given the nonparametric form assumed for the frailty
distribution and baseline hazard function. We consider empirical Bayesian methods to alleviate
these difficulties through a routine that iterates between frequentist, data-driven estimation of the
cumulative baseline hazard and Markov chain Monte Carlo estimation of the frailty and regression
coefficients. We show both in theory and through simulation that this approach yields consistent
estimators of the parameters of interest. We then apply the method to the short-wave automated
perimetry (SWAP) data set to study risk factors of glaucomatous visual field deficits.

Keywords
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1 Introduction
Analyses of data from studies of visual field deficits and glaucomatous progression are
complicated by correlations between observed failure times from fellow eyes of a subject.
Bayesian frailty models have proven to be a valuable tool for modeling this dependence
through a random effect term in a proportional hazards model. However, the practitioner is
left to choose from a wide array of frailty distributions, the choice of which may affect
inferences drawn on parameters (hazard ratios) of interest. Not to mention, the dependence
structure is unknown presenting difficulties in parameterizing a frailty model and exposing
“default” models, such as a gamma frailty distribution, as seemingly arbitrary.
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A nonparametric approach to frailty modeling provides a flexible alternative in which the
frailty distribution is left unspecified, letting the data a posteriori drive the functional form.
In such models both the frailty distribution and baseline hazard rate are modeled
nonparametrically. The nonparametric frailty term presents no difficulties in the construction
of a Markov chain Monte Carlo (MCMC) algorithm for drawing posterior inferences.
Standard Gibbs samplers for fitting nonparametric Bayesian models (e.g., Walker and
Mallick, 1997) may be applied for sampling full conditional distributions on the frailties and
the parametric portion of the proportional hazards model. However, incorporation of the
baseline hazard into the Markov chain Monte Carlo (MCMC) routine turns out to be a
challenging task. A wide array of models for the baseline hazard and MCMC methods for
fitting these models have been proposed in the literature (for example, see Ibrahim et al.,
2001). However, as Gustafson et al. (2003) mentions in the motivation of their work, the
routines are computationally and mathematically intensive and not easily automated, leaving
the non-expert with a difficult task in applying such inferential procedures.

In our motivating application the primary goal is to infer hazard rates, studying risk factors
for glaucoma and short wavelength automated perimetry for detecting visual field defects.
The baseline hazard rate is then effectively a nuisance parameter (function). An inferential
routine for the baseline hazard which requires complicated mathematical derivation and
substantial computational coding and implementation cost is clearly undesirable. In this
paper we propose an empirical Bayes approach to alleviate difficulties in modeling the
baseline hazard and subsequently incorporating it into an MCMC algorithm. The idea
derives from the work of Casella (2001) in which we use the data to “estimate away”
nuisance parameters, focusing computational and inferential effort on the parameters of
interest. In the nonparametric Bayesian frailty model, we estimate the baseline hazard
through a nonparametric frequentist estimator and then construct an MCMC algorithm to
iteratively simulate posterior samples conditional on this empirical Bayes estimate. The
method draws on the deep theory and vast implementation options of MCMC and EM
algorithms. Furthermore, the routine is simple to automate within the construct of the Gibbs
and Hastings samplers for fitting nonparametric Bayesian models. We argue that this
empirical Bayes Hastings sampler requires less coding time and computational expense than
the popular piecewise hazard approaches (e.g., Walker and Mallick, 1997), requires less
tweaking of tuning and model parameters in fact lending to complete automation.

The Bayesian frailty model with nonparametric specification of the frailty distribution is
best suited for our study of glaucomatous progression. However, the empirical Bayes
Hastings sampler in this setting, as a general approach, lends to diagnostic tools for testing
parametric forms for the frailty distribution and routines for performing model selection. We
highlight these issues in our analysis of glaucomatous visual field defects. Furthermore, the
proposed modeling and inferential strategies provide a flexible framework within which to
mix and match nonparametric and parametric components and strategies for handling
nuisance parameters.

In Section 2, we formally define the nonparametric Bayesian frailty model, expressing the
frailty distribution nonparametrically through a Pólya tree process. We also define the
nonparametric estimator of the cumulative baseline hazard to be incorporated into our
empirical Bayes routine. In Section 3 we, primarily for notational purposes, briefly detail the
Pólya tree distribution. In Section 4, we introduce the empirical Bayes Hastings sampler for
drawing inferences under the semi-parametric frailty model, estimating the baseline hazard
rate in a Monte Carlo E-type step in the MCMC routine. As part of the discussion of the
Hastings sampler, we derive conditions under which the random variates drawn reasonably
represent a sample from the posterior distribution of interest. We also discuss issues for
optimally implementing the MCMC sampling scheme in practice. Section 5 presents
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simulation studies to validate our proposed methods for drawing inferences under the frailty
model. In Sections 6 and 7, we present routines for computing Bayes factors and traverse the
regression parameter space to evaluate parametric forms of the frailty distribution and
perform variable selection within our empirical Bayes Hastings sampler framework. In
Section 8, we illustrate our proposed methods in the analysis of a data set for studying
glaucomatous visual field deficits. In Section 9 we conclude with a discussion of practical
issues beyond the developments and applications in this paper.

2 Frailty Model
Suppose that the observed data consist of clustered, and possibly censored, failure-time data
represented by Yik = {Xik, δik, Zik}, with k = 1, ···, Ki and i = 1, ···, n. Xik = Tik ∧ Cik is the
minimum of the failure time and the censoring time; δik = I{(Xik = Tik)}, the failure
indicator, which takes the value of 1 if (Xik = Tik) and 0 otherwise; and Zik is a p-vector of
covariates. It is assumed that the failure time vector Ti = (Ti1, ···, TiKi)′ is independent of the

censoring time vector Ci = (Ci1, ···, CiKi)′ given , i = 1, ···, n.

The proportional hazards model (Cox, 1972) has been widely applied in analyzing
independent or univariate failure times. As a generalization of the Cox proportional hazards
model for clustered or multivariate failure times, Clayton and Cuzick (1985) introduce the
frailty model in which a random effect term (or “frailty”) is assumed to have a multiplicative
effect on the hazard. In terms of the hazard function, the model can be stated as follows:

(1)

where λ0(t) is an unknown baseline hazard function, β is a p-vector of unknown regression
parameters, and Vi is the frailty, representing some common unobserved characteristics
shared by all the failure times in the ith cluster. It is assumed that, given the frailty Vi,
failure times within the ith cluster are independent. Note that the baseline hazard function λ0
may be assumed to depend on k, for example, in a family study when k = 1, 2 refers to
mothers and daughters, respectively.

Let θi = ln Vi for each i = 1,…, n with the n-vector of log-frailties denoted by θ = (θ1,…,
θn)′. We will avoid difficulties in specifying the frailty distribution by modeling this
distribution nonparametrically. In particular, following Walker and Mallick (1997), assume

(2)

where PT(α, G) denotes a Pólya tree prior with prespecified parameters α and G (see
Section 3 for details) and μ and Σ are prespecified parameters of the normal prior
distribution on the coefficients β.

A large number of suggestions have been made in the Bayesian survival analysis literature
for modeling the baseline hazard (see Ibrahim et al., 2001, for descriptions). These schemes
vary from parametric to nonparametric prior models, each introducing an additional level of
complication in the statistical inference process, not to mention leaving a large number of
candidate, and potentially complex, models from which the practitioner must choose.
However, the baseline hazard is a nuisance parameter in our application or at the least in
many such data analyses a parameter of secondary interest. Our suggestion is to thus
“estimate it away” via an empirical Bayes type argument. By arguments similar to those in
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Johansen (1983) and Klein (1992), the nonparametric estimator of  is given
by

(3)

where Nik (u) = I{Xik ≤ u, δik = 1}, Yik (u) = I{Xik ≥ u}, and β̂ and V̂ = (V̂1, ···, V̂n) are,
respectively, the expected values of β and V given the data and the current estimate of Λ̂0.
As can be seen in Section 4, (3) can be readily modified to incorporate a Markov chain
Monte Carlo sample (βj, Vj), j = 1, ···, J.

3 Pólya tree distribution
Walker and Mallick (1997) define the Pólya tree distribution as a prior for the frailty
distribution, drawing heavily on the work of Lavine (1992, 1994); Ferguson (1974), Lavine
(1992), and Mauldin, Sudderth, and Williams (1992) being the groundbreaking papers
introducing the Pólya tree prior. We will not present the detailed mathematics in this section,
but merely the intuition and notation for ease of exposition in the remainder of the paper,
particularly the frailty distribution goodness of fit routines of Section 6.

The Pólya tree distribution constructs a distribution on the space of continuous probability
distributions, with suitable choice of parameters, by cascading down a tree, each level of
which partitions the domain of interest (e.g., the real line at finer and finer levels of detail).
We partition the domain of interest into 2m sets Bεm where εm is a binary sequence of length
m.

We move through the tree via probabilities Cεm, corresponding analogously to Bεm. That is,
each node of the C-tree below corresponds to the probability of entering the analogous node
in the B-tree above.

For example, C0 is the probability we start in B0, C1 = 1−C0 is the probability we start in B1.
Upon entering B01, with probability C010 we proceed to B010 and probability C011 = 1 −
C010 we proceed to B011. In the ε-notation, upon entering Bεm at level m, with probability
Cεm0 we move to Bεm0 and with probability Cεm1 we move to Bεm1.

Hanson (2006) introduces the notation em(k) = εm for the kth set of the B-tree or C-tree at
level m, k = 1,…, 2m. This notation provides simplification of the mathematical
formulations later in the paper, as well as in coding the tree in the MCMC algorithms
proposed, em(k) being the binary representation of the number k − 1 by m digits. For
example, e3(5) = 100 in binary (i.e., the binary representation of the number four), identifies
the fifth set in either the B-tree or C-tree at level 3.

Rather than fix the probabilities Cεm, we assume for each level m
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(4)

where αεm0, αεm1 > 0 are specified. We thus have a tree of αεm values corresponding to
each level of Cεm. Note though that Cεm1 = 1 − Cεm0 for every sequence εm.

The bottom-line is that the probability of entering a node defined by the binary sequence εm
at level m is the product of probabilities along the path traversing the tree to enter that node,

(5)

where εj contains the first j digits of εm, j = 1,…, m. For example, if εm = 100 in binary,
then F(B100) = C1·C10·C100. Assuming the probabilities Cεm are independent as we progress
down the levels of the C-tree, we may use (5) to simulate distributions F from the Pólya tree
distribution. In order to implement such a simulation algorithm, presented below, we employ
the following restrictions.

• To ease implementation, Lavine (1994) suggests sampling from a partially
specified Pólya tree distribution, that is, a tree stopped at fixed level M. Walker and
Mallick (1997) fix M = 8; Hanson and Johnson (2002) recommend M ≈ log2 n for
sample size n.

• Following Walker and Mallick (1997) we assume at level M, each set Bj =[G−1{(j
− 1)/2M}, G−1{j/2M}] for j = 1,…, 2M.

• Walker and Mallick (1997) overcomes problems in identifying an arbitrarily
specified distribution over the space of frailty distributions by restricting the base
measure G to have median zero. More specifically, they assume G is a normal
distribution with mean zero and variance one hundred. Furthermore, C0 = C1 = 0.5.

• Following Lavine (1992) and Walker and Mallick (1997) we set αεm = cm2 for c >
0.

In our simulations and applications, we will consider an appropriate specification of the
variance of the base distribution G and the constant c in the specification of αεm. As
presented in Section 2, we will denote this Pólya tree distribution by F ~ PT(α, G) where α
is the collection over all binary sequences εm, m = 1,…, M, of αεm.

Simulating a Pólya tree distribution random variate
1. Initialize G, M, {Bεm }, and {αεm}.

2. Set C0 = C1 = 0.5.

3. For each m = 1,…, M − 1,

a. Generate (Cεm0, Cεm1) ~ beta(αεm0, αεm1),

b. Compute F(Bεm ) of equation (5) for each of the 2M binary sequences εM.

4. For each i = 1,…, n,

a. Generate Ui ~ Uniform(0, 1),

b.
Select interval k such that , k = 1,…,
2M,

c. Generate θi ~ Uniform(BεM(k)).
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Note that in step three, at level m we draw 2m−1 pairs of the probabilities Cεm. This
algorithm in essence draws the tree in its entirety and computes the probability of entering
any of the 2M nodes in the last level M. In step 4b, we take F(BεM(0)) = 0. In step 4c, if
either of the first or 2Mth extreme sets at level M is chosen, Walker and Mallick (1997)
recommends sampling from the base measure restricted to that chosen extreme set,
G(BεM(1)) or G(BεM(2M)) respectively.

Pólya tree distributions admit a conjugacy result in that, conditional on the frailty parameters
θ, for all εm,

(6)

where nεm0(θ) and nεm1(θ) are the number of frailties of θ in the sets Bεm0 and Bεm1
respectively. Consequently, F|θ ~ PT(α|θ, G), where α|θ denotes the update of each αεm
through nεm (θ).

4 Empirical Bayes Hastings sampler
The frailty model (1) with prior structure (2) does not lend to closed form posterior
inference. We perform statistical inference via a Markov chain Monte Carlo method. We
call this method the empirical Bayes Hastings sampler, in the spirit of Casella (2001), since
each iteration of the sampler, we not only update the parameters β, θ and F, but estimate the
baseline cumulative hazard given current random variate generations and the data. In
particular, at iteration r, the baseline hazard function is given by

(7)

where  and (βj, θj), j = 1, ···, Jr are a sample from the
Hastings sampler.

4.1 Algorithm
The Hastings sampler is as follows.

1. Initialize

• F(0), β(0), and θ(0);

•  via (3) using β(0) and θ(0);

• base measure G.

At iteration r

2. Set β0 = β(r−1), θ0 = θ(r−1), F0 = F(r−1).

3. Generate a sample (βj, θj, Fj) for j = 1,…, Jr, by iterating over the simulators
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4. Compute the baseline hazard estimator  from (7).

5. Set β(r) = βJr, θ
(r) = θJr, and F(r) = FJr.

6. Repeat steps two through five until  converge.

7. Repeat steps two and three to produce a final Hastings sample of size Jr = M.

Note that the full conditional distribution on θ is the product of the full conditional
distributions over each θi. We will thus update the univariate full conditional distributions
on θi individually.

At each iteration r the algorithm fixes the baseline cumulative hazard at  and generates
a Hastings sample of β, θ, and F. Given these new variates, the algorithm obtains a new

estimate of the baseline cumulative hazard, , and then generates a new Hastings sample
given this update. As noted by Casella (2001), step four is motivated by the Monte Carlo
EM (MCEM) algorithm. We have two iterative processes: the Hastings sampler over j at
each iteration r in step three and the MCEM algorithm over r iterating between the Hastings
sampler and M-step estimate in steps three and four respectively. We have included steps
two and five to delineate the two iterative properties from an algorithmic standpoint. In
Section 4.4, we remark on a few implementation issues to consider in applying this
algorithm.

4.2 Conditional distributions
Sampling from the conditional distributions in step three of the empirical Bayes Hastings
sampler has been detailed in Walker and Mallick (1997) for the proposed Bayesian frailty
model. In particular, β variates are generated via the polar slice sampler (see Appendix for
details) and θ variates are generated via a Metropolis-Hastings sampler with candidate
samples from F. The conditional distribution on F is, in turn, a Pólya tree distribution with
parameters updated according to the sampling of the frailties θ. These sampling schemes
were found to work well in our application and do not rely on tuning parameters (e.g.,
proposal distribution parameters), lending easily to automation.

A final note on the role of the hazard function in the empirical Bayes Hastings sampler,
recall that the likelihood is equal to, using the notation from Section 2,

(8)

The baseline hazard function λ0(t) is thus not required in any part of the Hastings sampler,
canceling in the Hastings acceptance ratio for sampling θ (and the acceptance ratio if a
Hastings sampler is used to sample β), a proportionality constant in the polar slice sampler
for β, and not appearing in the full conditional distribution on F. Thus the inconsistency of
the baseline hazard rate (see Burr, 1994), is a non-issue as we require only the cumulative
baseline hazard estimator, which is well behaved.
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4.3 Convergence issues
The empirical Bayes Hastings sampler induces a Markov chain with stationary distribution
being the posterior distribution of interest π(β, θ, F|Λ̂0, Y). The substitution of a frequentist
estimate for the unknown cumulative baseline hazard each iteration of the sampler leads us
slightly astray from the standard ergodic theory underlying MCMC samplers. The
convergence proof for our empirical Bayes Hastings sampler follows the arguments of
Casella (2001). However, the added complexity of estimating an unknown function
(baseline hazard) in our hierarchical model, as compared to unknown hyperparameters,
motivates us to briefly present the convergence theory of the empirical Bayes Hastings
algorithm within the context of the frailty model.

First note that at iteration r, equation (7) suggests maximizing a Monte Carlo estimate of the

conditional expectation  using a sample β1,…, βJr, θ1,

…, θJr from the distribution . This sample is obtained from the Hastings
sampler in step three during the (r −1)st iteration. The empirical Bayes Hastings sampler
may thus be thought of as an MCEM algorithm with an MCMC (Hastings sampler) E-step.
We may then fall back on MCEM convergence theory (see for example Caffo, Jank, and
Jones, 2005, and Fort and Moulines, 2003) to ensure estimates of the cumulative baseline
hazard from step four in the algorithm converge to the maximum likelihood estimate Λ̂0.

Interest lies in posterior inferences on the parameters β and F. We must show that the
stationary distribution of the Hastings sampler, estimating the unknown baseline hazard Λ0
with Λ̂0, is the posterior distribution of interest π(β, θ, F|Λ0, Y). The following theorem
provides us with this result. Denote the true baseline hazard by Λ0, the random parameters
by Ψ = {β, θ, F} for simplicity in notation, and the transition kernel for the empirical Bayes
Hastings sampler using baseline hazard Λ0 by P (·|Ψ; Λ0). This kernel thus denotes
transitions from Ψ conditional on both the data Y and cumulative baseline hazard Λ0;
though note that we suppress indication of the data Y throughout. The convergence theory is
studied through the total variation norm denoted ||·||T V.

Theorem 4.1—Suppose that

a. for fixed baseline hazard Λ0, the Markov chain with transition kernel P (·|Ψ; Λ0) is
ergodic with stationary distribution π;

b. the transition kernel P(·|Ψ; Λ0) has the following property: for every ε > 0, there
exists δ > 0 such that for fixed baseline hazard functions Λ0;1, Λ0;2, over all times
t, |Λ0;1(t) − Λ0;2(t)| < δ implies

for every initial distribution μ0.

Then

for every initial distribution μ0.
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Proof: Note to reviewers: we provide a detailed proof in the Appendix. We propose the
appendix to appear as on online supplement to the paper.

By the triangle inequality we have that

for every initial distribution μ0 and for fixed Λ0. Condition (a) implies that the second term
on the right hand side converges to zero. Condition (b), consistency of the estimator Λ̂0 from
(3), and an induction argument (see Roberts, Rosenthal, and Schwartz, 1998) imply the first
term on the right hand side converges to zero.

The asymptotic theory here is different than a standard MCMC convergence result in that
we are studying convergence over the iteration count r, Monte Carlo sample size M, and
sample size n. The MCEM argument ensures that steps three through six of the empirical
Bayes Hastings sampler provides us with an MLE Λ̂0 for the baseline hazard asymptotically
over r. Ergodic theory ensures that step seven of the algorithm provides us with a sample of
size M from the posterior distribution π(Ψ|Λ̂0, Y). Theorem 4.1 states that given a
consistent MCEM-type estimator of Λ0, step seven induces a Markov chain with stationary
distribution π(Ψ|Λ0, Y) asymptotically over M and n.

For the algorithm put forth in Section 4.1 and our application in Section 8, the MCMC
routine in that case is a Gibbs sampler over the parameters β, θ, and F. The cumulative
baseline hazard function enters the transition kernel through an exponential function
presented in the likelihood (8). Consequently, condition (b) in Theorem 4.1 follows by a
continuity argument.

4.4 Implementation issues
The Hastings sampler in Section 4.1 includes two iterative processes: a Hastings sampler in
step three and an MCEM algorithm with a Markov chain Monte Carlo E-step in steps two
through six. A few remarks are in order towards implementing each of these processes and
the algorithm in general.

• Since step four is in essence a Monte Carlo EM M-step, we confront the problem of
choosing an appropriate Monte Carlo sample size, Jr. In particular, Tanner (1993)
suggests increasing the Monte Carlo sample size as the MCEM algorithm
progresses since we require a more precise Monte Carlo E-step estimate as we enter
smaller neighborhoods about the MLE. Thus the dependence of the Monte Carlo
sample size Jr on the iteration count r. We adopt the method of Levine and Fan
(2004) to choose the Monte Carlo sample size.

• The algorithm may be potentially computationally expensive requiring the
implementation of a Hastings sampler each iteration r. We employ importance
sampling techniques to overcome this expense, in particular, updating a single
Hastings sample through importance weights at each iteration r, rather than
generating a Hastings sample at each iteration (see Levine and Casella, 2001, for
details).

• Steps two through six do not forgo the need for a burn-in in the Hastings sampler in
step seven. In particular, it is well known that the Hastings sampler for fitting non-
parametric Bayesian models with Pólya tree prior distributions mixes slowly

Levine et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Hanson, 2006). In the examples in the following section we choose a conservative
burn-in and subsample the variates generated.

• We find specification of the spread of the base measure in the Pólya tree prior
affects the resolution of the estimate of the frailty distribution of the model. We
thus recommend gauging the range of the frailties through a fit of the Clayton and
Cuzick (1985) extension of the Cox proportional hazards model with gamma frailty
for multivariate survival times. Though we know this model is inappropriate for
fitting our data, it is easily fit in software such as R/Splus and allows us to make
conservative, ballpark guesses of the spread of the base measure.

5 Validation examples
In this section we perform simulation experiments to study the efficacy of our empirical and
nonparametric Bayesian approaches for drawing inferences from the frailty model. We are
particularly concerned with non-standard frailty distributions. We thus simulate data from
two frailty models, apply the algorithm of Section 4.1, and study the parameter and frailty
distribution estimates as a means of validating our modeling approach. The simulations
consider frailty model (1) with

1. standard normal log frailty distribution N(0, 1) with no covariates;

2. standard normal log frailty distribution N(0, 1) and two covariates with β = (1, ln
2);

3. mixture of normals log frailty distribution 0.5N(−1, 0.25) + 0.5N(1, 0.25) and no
covariates;

4. mixture of normals log frailty distribution 0.5N(−1, 0.25) + 0.5N(1, 0.25) and two
covariates with β = (1, ln 2).

For both models 2 and 4, the first covariate takes a common value within each cluster: z11 =
z12 ~ Bernoulli(0.5), while the second covariate can take different values within the same
cluster: (z21, z22) is distributed according to a bivariate normal distribution with zero vector
mean, variance components of one, and correlation coefficient 0.75. The two covariates are
independent of each other, and are also independent of the frailty distribution. We simulated
data under each model with n = 200 clusters and Ki = 2 observations for each cluster (e.g.,
two eyes for each subject). Following an implementation of the Levine and Fan (2004)
routine to allow the cumulative baseline hazard estimates to converge in steps two through
six of Section 4.1, we ran the Gibbs sampler in step seven of the algorithm in Section 4.1 for
60,000 iterations, keeping every fifth sample, after a burn-in of 10,000 iterations.

Figure 1 presents the posterior estimates of the frailty distributions under each of these four
simulation models. Note that the nonparametric modeling of the frailty distribution allows us
to pick up the bell-shape and bimodal shapes of the distributions in each case, respectively.

Table 1 presents Monte Carlo estimates of the regression parameters β and standard
deviations for each of the two simulation experiments in which covariates were included.
These estimates are averages across 50 simulation runs for each model, that is, we are
studying the estimator consistency. The algorithms are initiated with β = (0, 0). Note that in
each case, the algorithm presents consistent estimates of the coefficients.

In order to study the gains in nonparametrically modeling the frailty distribution, we
perform an additional simulation along the lines of frailty model number four above.
However, we imagine that only one covariate is in the model, though correlated with another
covariate (with correlation coefficient 0.5) that determines the mode of the frailty
distribution. The algorithm specifications are the same as above. A normal log frailty fit to
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the model finds a coefficient estimate of 0.39 with standard deviation 0.20. This estimate not
only falls short of the true β = 1, but in fact infers a non-significant coefficient (i.e., not
significantly different than zero at the 5% level). Figure 2 presents the posterior estimate of
the frailty distribution in this simulation experiment. Note that the nonparametric modeling
of the frailty distribution identifies two modes at −1 and 1. Furthermore, the inference on β
is less affected by the unobserved covariate, presenting on average an estimate of 0.80 with
standard deviation 0.11.

6 Goodness of fit for the frailty distribution
Testing for parametric forms of the frailty distribution within the nonparametric model (2) is
relatively straightforward by nesting the hypothesized parametric frailty distribution within
the Pólya tree prior. The goodness of fit may thus be evaluated through the Savage-Dickey
ratio approximation of the Bayes factor (Verdinelli and Wasserman, 1995). Hanson (2006)
summarizes computation of this approximate Bayes factor within Pólya tree models. In this
section we will briefly detail the application of Hanson (2006) to the empirical Bayes
Hastings sampler setting.

We may nest the hypothesized parametric frailty distribution within the Pólya tree prior
distribution outlined in Section 3 by specifying the base measure G as this parametric frailty
distribution. Lavine (1992) then shows that under the null hypothesis

(9)

namely an equal probability of branching left or right down the Pólya tree, the frailty
distribution F follows the parametric form of the base measure. Consequently, the goodness
of fit test of this parametric frailty distribution is equivalent to testing hypothesis (9).

The Savage-Dickey density ratio approximates the Bayes factor of the posterior odds in
favor of H0 against the prior odds in favor of H0 as

(10)

where πH0 ( ) and πH0 ( |Data) are the prior and posterior densities of , respectively,
evaluated under the null hypothesis of all Cεj = 0.5. Here  represents the set of all elements
in the C-tree, namely Cεj for all binary sequences εj, j = 1,…, M, and Data representing the
triplet of failure/censoring time, censoring indicator, and covariates {Xik, δik, Zik} for each
observation k = 1,…, Ki within cluster i = 1,…, n. This formulation follows from nesting the
hypothesized parametric form of the frailty distribution within the Pólya tree prior under
which the prior distribution on the coefficients β in (2) is the same under the null and
alternative hypotheses of interest (Verdinelli and Wasserman, 1995).

The prior density in (10) is easily computed under H0 being the product of beta densities (4)
evaluated at 0.5,
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where Beta(·, ·) is the Beta function and the first term in the product, at j = 0, uses
parameters α0 and α1. Though we do not explicitly sample  in the Hastings sampler of
Section 4, the posterior density may be computed from the variates of θ generated

the Rao-Blackwellized estimator of Gelfand and Smith (1990) under the hierarchy in (1) and
(2). Here

where αej (k)0(θ(i)) = αej (k)0 + nej(k)0(θ(i)) and αej (k)1(θ(i)) = αej (k)1 + nej (k)1(θ(i)) with, as
detailed in Section 3, the parameters αej (k)(θ(i)) updated according to the variates θ(i)

generated via nej (k)(θ(i)), the number of frailties of θ(i) in Bej (k). Both the prior and posterior
densities in the Bayes factor (10) involve merely a post-processing of the empirical Bayes
Hastings sampler variates already generated to fit the frailty model, without any additional
Hastings sampler iterations nor Hastings sampler implementations to generate variates from
other marginal distributions.

Hanson (2006) notes that this Hastings sampler Savage-Dickey density ratio approximation
to the Bayes factor is poor when the hypothesized frailty distribution is highly unlikely as
the null value of  has very low posterior mass. However, this is a problem only when
testing a hypothesized nonparametric frailty distribution. When testing a hypothesized
parametric frailty distribution, a large Bayes factor is a large Bayes factor, the
approximation not being thrown off to the point of incorrectly accepting a highly unlikely
null hypothesis. Furthermore, the approximation performs well when the hypothesized
parametric frailty distribution is moderately unfavored or favored by the data. On top of the
minimal computational and coding expense in producing the Savage-Dickey density ratio
(10), we thus propose this approach for goodness of fit testing of parametric frailty
distributions within the empirical Bayes Hastings sampler framework.

7 Model selection
In this section we consider the problem of variable selection, choosing the optimal set of risk
factors for predicting the outcome of interest. Comparisons between competing models may
be made through Bayes factors. However, the Bayes factor computations of Section 6 are
developed under the assumption of nested models, namely the hypothesized parametric form
of the frailty distribution is nested within the nonparametric (Pólya tree prior) frailty
distribution. In model selection, we may wish to compare models with non-intersecting sets
of variables. Not only then are the models not nested, but the models are fitting
nonparametric frailty distributions. Though we are not directly testing nonparametric
alternatives to the frailty distribution, as mentioned at the end of Section 6, the Bayes factor
approximation (10) may be unreliable. We thus take an alternative approach, using our
Hastings sampler to simulate over the model space of interest.

Levine et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our goal in model selection is to decide whether each risk factor or covariate belongs in the
final model, that is, whether the regression coefficient βl for each l = 1,…, p in model (1) is
zero or not. We follow the method of Gottardo and Raftery (2008), in which our Hastings
sampler traverses over the model space by simulating zero or non-zero values for each
regression coefficient (see also Kuo and Mallick, 1998). The coefficient value is chosen
according to the Hastings acceptance rule, deciding whether to remove, say, variable l from
the model (βl = 0) or not (βl ≠ 0). To build such decisions into the Hastings sampler, we
specify the prior distribution on each coefficient βl as a mixture distribution

(11)

where π0 is the prior probability variable l belongs in the model, I(βl = 0) is a point (Dirac)
mass at zero, and π(βl) is the prior distribution on βl from (2).

The prior distribution (11) is a mixture of mutually singular distributions, being the point
mass at zero and the continuous distribution π(βl). However, Gottardo and Raftery (2008)
show that such mixture priors present minimal difficulties as we may obtain a density with
respect to the measure (δ0 + λ), the sum of the Dirac mass at zero and the Lebesgue
measure. In our case, the prior density is

where  is the normal density on βl with mean zero and variance  as derived
from the multivariate normal prior in (2). Note that this mixture density explicitly models
the inclusion and exclusion of variable l from the model, through components corresponding
to βl = 0 and βl ≠ 0. The removal of zero from the support of the second component,
nonetheless, is required to ensure a valid density with respect to the measure (δ0 + λ).

The polar slice sampler (see Section 4.2 and the Appendix) is easily modified to handle the
mixture prior. However, we recommend performing the model selection with the mixture
prior distribution (11) for a “burn-in” period. Upon achieving equilibrium, the best model is
chosen and the sampler presented in Section 4 for prior distribution (2) is run to draw
inferences and study frailty distribution goodness-of-fit.

Gottardo and Raftery (2008) discuss a Metropolis-Hastings sampler implementation of
MCMC over mixtures of mutually singular distributions which may be adapted within our
setting. Gottardo and Raftery (2008) find that such an implementation is computationally
more expensive, statistically less efficient, and less easily automated as compared to the
Gibbs sampler (polar slice sampler) implementation. We thus choose the Gibbs steps as they
fit naturally within our proposed empirical Bayes Hastings sampler and performs admirably
in the SWAP application. However, in applications where the requisite full conditional
distribution are not available for the polar slice sampler, the Metropolis-Hastings sampler
provides a viable alternative.

8 Analysis of the SWAP data
In this section we illustrate the proposed empirical Bayes Hastings sampler for frailty
modeling on a data set collected by Demirel and Johnson (2001) to study the performance of
two methods for detecting early glaucomatous visual field damage, standard automated
perimetry (SAP) and short wavelength automated perimetry (SWAP). The data consists of
220 subjects (440 eyes) with ocular hypertension, as measured by an untreated intraocular
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pressure (IOP) greater than 21 mm Hg, at two occasions during the baseline period, SAP
fields within normal limits at baseline relative to an age representative pool of normal
individuals, and no other condition that may affect visual fields other than the risk of
glaucoma, recruited from the Sacramento, California region. The data set under study here is
slightly smaller than that used in Demirel and Johnson (2001) as we included only subjects
with vertical cup-to-disc data. As such data is an important, and in this study the only,
measure of structure towards glaucomatous end point, we deemed it a pre-requisite for our
analysis. The subjects were followed for at least three years, with median follow up of four
years and maximum follow up 9.6 years. The average baseline IOP across the subjects was
23.87 mm Hg with standard deviation 2.94 mm Hg. The outcome measure is glaucomatous
visual field loss determined by a classification of abnormal visual fields based on SAP on
two consecutive visits during the study period. Eighteen eyes (4% of study eyes) reached
endpoint during the follow up period. These eighteen eyes come from fourteen subjects (6%
of study subjects), namely four subjects had both eyes reach end point.

Demirel and Johnson (2001) consider the prevalence and incidence of SWAP and SAP
deficits over the period of the study. However, for the purposes of this illustration, we
consider the relationship of baseline SWAP results (BLSWAP) as well as SAP-based visual
field, clinical, and demographic measures on glaucomatous visual field abnormality based
on SAP. Table 2 summarizes all baseline predictor variables in the analysis. Note that all
ocular variables, except family history of glaucoma, are measured for each eye (eye-
specific), whereas demographic variables are patient-specific. The subjects in the study had
an average age of 57, ranging from a 13 year old to an 81 year old; 113 subjects were male;
20 subjects were African-American; and 58 subjects identified a family history of glaucoma.

The times to glaucomatous visual field loss for the two eyes from each patient can be
expected to be correlated with unknown dependence structure influenced by unobserved co-
variates (e.g., treatment strategies for ocular hypertensive patients and more detailed visual
field and optic disc measurements/imaging). Specifying a parametric frailty distribution, for
example the popular gamma distribution, thus seems arbitrary at best, motivating the use of
a nonparametric frailty term.

We use the routine of Section 7 to select an appropriate model for the relationship between
the risk factors of Table 2 and onset of glaucoma. In this model selection routine, we force
the baseline SWAP indicator (within or outside normal limits) into the model as the SWAP
indicator is the variable of key interest in the study. SWAP is believed to be able to detect
early glaucomatous abnormalities several years before SAP (Demirel and Johnson, 2001).
Hence the baseline SWAP status may be predictive of the confirmed glaucomatous endpoint
based on SAP. We also force VCD and IOP into the model since VCD is the only optic disc
measurement collected in the study and since study subjects all have ocular hypertension.
Thus VCD and IOP are important covariates over which to control in a model of time to
glaucomatous visual field loss. Variable selection is thus performed over all other variables
in the data set. We set the parameters in the prior distribution on β to be the estimates from a
fitted frequentist gamma frailty model to the relevant set of covariates. We initialize β(0) at
the prior mean, θ(0) with a zero vector, F(0) at a sample from the Pólya tree distribution with

parameters αεm, and  at the estimate (3) with the initial values of β(0) and θ(0). The prior
probability that a variable is included in the final model is taken as π0 = 0.5, so every model
is equally likely a priori.

The last column of Table 2 presents the posterior probability that each regression co-
efficient, βl, l = 1,…, 11, is non-zero. Table 3 presents the posterior probability of each
model selected. Note that the best model selected includes the variables MD, gender, age,
BLSWAP, IOP, and VCD. Subject gender and age, though not forced into the model, appear
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in all models presented in Table 3. Interestingly, mean deviation is the variable selected to
account for visual field damage on glaucomatous loss, as opposed to either PSD or CPSD.
We note that the additional steps of simulating each regression coefficient separately as part
of the model selection routine within the Hastings algorithm requires negligible
computational cost and minimal additional coding. As an aside, though perhaps obvious, we
found coding the models as 11-digit binary numbers, with digit l identifying whether
variable l = 1,…, 11 is in the model (one) or not in the model (zero), facilitates summaries of
model posterior probabilities through conversions back and forth between the binary and
decimal representations. For example, the best model is coded as 10001011011 with decimal
representation of 1,115.

To test the hypothesis of a gamma frailty distribution, we assume a log-gamma base
measure G on the log-frailty parameter (θi) for the Pólya tree distribution prior. As
suggested by Walker and Mallick (1997) and Lavine (1992), we center the first partition of
the Pólya tree at the zero. This assumption is analogous to fixing the gamma frailty
distribution to a mean of one, the motivation here being to fix the median of the frailty
distribution F to ensure identifiability of the frailty distribution from the baseline hazard in
our model. A fit of a frequentist gamma frailty model to the data suggests a standard
deviation of 8.4 for the distribution of the frailties. We grow the tree to M = log2 220 = 8
levels assuming αεm = c · m2 with c = 1 as recommended by Hanson and Johnson (2002).
We note as well that inferences drawn in this application appear to be robust to choice of the
partition tree, both specification of the base measure and options for αεm that are less
susceptible to over-smoothing. We refer the reader to the Appendix Section 10.3 for results
from a sensitivity analysis to this end.

Table 4 presents descriptive summaries of the final model selected. Figure 3 presents the
estimated frailty distribution. The routine of Section 6 obtains a Bayes factor on the order of
1012 against a hypothesized gamma frailty distribution. The bimodal nature of the frailty
distribution suggests the possible absence of significant covariates in the prediction of
glaucoma onset. The SWAP indicator turns out not to be a significant predictor of
glaucomatous endpoint at the 5% “significance level.” Though moderately surprising, this
finding may be explained by three factors. First, as mentioned earlier, SWAP has been
shown to detect glaucomatous abnormalities on the order of 3 to 5 years earlier than SAP.
However, our data considers a 10 year follow-up and time to endpoint of up to 8.2 years.
Baseline SWAP can not be expected to predict an endpoint that far in advance, especially
when there are other strong predictors in the model. Second, visual field tests are highly
variable, glaucomatous endpoints typically determined by at least two consecutive abnormal
fields. Thus a single baseline SWAP evaluation as used in this model may not be sufficient.
Our analysis thus suggests expanding the study and modeling machinery to longitudinally
collected SWAP and abnormalities detected by consecutive, multiple SWAP evaluations
(office visits). Third, we note that this data set contains only 18 endpoints from which we
aimed to draw inferences on glaucomatous progression and the predictive ability of SWAP.
Nonetheless, though the power, per se, of the inferential procedures, is low, the “significant”
findings suggest a signal which may be reconfirmed in future analyses with more outcomes.

9 Discussion
The Bayesian frailty model approach put forth is modular with respect to nonparametric,
parametric, or empirical Bayes considerations for the three components: regression
parameters, frailty distribution, and cumulative baseline hazard. For example, empirical
Bayes methods might be considered for a “nuisance” frailty (parametric) distribution. And if
the cumulative baseline hazard or baseline hazard rate is of interest, a prior on and MCMC
updating of that function may be considered. Of course, care must be taken in choice of such
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a frailty distribution as incorrect specification may affect the regression coefficient
estimates. Furthermore, as suggested by a reviewer, an alternative Pólya tree model
approach such as finite mixtures of Pólya trees (see e.g., Hanson, 2006), random Pólya tree
(Paddock et al., 2003), or optional Pólya trees (Wong and Ma, 2010) may be considered for
the distribution of the log-frailty parameters. As the sensitivity analysis in the Appendix
Section 10.3 suggest a robustness to choice of tree partitioning in our application, one of the
primary reasons to opt for these alternatives, we leave extension of our empirical Bayes
Hastings sampler scheme to that end for future work.

Nonetheless, the empirical Bayesian Hastings sampler proposed outputs a frequentist
estimate of the cumulative baseline hazard function, Λ̂0(t). Though we motivate the
approach thinking of this function as a nuisance parameter in our application or of secondary
interest in many such analysis problems, survival and hazard curves over desired covariate
combinations may be presented along with an estimate of variability.

One of the primary motivations for developing our empirical Bayes Hastings method is the
potential for automation of the routine, in comparison say to the popular piecewise-constant
hazard (gamma process) approach used by Clayton (1991) and Walker and Mallick (1997),
being computationally no more expensive and easier to code through a computation of the
frequentist nonparametric cumulative hazard estimator instead of a Gibbs sampler.
Furthermore, we are alleviated from any tuning parameter tweaking, for example, in the case
of the piecewise-constant hazard selection of the prior process parameters and the number of
independent increments or “pieces”. Granted Walker and Mallick (1997) argues inferences
drawn are insensitive to sensible choices of these parameters, Clayton (1991) stating that the
piecewise-constant prior model for Λ0 is adequate when the regression parameters are of
primary interest. However, the independent-increments prior process, as the name suggests,
creates highly discretized and independent hazards. Such disadvantages may be overcome,
but even a simple extension to the correlated prior process of Aslanidou, Dey, and Sinha
(1998) requires application of the Metropolis-Hastings algorithm significantly increasing
computational expense in the form of coding, tweaking, and run time. Of course, further
generalizations as put forth in Chapters 3 and 4 of Ibrahim et al. (2001) merely exacerbate
the situation comprising computational expense for realism, a trade off we argue is
unnecessary with the empirical Bayes Hastings sampler approach.
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We propose this appendix to appear in an online supplement for the paper.
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10.1 Sampling regression parameters
To sample from the full conditional distribution [β|θ, F, Λ̂0, data], we apply the polar slice
sampler of Roberts and Rosenthal (2002), see also Robert and Casella (2004, Chapter 8).
This sampler augments the target variates β = (β1,…, βp) to produce a Gibbs sampler over
these p variates and the augmented variates. However the conditional distributions are
available in closed form, the only complication being a restricted support, easily lending to
an automated sampling routine which, for our application, works without any difficulties.

Consider sampling from one component of β, say β1 for illustration. In the remainder, we
suppress the conditioning arguments {θ, F, Λ̂0, β−1, data}, where β−1 is β without the first
component. Introduce variables U and V on the positive real line such that

where

Xikl is the lth element of the vector Xik, π(β1|β2,…, βp) is the full conditional distribution of
β1 from the prior distribution on β (in our case a univariate normal distribution), and the
constrained space over which u and v are defined derive from the likelihood (8). We may
then implement a Gibbs sampler iterating over the full conditional distributions

where μ−1 is the β prior mean vector without the first component,

Sampling from β thus requires sampling from 3p conditional distributions, the full
conditional distributions on each of the p components of β augmented by draws of two
variates, u and v, for each component.

For the polar slice sampler required in Section 7, the prior distribution is specified
componentwise lending direct application of the above Gibbs sampler though generating
variates, say for the first component as illustrated, from the prior mixture distribution on β1.
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10.2 Proof of Theorem 4.1
We will need the following lemma.

Lemma 10.1
If condition (b) of Theorem 4.1 holds, then the r-step transition kernel P(r)(·|Ψ; Λ0) has the
same property: for every ε > 0, there exists δ > 0 such that for fixed baseline hazard
functions Λ0;1, Λ0;2, over all times t, |Λ0;1(t) − Λ0;2(t)| < δ implies

for every initial distribution μ0.

Proof—The proof follows the induction argument of Roberts et al. (1998). Let ε > 0 and

pick δ > 0 such that for all times t |Λ0;1(t) − Λ0;2(t)| < δ. Note that for fixed  is
a transition kernel of a Hastings sampler with stationary distribution π. For r ≥ 2 and for any
set A, we also have

uniformly in A. Thus by condition (b) and the inductive hypothesis, we have that

We may now prove Theorem 4.1. By the triangle inequality we have that

for every initial distribution μ0 and for fixed Λ0.

By consistency of the estimator Λ̂0 from (3), there exists an R such that for all r ≥ R,

Let γ, δ > 0. By Egoroff’s Theorem and consistency of Λ̂0 from (3), there exists an N such
that for all times t, |Λ̂(t) − Λ0(t)| < δ for all n ≥ N except on a set of π-measure less than γ.
Therefore, by condition (b), for all ε > 0, there exists an Rn for each n such that for times t,

 implies
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for all r ≥ Rn. Consequently, for every initial distribution μ0 and all r ≥ max{R, Rn},

10.3 Sensitivity analysis: tree partitioning
The Pólya tree prior used in this paper is known to potentially leave inferences highly
dependent on the tree partition chosen. In this section, we present a subset of results from a
sensitivity analysis to study the impact of construction of the B- and C-trees of Section 3,
specifically specification of the sets Bεm through the chosen base measure and the beta
distribution in (4) through choice of the αεm parameters. For the latter, a reviewer correctly
pointed out that the specification αεm = cm2 at level m = 1,…, M with c > 0 may over-
smooth and hide dependence on the partition for higher (low m) levels of the tree. We thus
choose a slower decay for small m setting αεm = c · mI(m ≤ 4) + c · m2I(m ≥ 5) in the
following analysis.

For the B-tree, we vary the partition here by fitting the model with two base measures:
gamma distribution and normal distribution, varying the standard deviation of each for a
“tight” partition, “moderate” partition analogous to that used in the analysis of Section 8,
and a “wide” partition equating to small, medium, and large standard deviations of 1, 8, and
15 respectively. In each case, we ran our empirical Bayes Hastings sampler on the SWAP in
an analogous manner to that performed in Section 8, the only modification being in the
specification of the αεm, as noted in the previous paragraph, and the base measure chosen.
Figure 4 presents descriptive summaries of the posterior distribution on β from the six base
measure scenarios considered. The figure suggests inferences are robust to choice of tree
partition, the posterior means and standard deviations varying little for each of the six
variables gender, age, intraocular pressure, vertical cup-to-disc ratio, mean deviation, and
SWAP indicator. Furthermore, not only are the 95% credible sets for each coefficient of
similar range across different base measure and standard deviation choices, but,
correspondingly, do not suggest any coefficient estimates as outlying nor changes in
“statistical significance”. We note that a vast array of options have been considered in
addition to the scenarios presented here, inferences being robust over all analyses
performed.
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Figure 1.
Empirical Bayes Hastings sampler estimated frailty distributions from each of the four
simulation experiments.
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Figure 2.
Empirical Bayes Hastings sampler estimated frailty distribution from the simulation
experiment with frailty distribution being a mixture of normals and unobserved covariate.
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Figure 3.
Empirical Bayes Hastings sampler estimated frailty distribution over the six regression
coefficients corresponding to the model presented in Table 4 for the SWAP data.
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Figure 4. This figure will appear as part of the online supplement to accompany appendix
Section 10.3
Summaries of the posterior distribution of β in study of six scenarios for choice of base
measure (normally distributed base measure with standard deviations one, eight, and fifteen,
N1, N8, and N15 respectively, and gamma distributed base measure with standard
deviations one, eight, and fifteen, g1, g8, and g15 respectively) and its affect on inferences.
The six subplots correspond to coefficients for each of the six covariates in Table 4 and
present posterior mean (denoted by an ‘x’), posterior standard deviation (delineated by the
error bars being two standard deviations from the mean), and the 2.5th and 97.5th
percentiles (denoted by circles ‘○’).
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Table 1

Estimates of β from 50 simulation data sets under each frailty distribution. True β = (1, 0.69) with n = 200
subjects, Ki = 2 observations each.

Normal frailty Bimodal frailty

β̂1 (sd) 0.99 (0.16) 1.00 (0.13)

β̂2 (sd) 0.71 (0.13) 0.67 (0.09)
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Table 2

Baseline predictor variables included in analyses. Family history of glaucoma and the three systemic variables
are patient-specific; all other variables are eye-specific. Last column presents estimates of the posterior
probability the corresponding regression coefficient is non-zero in the model selection routine.

Variable Units Abbreviation Post prob

Visual field variables (based on SAP)

1. Mean deviation decibels (dB) MD 0.998

2. Short-term fluctuation dB SF 0.022

3. Pattern standard deviation dB PSD 0.018

4. Corrected PSD dB CPSD 0.001

Clinical variables

5. Intraocular pressure mmHg IOP 1.000*

6. Family history of glaucoma factor Hx 0.016

7. Vertical CD no units VCD 1.000*

8. Shortwave automated perimetry result factor BLSWAP 1.000*

Systemic/Demographic variables

9. Race (African-Am vs. all others) factor RACE 0.028

10. Gender factor GENDER 1.000

11. Age at baseline years AGE 1.000

*
Note that BLSWAP, IOP, and VCD are forced into the model thus effectively receiving a posterior probability of one.
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