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Abstract

Missing data are common wherever statistical methods are applied in practice. They
present a problem in that they require that additional assumptions be made about the mech-
anism leading to the incompleteness of the data. By incorporating two models for the missing
data process, doubly robust (DR) weighting-based methods offer some protection against mis-
specification bias since inferences are valid when at least one of the two models is correctly
specified. The balance between robustness, efficiency and analytical complexity is one which
is difficult to strike, resulting in a split between the likelihood and multiple imputation (MI)
school on one hand and the weighting and DR school on the other. A simple extension of MI
is proposed that, in certain settings, can be shown to give rise to DR estimators. It is conjec-
tured that this additional robustness holds more generally, as demonstrated using simulation
studies. The method is applied to data from the RECORD study, a clinical trial comparing
anti-glycaemic combination therapies in type II diabetes patients.
Keywords: Doubly robust estimation; Missing data; Multiple imputation

1 Introduction

Missing data are common wherever statistical methods are applied in practice. When some data
are missing, additional assumptions must be made about the mechanism leading to the incomplete-
ness of the data and/or the relationship between the observed and unobserved data. Depending
on the method of analysis, these assumptions can take many forms.

One common assumption is that the data are missing at random (MAR) in the sense defined
by Rubin [1976]; that is, conditional on the observed data, the probability of observing a partially-
observed variable does not depend on the (potentially missing) value taken by that variable. It
is impossible to justify MAR using the observed data; as shown by Molenberghs et al. [2008],
every missing not at random (MNAR) model has a MAR counterpart fitting the observed data
equally well. Thus the plausibility of MAR must be carefully considered using substantive knowl-
edge external to the data. In most practical situations, the best we can hope for is that MAR
approximately holds, and that any further dependence on the unobserved data has limited impact
on our conclusions. When this is implausible, MNAR sensitivity analyses should be considered
[Kenward, 1998, Little and Yau, 1996, Molenberghs et al., 1999, Robins et al., 1999].

Suppose we accept the MAR assumption, or wish to conduct a MAR analysis as a point of
departure for sensitivity analyses. The full data assumptions are the assumptions we would have
made when analysing the full data were they to have been completely observed. When analysing
incomplete data under the MAR assumption, further assumptions are often necessary, in addition
to the full data assumptions and MAR. Broadly speaking, these additional assumptions fall into
two categories: (1) those regarding the form of the conditional distribution of the missing data
given the observed data, which—in this paper—we call the partially-observed data (POD) model,
and (2) those regarding the form of the conditional probability of observing the partially-observed
variables given the observed data, which we call the probability of missingness (POM) model.
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In this paper, we use full data (FD) model to refer to the model (fully-, semi- or non-parametric)
which would have been specified if the full data had been completely observed. Often, the POD
model is left unspecified in the FD model. For example, suppose that the full data analysis would
have been a simple linear regression of the outcome Y on explanatory variables X1 and X2, but
that X1 is MAR conditional on X2 and Y . In this case, a model for X1 conditional on X2 and Y is
not implied by the FD model, and thus further assumptions will be necessary if, say, a maximum
likelihood [Little and Rubin, 2002, p.145], expectation-maximisation (EM) [Dempster et al., 1977]
or multiple imputation [Rubin, 1987] analysis of the incomplete data is to be conducted: namely,
the POD model must be specified. Misspecification of the POD model, in general, induces bias in
the resulting estimates.

If a POM model is needed, this is clearly not implied by the FD model. Thus, methods
based on inverse probability weighting [dating back to Horvitz and Thompson, 1952], for example,
require the additional specification of a POM model. Again, misspecification of the POM model,
in general, induces bias in the resulting estimates.

An exception occurs when a maximum likelihood (or Bayesian) analysis is planned and the FD
model implies a POD model. This occurs, for example, in a repeated measurements setting when
the repeated outcomes are MAR and follow a monotone pattern (that is, if a particular outcome
is missing, all subsequent outcomes are also missing) and a multivariate normal model is assumed
(e.g. in a random intercepts and slopes analysis). In practice, however, the model for the full data
is unlikely to be precisely correct, and the consequences of departures from this model are more
serious when the data are incomplete. In addition, the fit of the FD model can only be assessed
for the observed data. Even if the FD model appears to fit the observed data well, the assumption
that it also fits the unobserved data well can rely on considerable extrapolation when the observed
and unobserved data differ substantially on the values of some variables. Even apparently mild
misspecification of the FD model can lead to bias in the resulting estimates.

So-called doubly robust (DR) methods [Bang and Robins, 2005, Creemers et al., 2011, Robins
et al., 1994, Scharfstein et al., 1999, Tsiatis, 2006] specify (in addition to MAR and a FD model)
both a POD and POM model, and the results from such an analysis have been shown to be valid
when (in addition to the assumptions of MAR and the FD model) at least one of the POD and
POM models is correctly-specified. In particular, they have mainly been proposed in situations
in which the FD model is either semi- or even non-parametric, thus increasing the chances of
correctly specifying the FD model. This (partial) protection against model misspecification makes
DR methods attractive in many settings. Until recently, however, the absence of a general method
for deriving DR estimators coupled with the complex mathematical underlying theory, has meant
that, since their introduction in the 1990s, DR estimators have not been very widely used in
practice. A paper by Bang and Robins [2005], in which a general method, implemented using
existing software, is described both for cross-sectional univariate missing data and longitudinal
data with monotone dropout, constitutes therefore a very important advance in the literature on
this topic.

In this paper, we use the idea proposed by Bang and Robins [2005] within the multiple impu-
tation [Rubin, 1987] framework to improve the robustness of MI estimators. In certain settings
we show that the resulting estimators are DR. More generally, for example when the pattern of
missingness is non-monotone and using chained equations [van Buuren et al., 1999], we conjecture
that our approach leads to improved robustness, and demonstrate this using simulation studies.
Our approach is motivated from two different perspectives. First, we aim to reduce the reliance
of multiple imputation on the correct specification of the imputation model, and second, since
multiple imputation is the only method that can easily deal with non-monotone patterns of miss-
ingness, it is a natural starting point when seeking doubly robust estimators for incomplete data
with such a missingness pattern.

The outline of the remainder of this paper is as follows. We start, in Section 2, with an
overview of some of the relevant theory from the missing data literature. In particular, we dis-
cuss randomised monotone missingness (RMM) processes, augmented inverse probability weighted
(AIPW) estimators and multiple imputation with chained equations (MICE). In Section 3, we de-
scribe our proposed method, before demonstrating its properties in Section 4, using simulation
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studies. In Section 5, we demonstrate how our method is implemented in practice using data from
a clinical trial comparing three different anti-glycaemic drugs for type II diabetes patients. This
dataset contains repeated measurements of HbA1c, subject to non-monotone missingness.

2 Theoretical background

2.1 Full data estimating equation

Let Zi = (Z1,i, Z2,i, . . . , ZJ,i)
T
be the full data vector on subject i, that is, the data on J variables

which would have been observed on subject i in an ideal setting with no missing data, where
i ∈ {1, . . . , n}. Let Ri = (R1,i, R2,i, . . . , RJ,i)

T
be the corresponding vector of (non-)missingness

indicators, where Rj,i = I (Zj,i is observed), and I (·) denotes the usual indicator function.
In the absence of missing data, we suppose that the following estimating equation

n∑
i=1

Uθ (Zi,θ
full) = 0

would be solved to estimate θ, a vector of parameters governing the distribution of Zi.
Uθ (·) defines the FD model. If Uθ (·) is a score function, θ represents the parameters of a

fully-parametric specification of the distribution of Zi. More often, the model defined by Uθ (·) is
semi- or even non-parametric. θ̂full is a consistent estimator of θ if and only if E {Uθ (Zi,θ0)} = 0
at the true value θ0 of θ [Cox and Hinkley, 1974].

2.2 Complete case estimating equation

When the data are incomplete, the complete case (CC) estimator θ̂CC is the solution to

n∑
i=1

I
{
Ri = 1(J×1)

}
Uθ (Zi,θ

CC) = 0.

Here, 1(J×1) is used to denote a (J × 1) unit vector. Even when we assume that the full data

model is correct (i.e. that θ̂full is a consistent estimator of θ), it is easily shown that for the
expectation of I

{
Ri = 1(J×1)

}
Uθ (Zi,θ0) to be zero, P

{
Ri = 1(J×1)

∣∣Zi} must be independent
of Zi, i.e. the data must be missing completely at random (MCAR) as defined by Rubin [1976],
an assumption which is unlikely to hold in most practical settings.

2.3 Infeasible inverse probability weighted complete case estimating
equation

To correct for the bias in the CC estimator whenever data are not MCAR, we can weight the
contributions to the estimating equation according to the inverse probability of Ri = 1(J×1) given
Zi. The resulting inverse probability weighted complete case (IPW) estimating equation is

n∑
i=1

I
{
Ri = 1(J×1)

}
P
{
Ri = 1(J×1) |Zi

}Uθ (Zi,θ
i-IPW) = 0

and it is trivial to show that the Cox and Hinkley condition (zero expectation of the estimating
function) holds whenever the FD model is correct. Intuitively, we assign a high weight to subjects
with a low conditional probability of being fully-observed, so that they represent subjects with
similar characteristics who were not fully-observed and thus are not included in the CC analysis.

We refer to this estimator as θ̂i-IPW, the infeasible [cf. Robins et al., 1992] IPW estimator,
since, in most practical settings P

{
Ri = 1(J×1)

∣∣Zi} is unknown and must be estimated from the
data, using the POM model under the MAR assumption.
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2.4 The probability of missingness (POM) model

2.4.1 Univariate missing data

Consider first the simple setting in which only variable Zj , say, is incomplete, where Zj =
(Zj,1, Zj,2, . . . , Zj,n). Given the MAR assumption, that P (Rj,i = 1 |Zi ) is independent of Zj,i,
we could estimate P

{
Ri = 1(J×1)

∣∣Zi} by fitting, for example, a regression model

E (Rj,i |Z1,i, . . . , Zj−1,i, Zj+1,i, . . . , ZJ,i ) = l (Z1,i, . . . , Zj−1,i, Zj+1,i, . . . , ZJ,i;α) .

The choice of l (·) (for example, inverse logit with each variable included in a linear predictor and
no interactions) defines a POM model, giving rise to estimates

π̂i = π (Z1,i, . . . , Zj−1,i, Zj+1,i, . . . , ZJ,i; α̂)

of P
{
Ri = 1(J×1)

∣∣Zi}.
2.4.2 Multivariate monotone missing data

Write the full data Zi for subject i as Zi =
(
XT
i ,Y

T
i

)T
, where Xi is observed with prob-

ability 1 and Yi =
(
Y1,i, Y2,i, . . . , YJ̃,i

)T
may be incompletely observed. Rj,i now refers to

I (Yj,i is observed). The missingness pattern is monotone if there exists a permutation ψ (·) of(
1, . . . , J̃

)
for which Rψ(j),i = 0 ⇒ Rψ(k),i = 0 ∀ψ (k) > ψ (j); that is, that there exists an

ordering of
{
Yj : j = 1, . . . J̃

}
such that if Yj,i is missing, Yk,i is also missing for every k later

than j in the permuted sequence. A common example of this occurs with dropout in repeated
measurements studies.

The POM model can be defined for multivariate monotone missing data using a sequen-
tial extension of the POM model described in Section 2.4.1. Without loss of generality,

we redefine
(
1, . . . , J̃

)
such that ψ (·) is the identity. First, P (R1,i = 1 |Xi ) is estimated

from the model E (R1,i) = l1 (Xi;α1). Second, P (R2,i = 1 |Xi, Y1,i, R1,i = 1) is estimated
from the model E (R2,i |Xi, Y1,i ) = l2 (Xi, Y1,i;α2) fitted only to those who have Y1 ob-
served. At the jth step, P (Rj,i = 1 |Xi, Y1,i, . . . , Yj−1,i, Rj−1,i = 1) is estimated from the model
E (Rj,i |Xi, Y1,i, . . . , Yj−1,i ) = lj (Xi, Y1,i, . . . , Yj−1,i;αj) fitted only to those who have Yj−1 (and

hence all previous Y ’s) observed. At each stage j = 1, . . . , J̃ , conditional probability estimates

λ̂j,i = lj (Xi, Y1,i, . . . , Yj−1,i; α̂j) are obtained. Finally, π̂i =
∏J̃
j=1 λ̂j,i.

That π̂i is a consistent estimator of P
{
Ri = 1(J̃×1)

∣∣∣Yi

}
under MAR and the assumption that

the POM model defined by l2 (·) , . . . , lJ̃ (·) is correctly specified, is formally shown by Molenberghs
et al. [1998].

2.4.3 Non-monotone missing data

Doubts have been cast over the appropriateness of the MAR assumption for non-monotone missing
data [Robins and Gill, 1997]. These authors introduce a new mechanism, randomised monotone
missingness (RMM)—a subset of MAR—and argue that this is the only plausible non-monotone
MAR mechanism that is not MCAR. They show [Gill and Robins, 1996] that there exist mech-
anisms that are MAR but not RMM, but that for a computer to generate data under such a
mechanism, it requires knowledge of the unobserved data which is then ‘concealed’ later in the
process. They call this phenomenon ‘MAR is more than it seems’ and say:

“We have been unable to conceive of a plausible social, economic, physical or biological
process that would generate MAR processes that are not RMM representable, due to
the subtle and precise manner in which the data must be ‘hidden’ to insure that the
process is MAR. That is, we believe that natural missing data processes that are not
representable as RMM processes will be [MNAR].”
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Figure 1: A Markov randomised monotone missingness process for J̃ = 3. Dependence on X is
implicit. The probabilities associated with the grey lines are all zero if the data are longitudinal.

Again we write Zi =
(
XT
i ,Y

T
i

)T
, where Xi is observed with probability 1 and Yi =(

Y1,i, Y2,i, . . . , YJ̃,i

)T
may be incompletely observed. The RMM process for subject i is de-

scribed by Robins and Gill as follows. We start by observing Xi. Then, we either observe
one of Yj,i (j = 1, . . . , J̃) with probabilities pj,i (Xi) (j = 1, . . . , J̃), respectively, or we quit,

having only observed Xi with probability 1 −
∑J̃
j=1 pj,i (Xi). Suppose we in fact observe

Yj1,i. Now, at the next stage, we either observe one of Yj,i (j = 1, . . . , j1 − 1, j1 + 1, . . . J̃)

with probabilities pj,i (Xi, Yj1,i) (j = 1, . . . , j1 − 1, j1 + 1, . . . J̃), respectively, or we quit, hav-
ing only observed Xi and Yj1,i with probability 1 −

∑
j ̸=j1 pj,i (Xi, Yj1,i). Suppose that af-

ter m stages of this algorithm, we have observed Xi, Yj1,i, Yj2,i, . . . , and Yjm−1,i. At the next

stage, we either observe one of Yj,i (j ∈
{
1, . . . , J̃

}
\ {j1, j2, . . . , jm−1}) with probabilities

pj,i
(
Xi, Yj1,i, . . . , Yjm−1,i

)
(j ∈

{
1, . . . , J̃

}
\{j1, j2, . . . , jm−1}), respectively, or we quit with prob-

ability 1−
∑
j ̸=j1,...,jm−1

pj,i
(
Xi, Yj1,i, . . . , Yjm−1,i

)
.

Markov randomised monotone missingness (MRMM) mechanisms are a particular subset of
RMM mechanisms in which the probability of observing a given variable conditional on the previ-
ous variables observed is independent of the order in which these variables were observed. Thus,
for example, pj,i (Xi, Yj1,i, Yj2,i) = pj,i (Xi, Yj2,i, Yj1,i). Gill and Robins [1996] prove that any
MAR mechanism representable as RMM is also representable as MRMM. The MRMM process
when J̃ = 3 is shown in Figure 1.

In Figure 1, p1 is the probability (conditional on covariates X) that, the first variable observed
is Y1. Similarly, p2 and p3 are the probabilities that, the first variable observed is Y2 and Y3,
respectively. With probability 1 − p1 − p2 − p3, none of Y1, Y2 or Y3 is observed. Then, for the
second stage, p2 (Y1) is the probability that (conditional on covariates X, the fact that Y1 was
observed at the first stage, and the value of Y1 itself), the next variable to be observed is Y2, and
so on. Finally, p3 (Y1, Y2) is the probability that (conditional on covariates X, the fact that Y1
and Y2 have already been observed, in any order, and conditional on their values, Y1 and Y2), the
third variable to be observed is Y3, and so on.

Notice that (omitting the subscript i), for example,

P (Y1, Y2, Y3 all observed) = p1p2 (Y1) p3 (Y1, Y2) + p1p3 (Y1) p2 (Y1, Y3) + p2p1 (Y2) p3 (Y1, Y2)

+p2p3 (Y2) p1 (Y2, Y3) + p3p1 (Y3) p2 (Y1, Y3) + p3p2 (Y3) p1 (Y2, Y3) ,
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where these six terms are not constrained to be equal. Thus, the order in which the variables
were observed is needed to estimate the probabilities pj (·)—even in an MRMM process—but this
order is never observed.

At each stage in the process, pj,i are estimated from models (for example, multinomial logistic
regressions) which together constitute a POM model. Robins and Gill [1997] describe a method

for estimating πi = P
{
Ri = 1(J̃×1)

∣∣∣Zi} from a MRMM mechanism, using an EM algorithm in

which the unobserved orderings are treated as missing data. π̂i is then a consistent estimator of
πi under the MAR assumption if the assumptions of the POM model are correct.

Note that, as the number of time-points increases, the computation involved in this procedure
increases geometrically. When J̃ is large, Robins and Gill [1997] propose a simulated EM algorithm
that greatly diminishes this computational burden.

In the case of non-monotone longitudinal repeated measurements, there exists only one plau-
sible (i.e. temporal) ordering and MRMM reduces to a very special case (see Figure 1 with grey
lines omitted) in which the probability of observing Y3, say, is dependent on Y2 if and only if Y2
has been observed. As Vansteelandt et al. [2007] argue, it is implausible in most settings that
the probability of observing Y3 only depends on Y2 if Y2 happens to have been observed and that
therefore, MAR is rarely a sensible assumption for non-monotone repeated measurements. How-
ever, as a point of departure for sensitivity analyses it is useful to be aware of the form of this
MAR mechanism.

Obtaining π̂i is then much more straightforward than in the general case, since the order in
which the variables were observed is always known. More details are given in Appendix A.

2.5 Feasible inverse probability weighted complete case estimating
equation

If both the FD and POM models are correctly specified, and the MAR assumption holds, the
solution θ̂IPW to

n∑
i=1

π̂−1
i I

{
Ri = 1(J×1)

}
Uθ (Zi,θ

IPW) = 0

is a consistent estimator of θ̂.

2.6 Augmented inverse probability weighted estimating equation

Although θ̂IPW, under the assumptions mentioned above, is a consistent estimator of θ, it is, in
general, inefficient [Robins et al., 1995]. Its efficiency can be particularly poor when the complete
cases account for only a small proportion of the observed data.

Robins et al. [1994] show that, by considering estimating equations of the form

n∑
i=1

(
π̂−1
i I

{
Ri = 1(J×1)

}
Uθ (Zi,θ

AIPW) +
[
1− π̂−1

i I
{
Ri = 1(J×1)

}]
ϕ (Ri,Z

obs

i ,θAIPW)
)
= 0,

(1)
where Zobs

i is the observed part of Zi, the efficiency can be increased.
Using the semiparametric theory based on influence functions and Hilbert spaces [Tsiatis,

2006], Robins et al. show that, for a particular Uθ (Zi,θ), if there is only one variable subject to
missingness, the most efficient choice for ϕ (·) is

ϕ (Ri,Z
obs

i ,θ) = E {Uθ (Zi,θ) |Zobs

i } .

When there are many variables subject to missingness, in a monotone pattern, then the same
theory shows that the most efficient choice of ϕ (Ri,Z

obs
i ,θ) is

J∑
j=1

Rj−1,i

(
π̂j,i
π̂j−1,i

−Rj,i

)
E {Uθ (Zi,θ) |Zobs

i }
π̂j,i

,
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where π̂j,i =
∏j
k=1 λ̂k,i and R0,i = 1 ∀i.

In both cases above, ϕ (Ri,Z
obs
i ,θ) is a function of E {Uθ (Zi,θ) |Zobs

i }. Since Uθ (·) is a
function of the missing and observed data, we can specify its conditional expectation given the
observed data using a model for the missing data given the observed, i.e. a POD model. Thus
we see that DR estimators involve both a POM and POD model. Scharfstein et al. [1999] were
the first to show that, when MAR and the assumptions of the FD model hold, the DR estimator
is consistent if, in addition, at least one of POM and POD are correctly specified. Thus DR
estimators offer two advantages over their IPW counterparts: increased efficiency, and double
robustness.

2.7 Multiple imputation with chained equations

An entirely different approach to the analysis of incomplete data is multiple imputation (MI)
[Rubin, 1987]. Briefly, in MI, multiple stochastic imputations are drawn for each missing value
in the dataset, using an imputation model. Each completed dataset is then analysed using the
FD model and estimates and standard errors of the parameters of interest are obtained from each
completed dataset. The standard errors from any particular completed dataset will be too small,
since the imputed data are treated as if they had been observed. However, by comparing these
FD estimates between imputed datasets, Rubin gives a formula for the standard errors, in which
the between-dataset estimates inflate the within-dataset estimates. For this formula to lead to
correct inferences, Rubin showed that the imputations need to be proper, in the sense that the
stochastic draws must be drawn—not from the imputation model with each parameter replaced by
a consistent estimate—but rather using Bayesian draws from the posterior distributions of these
parameters.

In a fully-parametric setting, the imputation model is the POD model implied by the FD
model. However, in settings when we cannot (or do not wish to) specify the joint distribution
of the full data, multiple imputation using chained equations (MICE) [van Buuren et al., 1999]
can be used. This approach works by specifying a univariate regression model for each partially
observed variable, conditional on all the others. The method is practically very attractive as it can
deal with missing data on a large number of variables with different univariate distributions and
without requiring that the missing data pattern be monotone. Many software implementations
exist: ice in Stata [Royston, 2004], mice in S-Plus and R [van Buuren and Oudshoorn, 2000], and
IVEware in SAS [Raghunathan et al., 2007]. However, a full theoretical argument for the validity
of this method has not been presented to date. Indeed, it is unlikely that such a proof exists
except in the multivariate normal case, since a collection of univariate regression models—not all
linear—in general does not correspond to a well-defined joint distribution. In other words, the
univariate imputation models used in MICE together constitute the POD model, but there might
not be a FD model which supports this POD model. The imputation model is then said to be
uncongenial, i.e. the stationary distribution to which the Gibbs sampler attempts to converge does
not exist. However, simulation studies suggest that the bias caused by the uncongeniality is likely
to be small in practice [Gelman and Raghunathan, 2001, van Buuren et al., 2006].

MI uses only a POD model (in addition to MAR and the FD model), and when this model is
correctly specified, MI is, in general, more efficient than DR estimation [Carpenter et al., 2006].
This occurs, however, at an increased risk of model misspecification, since a POM model is not
involved, and thus it is not doubly robust.

3 Robust Multiple Imputation: the proposed method

3.1 Univariate MAR missing data

Let the full data Zi =
(
XT
i , Yi

)T
for subject i ∈ {1, . . . , n} be a fully-observed vector of covariates

Xi and a scalar outcome Yi which could be missing (Ri = 0) or observed (Ri = 1). For simplicity,
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we assume that interest lies is in estimating µ = E (Yi), but the method could be applied more
generally (e.g. for estimating the coefficients of a generalised linear model).

Following the same idea as proposed by Bang and Robins [2005], first a suitable regression
model (such as logistic regression) is chosen for R conditional on X—the POM model. Let α̂ be
the parameter estimates from this regression and let π̂i = π (Xi, α̂) be the predicted probabilities
(that Ri = 1) from this model.

Next, we fit a suitable regression model for Y conditional on X and π̂−1 to those subjects who
have complete data. We call the corresponding model without the inverse probability weights, i.e.

E (Yi |Xi, Ri = 1) = Ψ {s (Xi,β)} , (2)

the POD model, where Ψ−1 (·) is the canonical link function from an appropriate GLM and
s (X,β) is a known function of β and X. We call

E
{
Yi
∣∣Xi, π̂

−1 (Xi, α̂) , Ri = 1
}
= Ψ

{
s (Xi,β) + ϕπ̂−1

i

}
(3)

the extended POD model.
Let

ê
(
XT
i , β̂, ϕ̂, π̂

−1
i

)
= Ψ

{
s
(
Xi, β̂

)
+ ϕ̂π̂−1

i

}
(4)

be the predictions from the extended POD model.
Now we draw m > 1 imputations, Y ∗

i,j : j = 1, . . . ,m for each of the missing Yi’s based on
the extended POD model using the proper imputation procedure described by Rubin [1987]. The
details are given in Appendix B. Then we set

Ỹ
(j)
i = RiYi + (1−Ri)Y

∗
i,j .

Finally, our proposed estimator is the solution µ̂RMI to

m∑
j=1

n∑
i=1

{
Ỹ

(j)
i − µRMI

}
= 0.

Theorem 3.1 (Multiply imputed DR univariate estimator). The estimator µ̂RMI is doubly robust.
That is, if at least one of the two models (the POM model and the POD model) is correctly
specified (but not necessarily both), in addition to the MAR assumption and the assumptions of
the FD model, µ̂RMI is a consistent estimator of µ.

A sketch proof is given in Appendix C.
The variance of our estimator Var (µ̂RMI) could be estimated using Rubin’s variance formula

as

1

m

m∑
j=1

n∑
i=1

{
Ỹ

(j)
i − ¯̃Y (j)

}2

n− 1
+
m+ 1

m

m∑
j=1

{
¯̃Y (j) − ¯̃Y

}2

m− 1
(5)

where ¯̃Y (j) = 1
n

∑n
i=1 Ỹ

(j)
i and ¯̃Y = 1

m

∑m
j=1

¯̃Y (j).
However, this variance estimator has two important drawbacks:

1. It treats the weights as just another covariate in the imputation model. Thus the variance
estimator is conditional on π̂−1 (Xi, α̂) and ignores the fact that these weights are estimated
from the data.

2. Putting this problem to one side, when the POD model is correctly specified, the fact that
the weights are treated as just another covariate justifies the use of Rubin’s variance formula.
In other words, if the weights were not estimated, the correct specification of the POD model
would render (5) a consistent estimator of the variance of µ̂RMI, by the standard argument
for the consistency of Rubin’s variance formula in (non-DR) ordinary multiple imputation.
However, if the POD model is misspecified, but the POM model correctly specified, there
is no reason to suppose that (5) remains consistent. Hence, our proposed variance formula
is (ignoring the added problem noted in 1.) singly robust, but does not inherit the DR
property of the estimator itself.
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If the robust MI procedure is used as a sensitivity analysis, then the limitations above may be
acceptable; otherwise, a bootstrap estimator of variance may be preferred.

Note that the consistency of ˆµRMI when the POD model is correctly specified (but not nec-
essarily the POM model) relies on the fact that the true value of ϕ (as defined in (3)) in this

situation is zero. In finite samples, however, the value of ϕ̂ in (4) will not be exactly zero. When
the weights are very variable (which can happen, for example, if the conditional probability of

having Yi observed given Xi is close to zero for some i), ϕ̂ could be considerably different from
zero leading to large finite sample bias and instability in the estimator ˆµRMI. This problem, along
with some proposed solutions, have received considerable attention in the recent literature. See
the final paragraph of the Discussion for more details. This comment applies to all the robust MI
estimators discussed in the remainder of the paper.

Relationship to other estimators Bang and Robins [2005] discuss what they call the outcome
regression (OR) estimator, which is the solution to

n∑
i=1

{
ê
(
XT
i , β̂

)
− µOR

}
= 0,

where ê
(
XT
i , β̂

)
are the predictions from the (non-extended) POD model (2). This is equivalent

to a maximum likelihood analysis.
The doubly robust estimator proposed by Bang and Robins [2005] is the solution to

n∑
i=1

{
ê
(
XT
i , β̂, ϕ̂, π̂

−1
i

)
− µDR

}
= 0,

where ê
(
XT
i , β̂, ϕ̂, π̂

−1
i

)
are as defined in (4).

3.2 Longitudinal MAR missing data

The same idea can be extended to the case of multivariate missing data, and—unlike the Bang
and Robins [2005] approach—the pattern need not be monotone.

Let the full data Zi =
(
XT
i ,Y

T
i

)T
for subject i ∈ {1, . . . , n} consist of a fully-observed vector of

covariates Xi and a vector of partially-observed outcome variables Yi = (Y1,i, . . . , YT,i)
T
and that

interest lies in estimating µ = E (Yi,T ). Let Ri = (R1,i, . . . , RT,i)
T

be the vector of missingness
indicators with Rt,i = I (Yt,i is observed).

We first describe the RMI method for monotone longitudinal data before moving to the case
of non-monotone longitudinal data in Section 3.2.2.

3.2.1 Monotone longitudinal data

When the missingness pattern is monotone, we can easily estimate π̂t,i = P (Rt,i = 1 |Zi ) =
P
(
Rt,i = 1

∣∣Xi, Ȳt−1,i

)
at each time t, as described in Section 2.4.2.

We proceed by fitting the model using MI. The POD model is postulated sequentially by first
specifying a model for Y1 given X, and then a model for Y2 given Y1 and X etc. To construct
an extended POD model, for each t ∈ {1, . . . , T}, π̂−1

t,i = P (Rt,i = 1 |Xi, Y1,i, . . . , Yt−1,i )
−1

is

included as an additional covariate, additional to X and Ȳt−1, in the model for Yt,i. Starting with
Y1, any missing values in Y1 are multiply imputed, with the imputations drawn from the extended
POD model for Y1 conditional on X and π̂−1

1 . Next, any missing values in Y2 are multiply imputed,
with the imputations drawn from the extended POD model for Y2 conditional on Y1, X and π̂−1

2 ;
for subjects with Y1 also missing, the imputed value of Y1 from the jth imputed dataset is used
to impute Y2 in the jth imputed dataset, and so on.

By starting with Y1 and working upwards in this way, we encounter a problem which does
not arise in the method proposed by Bang and Robins [2005], which starts with YT and works
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downwards. The problem is that π̂t,i can only be calculated for subjects who have Yt−1,i observed,
but (unlike Bang and Robins [2005]), we require that π̂t,i be known for all subjects.

Suppose a particular subject, i1, drops out after being observed at time t− 2. At time t−1, in

the jth imputed dataset, a value Ỹ
(j)
t−1,i1

of Yt−1,i1 is imputed, based on Xi1 , Ȳt−2,i1 , and π̂t−1,i1 ,
which are all observed. But at the next timepoint, t, we would like to impute the missing Yt,i1
using Xi1 , Ȳt−2,i1 , Ỹ

(j)
t−1,i1

, and π̂t,i1 . The marginal probability π̂t,i1 is the product of π̂t−1,i1

and λ̂
(
t
∣∣Xi1 , Ȳt−1,i1

)
, the estimate of the conditional probability that Rt,i1 = 1, conditional on

Xi1 , Ȳt−1,i1 , and Rt−1,i1 = 1, as defined in section 2.4.2. It is this latter conditional probability
which cannot be estimated directly for this subject. However, as a function of the missing Yt−1,i1 ,
it is known. Thus our proposed method works by imputing a value for π̂t,i1 , based on π̂t−1,i1 ,

λ̂
(
t
∣∣Xi1 , Ȳt−1,i1

)
and Ỹ

(j)
t−1,i1

as follows:

π̂
(j)
t,i1

= π̂t−1,i1 λ̂
(
t
∣∣∣Xi1 , Ȳt−2,i1 , Ỹ

(j)
t−1,i1

)
.

In other words, no additional model is fitted to obtain the imputation π̂
(j)
t,i1

, and no addi-

tional draws (for π̂
(j)
t,i1

), nor additional draws from the Bayesian posterior distribution of any

additional parameters are made. Rather, π̂
(j)
t,i1

is imputed as a deterministic function of π̂t−1,i1

and λ̂
(
t
∣∣∣Xi1 , Ȳt−2,i1 , Ỹ

(j)
t−1,i1

)
, which, as function of Xi and Ȳt−1,i, is estimated using subjects

who have Yt−1 observed, as previously. This deterministic imputation is analogous to the way in
which quadratic functions of covariates, say, are dealt with in ordinary multiple imputation. If X

and X2 are both covariates in the analysis model, multiple imputations X
(j)
i of any missing Xi

are obtained in the ordinary way, but then the imputed value of X2
i can be simply

{
X

(j)
i

}2

, the

square of the imputation.
Similarly, for subject i1 at time t+1, our proposed method works by first imputing a value for

π̂t+1,i1 , based on π̂
(j)
t,i1

, λ̂
(
t+ 1

∣∣Xi1 , Ȳt,i1

)
, Ỹ

(j)
t−1,i1

and Ỹ
(j)
t,i1

as follows:

π̂
(j)
t+1,i1

= π̂
(j)
t,i1
λ̂
(
t+ 1

∣∣∣Xi1 , Ȳt−2,i1 , Ỹ
(j)
t−1,i1

, Ỹ
(j)
t,i1

)
,

and then Yt+1,i1 is imputed using Xi1 , Ȳt−2,i1 , Ỹ
(j)
t−1,i1

, Ỹ
(j)
t,i1

and π̂
(j)
t+1,i1

.
Finally, µ̂RMI can be calculated as the solution to

m∑
j=1

n∑
i=1

{
Ỹ

(j)
T,i − µRMI

}
= 0. (6)

Theorem 3.2 (Multiply imputed DR monotone longitudinal estimator). The estimator µ̂RMI is
doubly robust. That is, if at least one of the two models (the POM model and the POD model) is
correctly specified (but not necessarily both), µ̂RMI is a consistent estimator of µ.

A sketch proof is given in Appendix D.
A variance estimator analogous to (5) can be obtained using Rubin’s variance formula. The

same caveats that this variance estimator does not acknowledge the uncertainty due to the fact
that the weights have been estimated, and (even ignoring this problem) is only singly robust,
applies equally here as in the univariate case.

Relationship to other estimators The OR estimator is now the solution to

n∑
i=1

{
H0

(
XT
i , β̂0

)
− µOR

}
= 0,

where H0

(
XT
i , β̂0

)
is as defined by Bang and Robins [2005]. Briefly, their sequential regression

estimator is built as follows. They write HT = YT for those who have YT observed. Then, for
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t = T − 1, . . . , 0, Ht (X, Y1, . . . , Yt) = E (Ht+1 |X, Y1, . . . , Yt ) is defined for everyone for whom Yt
is observed. They estimate each Ht using regression models which together constitute the POD
model and show that, if this model is correct and the MAR assumption holds, then E {H0 (X)} =
E (YT ) = µ, leading to the estimating equation above.

The DR estimator proposed by Bang and Robins [2005] is the same as the OR estimator but
with the POD model replaced with the extended POD model.

3.2.2 Non-monotone longitudinal data

For non-monotone missingness patterns, we recommend first testing the hypothesis that the miss-
ing data mechanism belongs to the randomised monotone missingness (RMM) sub-class described
in Section 2.4.3 using the test described by Robins and Gill [1997]. If the data do not support this
hypothesis, then MAR should be rejected as implausible; even in this case, however, an analysis
which assumes ignorability might be required as a point of departure for subsequent sensitivity
analyses.

Under the assumption that the data are RMM, the parameters shown in Fig. 1 (omitting the
grey lines) can be estimated as described in 2.4.3.

From these estimated probabilities, we would like to estimate each of

P (R1,i = 1 |Xi ) = p1 (Xi) , (7)

P (R2,i = 1 |Xi, Y1,i ) = p1 (Xi) p2 (Xi, Y1,i) + p2 (Xi) and (8)

P (R3,i = 1 |Xi, Y1,i, Y2,i ) = p1 (Xi) p2 (Xi, Y1,i) p3 (Xi, Y1,i, Y2,i) + p1 (Xi) p3 (Xi, Y1,i)

+ p2 (X) p3 (X, Y2,i) + p3 (Xi) . (9)

Note that even in this non-monotone setting, since the data are longitudinal, it remains the
case that π̂t,i = P (Rt,i = 1 |Zi ) = P

(
Rt,i = 1

∣∣Xi, Ȳt−1,i

)
, i.e. that the missingness probabilities

at each timepoint depend only on past measurements of Y .
There is no problem with (7) but (8) and (9) are undefined for some subjects. For example,

if subject i has only Y2 observed then p2 (Xi, Y1,i) cannot be calculated. Up to a function of the
unknown Y1,i, it can, however, be specified and in such cases (8) and (9) are specified as known
functions of the unknown Y1,i or Y2,i. This completes the description of the POM model.

We proceed by fitting the model using MI, and to cope with the non-monotone pattern, MI
using chained equations (MICE) as described in Section 2.7 is used. As with the monotone case,
for each t ∈ {1, . . . , T}, π̂−1

t,i is included as an additional covariate (additional to the specified POD

model) when imputing Yt,i. As we noted above, π̂−1
t,i itself, in general, is missing for some subjects,

and is therefore imputed (deterministically) as a function of the (possibly imputed) Ỹ1,i, . . . , Ỹt−1,i.
Although when generating such data, we would only need to consider the distribution of each

outcome variable Yt conditional on the covariates and the previous t−1 outcome variables (since the
future cannot determine the past), for the analysis model (the PODmodel), it will be necessary—in
this non-monotone case—to postulate the implied models for Yt given all future outcome variables
as well, and the future outcome variables must be included in the imputation models, e.g. Y2 must
be included in the imputation model for Y1. Thus, the extended POD model in the non-monotone
case differs from that of the monotone case, since the imputation model for Yt conditions on all
past and future values of Y , as well as X and π̂−1

t .
Finally, µ̂RMI is again calculated as the solution to

m∑
j=1

n∑
i=1

{
Ỹ

(j)
T,i − µRMI

}
= 0 (10)

and a variance estimate (subject to the same caveats as above) obtained using Rubin’s variance
formula.

Conjecture 3.1 (Multiply imputed DR non-monotone longitudinal estimator). When the full
data are multivariate normal, the estimator µ̂RMI is doubly robust. That is, if at least one of the
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two models (the POM model and the POD model) is correctly specified (but not necessarily both),
µ̂RMI is a consistent estimator of µ.

We note that, given that our proposed procedure relies on multiple imputation using chained
equations, which itself has not been theoretically justified outside of the multivariate normal set-
ting, our estimator inherits the theoretical limitations discussed in Section 2.7. However, MICE has
been extensively and very successfully used in practice, supported by simulation studies, outside
the multivariate normal setting, and similar simulation studies (not reported in this article) sug-
gest that our estimator behaves similarly well for a mixture of continuous, binary and categorical
variables.

3.3 Non-monotone non-longitudinal MAR missing data

The arguments above apply equally when the data are not constrained to be longitudinal, as-
suming that the weights can be estimated. Although Robins and Gill [1997] propose a method
for calculating the complete case weights in the RMM setting using an EM algorithm with the
path followed by a particular subject through Figure 1 treated as a missing value, the individual
path probabilities are not estimated. Thus the variable-specific missingness probabilities cannot
be estimated using the methods described by Robins and Gill [1997]. However, it is possible that
such an EM procedure could be extended to estimate the individual path probabilities as well.
Even if this were not the case, a particular path could be assumed for each subject, and the
path probabilities computed on the basis of this assumption. Sensitivity analyses could then be
conducted to assess the potential impact of varying the assumed path followed by each subject.
Using either or these approaches, if it were possible to estimate the necessary weights, then RMI
with chained equations could be used exactly as described for the longitudinal setting above.

Note that the settings discussed thus far, but with missingness affecting the covariates X rather
than, or in addition to, the outcome(s) Y, in general, fit under this heading. Thus, the problem of
missing covariates could also potentially be addressed using robust MI if a method for estimating
the weights in this setting were available.

4 Simulation studies

4.1 Univariate MAR missing data

First we repeat the first simulation study carried out by Bang and Robins [2005], adding our RMI
estimator as a fourth estimator to be compared with the IPW estimator, the OR estimator and
the DR estimator.

In this simulation study, X = (X1, X2, X3) is always fully-observed and generated from a
trivariate normal distribution with mean (0, 0, 0) and variance-covariance matrix equal to the
(3× 3) identity matrix. Y is normally distributed with mean strue (X,β) and unit variance, where
strue (X,β) is defined in part 1. of Table 1.

The POM model used to generate R is also described in part 1. of Table 1.
To investigate the double robustness property, an incorrect POM model and an incorrect POD

model are also specified as defined in Table 1.
Stata code for implementing all the simulation studies discussed in this section is available as

supplementary material in the electronic version of this paper.

4.2 Longitudinal monotone MAR missing data

Next, we repeat the longitudinal monotone simulation study carried out by Bang and Robins
[2005], again adding our RMI estimator as a fourth estimator to be compared with the IPW
estimator, the OR estimator and the DR estimator.

As before, X = (X1, X2, X3) is always fully-observed with X1, X2, X3 independent and iden-
tically distributed standard normal variables. Y1 is normally distributed with mean s̃true1 (X,β1)
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and unit variance, Y2, conditional on Y1, is normally distributed with mean strue2 (X, Y1,β2) and
unit variance. Details are given in Table 1.

One feature not mentioned in Bang and Robins [2005] is that further calculation is needed to
establish the implied form of the distribution of Y2 |X , which—using their notation—has mean
strue
1 (X,β1). The conditional distribution of Y1 |X is

N (3X1 − 2X1X3, 1)

and the conditional distribution of Y2 |X, Y1 is

N
(
−3X2

1 + 3X2 + Y 2
1 − 2X2Y1, 1

)
.

The conditional expectation of Y2 |X is therefore

−3X2
1 + 3X2 + 1 + (3X1 − 2X1X3)

2 − 2X2 (3X1 − 2X1X3)

= 1 + 3X2 + 6X2
1 − 6X1X2 − 12X2

1X3 + 4X1X2X3 + 4X2
1X

2
3 .

Thus, when carrying out the simulation study under the ‘both models correct’ scenario, the
authors used 1, X2, X

2
1 , X1X2, X

2
1X3, X1X2X3, X

2
1X

2
3 as the covariates for the second linear re-

gression stage, as opposed to 1, X1, X1X3 as their paper suggests.
The implied strue1 (X,β1) is given in Table 1, along with details of the correct POM model and

the incorrect POM and POD models.

4.3 Longitudinal non-monotone MAR missing data

Next, we consider a longitudinal non-monotone simulation study. In this case, neither the OR nor
the DR estimator can be used and thus we compare our RMI estimator with the IPW estimator and
an ordinary multiple imputation (MI) estimator, i.e. an estimator identical to the RMI estimator
but without the inverse probability weights as additional covariates in the imputation model.

In this simulation study, X (univariate) is always observed and generated from a standard nor-
mal distribution. Y1 and Y2 are normally distributed with means s̃true1 (X,β1) and s

true
2 (X,Y1,β2),

respectively (see Table 1), and unit variance. The implied strue1 (X,Y2,β1) is also given in the
table.

Note that s1 (·) is now a function of Y2. This is essential, since some subjects have Y2 but
not Y1 observed. If Y2 is omitted from the imputation model for Y1, the resulting estimator
is, in general, biased since the stationary distribution to which the Gibbs sampler in the MICE
procedure converges is not the correct full-data distribution, even under MAR.

The POM model is defined by the multinomial logit model described in Table 1, where the
incorrect POM and POD models are also described.

4.4 Non-longitudinal non-monotone MAR missing data

Finally, we consider a non-longitudinal non-monotone simulation study. Again, neither the OR nor
the DR estimator can be used and thus we compare our RMI estimator with the IPW estimator
and an ordinary MI estimator.

As in the previous simulation study, X (univariate) is always observed and generated from a
standard normal distribution. Y1 and Y2 are normally distributed with means s̃true1 (X,β1) and
strue
2 (X,Y1,β2), respectively (see Table 1), and unit variance.

The implied strue1 (X,Y2,β1), the correct POM model and the incorrect POD model are given
in part 4. of Table 1.

Because of the difficulty associated with estimating the marginal weights (discussed
in Section 3.3), we cannot obtain reliable estimates of π̂true

1 (X,α11,α12,α21) and
π̂true
2 (X,Y1α11,α12,α22) even for the complete cases. For the purposes of this simulation study,

therefore, we will use the true (known) weights.
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Figure 2: Kernel density plots showing the simulated values of µ̂ for the cross-sectional, univariate
simulation study.

Since the true weights are being used, no ‘POM model’ exists. To investigate the double
robustness property, we therefore define π̂false

1 =
√
π̂true
1 and π̂false

2 =
√
π̂true
2 . There is no strong

motivation for choosing this relationship between the correct and incorrect weights, except that it
produced an appreciable, yet not too extreme, bias in the IPW estimator.

The simulation studies are all based on a sample size of 500 and 1,000 simulations, with the
MI and robust MI procedures based on 10 imputations and 10 cycles of the chained equations
procedure. The results are shown in Table 2, and a visual summaries using kernel density plots
are given in Figures 2–5.

4.5 Conclusions

We see from parts 1. and 2. of Table 2, together with Figures 2 and 3, that in both the univari-
ate cross-sectional and longitudinal monotone cases, where the Bang and Robins [2005] method
can be applied, its performance and our estimator’s performance are very similar. In addition,
the variance estimates obtained using Rubin’s variance formula perform well when both models
are correctly specified, although, as expected, they do not share the double robustness property
possessed by the estimators themselves. Even though our proposed variance estimator does not
take into account the variability of the estimated weights, at least in our simulations, this effect
is negligible.

When the missing data are longitudinal but non-monotone, the Bang and Robins [2005] method
can no longer be used, but our estimator works very well: it appears to exhibit the desired double
robustness property as well as improved efficiency compared with IPW (see part 3. of Table 2 and
Figure 4). The loss of efficiency relative to OR and MI is negligible. We also see that RMI works
well (see part 4. of Table 2 and Figure 5) for non-longitudinal non-monotone data, when the true
weights are used.
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Figure 3: Kernel density plots showing the simulated values of µ̂2 for the monotone, longitudinal
simulation study.

5 The RECORD study

We now present a real data example to which our new method is applied.
The glycaemic data from the RECORD trial involves 1122 subjects, all of whom were taking

either Metformin (Met) or Sulfonylurea (Su) prior to the start of the trial. The Met and Su
arms were subsequently treated as two separate strata, with patients in the Met arm randomised
to receive either additional Su or additional Rosiglitazone (Rosi), and patients in the Su arm
randomised to receive either additional Met or additional Rosi. HbA1c (a measure of long-term
glucose control) was collected on patients at baseline, and at 8 further follow-up visits: at 2, 4, 6,
8, 10, 12, 15 and 18 months. 167 (14.9%) patients were lost to follow-up, and there were a further
161 intermittent (non-monotone) missing observations.

The aim was to investigate whether or not Rosi in combination with Met or Su is as good
as Met+Su for achieving glycaemic control. A non-inferiority criterion (upper band 95% CI of
difference) at 18 months was set at 0.4%.

The original analysis carried out by Home et al. [2007] assumed multivariate normality for
the repeated HbA1c measurements conditional on baseline HbA1c, but there was concern that the
residuals from this analysis exhibit some right skewness. We therefore use RMI to assess the
sensitivity of the conclusions of Home et al. [2007] to the normality assumption. By using a non-
parametric FD model, and confining normality assumptions to the POD model, our results will be
robust to non-normality, as long as the assumptions of the POM model and the MAR assumption
hold.

The missingness model corresponding to Figure 1 is appreciably more complex with 8 variables
rather than 3. It is clear that some reduction in the dimensionality of the problem must be made
if the weights are to be estimated efficiently. We will impose the restriction that, conditional on
the most recently observed outcome, whether or not the next outcome is observed is independent
of all other observed outcomes. Apart from this, the method is identical to the one described in
the simulation study in Section 4.3. Such a restriction on the POM model is a potential source
of bias in the robust MI analysis. However, when the next most recently-observed outcome was
included in the POM model at each time-point, the multinomial logistic regression models did not
converge, and thus the potential impact of this assumption could not be assessed.
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Figure 4: Kernel density plots showing the simulated values of µ̂2 for the non-monotone, longitu-
dinal simulation study.

The results are as follows. The direct likelihood analysis estimates a difference of 0.087%
between the Met+Rosi and Met+Su arms in the change in HbA1c from baseline to 18 months,
with a standard error of 0.08%. The corresponding estimate from the RMI approach is 0.017%
(SE 0.09%). The direct likelihood analysis estimates a difference of 0.066% between the Su+Rosi
and Su+Met arms in the change in HbA1c from baseline to 18 months, with a standard error of
0.08%. The corresponding estimate from the RMI approach is 0.033% (SE 0.07%). We see that
the results from RMI are similar (but not identical) to those from the direct likelihood analysis.
Certainly as regards the pre-specified non-inferiority criterion of 0.4%, neither method supports
the rejection of non-inferiority.

Figure 6 shows the differences between these profiles for the two arms separately. Again we
see that the profiles are similar but not identical. The differences are substantively very small and
unlikely to be important in practice. If anything, the RMI approach suggests a lower HbA1c for
the Rosi groups compared with the corresponding estimates from the direct likelihood method,
whereas the estimates for the standard groups show less of a difference between the two methods.
As a result, Rosi compared with standard looks to be slightly better under the RMI analysis
suggesting that the direct likelihood analysis is (in this particular case) slightly conservative in
the sense that it is more likely to conclude that Rosi is inferior.

The reason for there being only a small difference between the two approaches is probably
that the non-normality is not severe. We notice that what little difference there is increases over
time. This is likely to be due to the increased dependency on modelling assumptions in the direct
likelihood approach as the number of missing observations increases.

6 Discussion

By combining the regression-based doubly robust estimator of Bang and Robins with multiple
imputation, we have shown how MI estimators with improved robustness can be constructed in
settings (such as the non-monotone longitudinal pattern found in the RECORD study) where,
hitherto, DR estimators have not been implemented.
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Figure 5: Kernel density plots showing the simulated values of µ̂2 for the non-monotone, non-
longitudinal simulation study.

We have seen from simulation studies that when the Bang and Robins [2005] method can be
applied, its performance and our estimator’s performance are very similar. When the missing data
are longitudinal but non-monotone, the Bang and Robins [2005] method can no longer be used,
but our estimator works very well: it appears to exhibit the desired double robustness property as
well as improved efficiency compared with IPW. Furthermore, our method is easily implemented
in standard software packages such as ice in Stata. Although the simulations presented here are
for continuous variables, similar results were found for incomplete binary data.

We have also shown that RMI could in principle be applied to general (non-longitudinal)
non-monotone data. However, the problem of estimating the variable-specific inverse probability
weights needs first to be resolved. Unfortunately, the method proposed by Robins and Gill [1997]
for estimating the complete case weights can not be used to identify the variable-specific weights.
We have shown, by substituting the known true weights, that if a method were developed for
estimating these probabilities, RMI could be used and would perform well.

Although our focus has been on examples where the aim is to estimate the marginal mean
of one of the variables, RMI can be used much more generally (for example to estimate the
parameters of a regression of one variable on another) and as easily to obtain estimators with
improved robustness whenever ordinary MI is appropriate.

A criticism of DR methods has been their potential instability when the weights are too variable
and their sub-optimal performance when both the POD and POM models are misspecified [Kang
and Schafer, 2007]. These limitations apply equally to the RMI procedure proposed in this article.
Recent work by Tan [2010], Tsiatis et al. [2011], Vansteelandt et al. [2011] proposes improvements
to the standard DR estimators with respect to these issues, and the adoption of some of these
strategies within RMI represents an exciting direction for future work.
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APPENDIX

A Further details on estimating πi in MRMM processes for
longitudinal data

We consider the example discussed in Section 2.4.3 where there are three outcome variables, but
the argument easily extends to any number of outcome variables.

We start by defining a ‘stage 2’ variable, S2,i taking the value s2,i where

s2,i = inf {1, 2, 3 : Ys2,i is observed}

or the value 0 if none of {Y1,i, Y2,i, Y3,i} is observed. A multinomial logit model, for example, could
be fitted to S2,i, conditional on the covariates, and the probabilities p1 (Xi), p2 (Xi), and p3 (Xi)
estimated. Then, a ‘stage 3’ variable, S3,i, is defined to take the value s3,i − 1 where

s3,i = inf {2, 3 : Ys3,i and Yk,i are observed, where k < s3}
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or the value 1 if only one of {Y1,i, Y2,i, Y3,i} is observed. For each level s2,i of S2,i, a multino-
mial logit model can be fitted to S3,i conditional on Ys2,i,i and the covariates. The probabilities
p2 (Xi, Y1,i), p3 (Xi, Y1,i), and p3 (Xi, Y2,i) are estimated.

Finally, a ‘stage 4’ variable, S4,i, taking the value s4,i where

s4,i =

{
1 if Y1,i, Y2,i, Y3,i are all observed
0 otherwise

is defined and, for each pair {s2,i, s3,i}, a logistic regression can be fitted to S4,i conditional on
Ys2,i,i, Ys3,i,i and the covariates. The probabilities p3 (Xi, Y1,i, Y2,i) are estimated.

Then,
π̂i = p̂1 (Xi) p̂2 (Xi, Y1,i) p̂3 (Xi, Y1,i, Y2,i)

B An example of proper multiple imputation

Suppose that Y is continuous, and that the POD model is a linear regression. Let V̂(β̂,ϕ̂) be the

estimated variance-covariance matrix of
(
β̂, ϕ̂

)
and V̂Y |X,π̂−1 be the estimator from the extended

POD model of
Var

{
Yi
∣∣Xi, π̂

−1 (Xi, α̂) , Ri = 1
}

We draw m times from the large-sample approximation to the posterior distribution of
(
β̂, ϕ̂

)
:{

β(j), ϕ(j)
}

i.i.d.∼ N
{(

β̂, ϕ̂
)
, V̂(β̂,ϕ̂)

}
, j = 1, . . . ,m

and m times from the large-sample approximation to the posterior distribution of V̂Y |X,π̂−1 :

V
(j)
Y |X,π̂−1

i.i.d.∼ V̂Y |X,π̂−1

1

nc − p
χ2−1

nc−p, j = 1, . . . ,m

where nc =
∑n
i=1Ri and p is the number of parameters estimated in the extended POD model.

m imputed datasets are then generated with Ỹ
(j)
i replacing Y in the jth dataset where

Ỹ
(j)
i = RiYi + (1−Ri)

[
ê
{
XT
i ,β

(j), ϕ(j)
}
+ ε

(j)
i

]
and ε

(j)
i

i.i.d.∼ N
{
0, V

(j)
Y |X,π̂−1

}
.

When the POD model is not a linear regression model, the imputations are drawn properly
according to the appropriate imputation distribution.

C Sketch proof of Theorem 3.1

Sketch proof. The consistency of µ̂RMI when the POD model is correctly specified follows from
the fact that the true value of ϕ is zero. If the POM model is correctly specified, but not the POD
model, it is slightly less evident that µ̂RMI remains consistent.

We continue to write π̂i for π̂ (Xi, α̂). The RMI estimating equation

m∑
j=1

n∑
i=1

[
RiYi + (1−Ri)Ỹ

(j)
i − µRMI

]
= 0

can be rewritten as

m∑
j=1

n∑
i=1

{
Ri

[
Yi − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]
+Riπ̂

−1
i

[
Yi − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]
+(1−Ri)

[
Ỹ

(j)
i − ê

(
XT
i ,β, ϕ̂, π̂

−1
i

)]
+ ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)
− µRMI

}
= 0 (11)

21



This follows from the fact that
∑m
j=1

∑n
i=1Riπ̂

−1
i (Yi − ei) is numerically zero since we included

π̂−1
i in our extended POD model GLM.∑m

j=1

∑n
i=1Ri

[
Yi − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]
is also numerically zero, assuming that a constant term

is included in our GLM. Furthermore, (1 − Ri)
[
Ỹ

(j)
i − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]
has zero expectation,

since the proper imputations have been drawn from a posterior predictive distribution with mean

ê
(
XT
i , β̂, ϕ̂, π̂

−1
i

)
(see Appendix B). Thus we can rewrite (11) as

m∑
j=1

n∑
i=1

{
Riπ̂

−1
i (Yi − µRMI) +

(
1−Riπ̂

−1
i

) [
ê
(
XT
i , β̂, ϕ̂, π̂

−1
i

)
− µRMI

]
+(1−Ri)

[
Ỹ

(j)
i − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]}
= 0

which we immediately recognise as being of the same form as (1) with the added term

(1−Ri)
[
Ỹ

(j)
i − ê

(
XT
i , β̂, ϕ̂, π̂

−1
i

)]
which has zero expectation, even when the POD model is

incorrect. Thus, µ̂RMI is consistent whenever the POM model is correctly specified.

D Sketch proof of Theorem 3.2

Let Ht

(
XT
i , Ȳt,i, ˆ̄πt,i, β̂, ϕ̂

)
be the predictions from the Bang and Robins procedure for longitu-

dinal monotone data (as described in Section 4.2) after T − t iterations. Let Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)

be the mean of the distribution from which the RMI imputations for YT,i, for a subject who drops
out after time t, are drawn.

Lemma D.1.

E
{
Ht

(
XT
i , Ȳt,i, ˆ̄π

−1
t,i , β̂, ϕ̂

)}
= E

{
Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)}

where expectations are taken with respect to the true distribution of
(
Xi, ȲT,i

)
.

Sketch proof of Lemma D.1. That Lemma D.1 is true is immediate if the POD model is cor-

rect, since both Ht

(
XT
i , Ȳt,i, ˆ̄π

−1
t,i , β̂, ϕ̂

)
and Ê

(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
are consistent estimators of

E
(
YT,i

∣∣Xi, Ȳt,i

)
. However, the argument [see Tsiatis, 2006, ch. 14] showing that multiple impu-

tation recovers the full-data distribution when the imputation model is correctly specified can also
be used to show that when it is incorrectly specified, the incorrect distribution it recovers is equiv-
alent to the hypothetical full-data distribution implied by that incorrectly specified imputation
distribution.

Sketch proof of Theorem 3.2. As for the univariate case, that µ̂RMI is consistent when only the
POM model is misspecified is intuitively obvious. We therefore concentrate on the consistency of
µ̂RMI when only the POD model is misspecified.

Assuming that Y1 is always observed, thatDi = {s : R1,i = R2,i = · · · = Rs−1,i = 1, Rs,i = Rs+1,i = · · ·
= RT,i = 0} is the dropout indicator, and that Z̄t,i denotes the history of Zi up to and including
t, the general form of the AIPW estimating equation [as described by Tsiatis, 2006, p.208] can be
written as

n∑
i=1

{
I (Di = T + 1)

P
(
Di = T + 1

∣∣Xi, ȲT,i

) (YT,i − µAIPW)

+

T∑
t=1

I (Di ≥ t)
{
I (Di = t)− P

(
Di = t

∣∣Di ≥ t,Xi, Ȳt−1,i

)}
ht
(
Xi, Ȳt−1,i, µAIPW

)}
= 0

(12)
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and the optimal choice of the functions ht (·) is given by

ht
(
Xi, Ȳt−1,i, µAIPW

)
=
E
(
YT,i

∣∣Xi, Ȳt−1,i

)
− µAIPW

P
(
Rt,i = 1

∣∣Xi, Ȳt−1,i

)
This is not shown here but can be found both in Tsiatis [2006] and in Robins [1999]. In our
notation, (12) can be rewritten as

n∑
i=1

[
RT,i
π̂T,i

(YT,i − µAIPW) +
T∑
t=1

Rt−1,i

(
π̂t,i
π̂t−1,i

−Rt,i

)
E
(
YT,i

∣∣Xi, Ȳt−1,i

)
− µAIPW

π̂t,i

]
= 0 (13)

which is equivalent to

n∑
i=1

{
E
(
YT,i

∣∣Xi, Ȳ1,i

)
−µAIPW+

T∑
t=1

Rt,i
π̂t,i

{
E
(
YT,i

∣∣Xi, Ȳt,i

)
− E

(
YT,i

∣∣Xi, Ȳt−1,i

)}}
= 0 (14)

Our estimator (6) can be rewritten as

m∑
j=1

n∑
i=1

{
RT,i (YT,i − µRMI) +RT−1,i (1−RT,i)

{
Ê
(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)
− µRMI

}
+ · · ·+R1,i (1−R2,i)

{
Ê
(
YT,i

∣∣Xi, Ȳ1,i

)
− µRMI

}
+ (1−R1,i)

{
Ê (YT,i |Xi )− µRMI

}
+RT−1,i (1−RT,i)

{
Ỹ

(j)
T,i − Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}
+ · · ·

+R1,i (1−R2,i)
{
Ỹ

(j)
T,i − Ê

(
YT,i

∣∣Xi, Ȳ1,i

)}
(1−R1,i)

{
Ỹ

(j)
T,i − Ê (YT,i |Xi )

}}
= 0

and this is equivalent to

n∑
i=1

m∑
j=1

{
Ê (YT,i |Xi )− µRMI +

T∑
t=1

Rt,i

{
Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
− Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}

+
T∑
t=1

Rt−1,i (1−Rt,i)
{
Ỹ

(j)
T,i − Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}}
= 0

To show that µ̂RMI is a doubly-robust estimator of µ, we must show that

E

(
m∑
j=1

{
Ê (YT,i |Xi )− µRMI +

T∑
t=1

Rt,i

{
Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
− Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}

+
T∑
t=1

Rt−1,i (1−Rt,i)
{
Ỹ

(j)
T,i − Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}})
= 0

when at least one of the POD and POM models is correctly specified, where the outer expectation
is with respect to the true distribution of Xi, ȲT,i.

The final term is zero (by the definition of Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
as the mean of the distribution

from which Ỹ
(j)
T,i is drawn) and thus our requirement becomes that

E

(
m∑
j=1

{
Ê (YT,i |Xi )−µRMI+

T∑
t=1

Rt,i

{
Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
− Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}})
= 0
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when at least one of the POD and POM models is correctly specified, or, equivalently:

E

{
Ê (YT,i |Xi )− µRMI +

T∑
t=1

Rt,i

{
Ê
(
YT,i

∣∣Xi, Ȳt,i, ˆ̄πt,i
)
− Ê

(
YT,i

∣∣Xi, Ȳt−1,i, ˆ̄πt−1,i

)}}
= 0

By Lemma D.1, this can be rewritten as

E

{
H0

(
XT
i , β̂, ϕ̂

)
− µRMI

+

T∑
t=1

Rt,i

{
Ht

(
XT
i , Ȳt,i, ˆ̄πt,i, β̂, ϕ̂

)
−Ht−1

(
XT
i , Ȳt−1,i, ˆ̄πt−1,i, β̂, ϕ̂

)}}
= 0 (15)

which is the same as

E

{
H0

(
XT
i , β̂

)
− µRMI

+
T∑
t=1

Rt,i
ˆ̄πt,i

{
Ht

(
XT
i , Ȳt,i, ˆ̄πt,i, β̂, ϕ̂

)
−Ht−1

(
XT
i , Ȳt−1,i, ˆ̄πt−1,i, β̂, ϕ̂

)}}
= 0 (16)

since both the second term in (15) and (16) are numerically zero (assuming that a constant term
was included in the extended POD model).

Then we are done, since the expression inside the expectation in (16) is the same as the
summand in (14). In other words, that the equality (16) holds whenever at least one of the POD
and POM models is correctly specified follows from the double robustness of µ̂AIPW.
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Table 1: Details of the simulation studies.
1. Cross-sectional univariate:

True strue (X,β) = β
(
1, X2

1 , X2, X2X3

)T
, β = (0, 1, 2.5, 3)

logit {π̂true (X,α)} = α (1, I1, I2, I3, I1I2)
T , α = (−1, 1, 0, 0,−1)

False sfalse (X,β) = β
(
1, X1, X

2
2

)T
logit {π̂false (X,α)} = α (1, I1, I3)

T

2. Monotone longitudinal :

True s̃true
1 (X,β1) = β1 (1, X1, X1X3)

T ,β1 = (0, 3, 2)

strue
2 (X, Y1,β2) = β2

(
1,X2

1 ,X2, Y
2
1 , X2Y1

)T
,β2 = (0,−3, 3, 1,−2)

strue
1 (X,β1) = β1

(
1, X2, X

2
1 , X1X2, X

2
1X3, X1X2X3, X

2
1X

2
3

)
logit {π̂true

1 (X,α1)} = α1

(
1, IX1 , IX2 , IX3 , IX1 IX2

)T
,α1 = (1,−1,−1, 1, 1)

logit {π̂true
2 (X, Y1,α2)} = α2

(
1, IX1 , IX2 , IX3 , IX1 IX2 , IY1 , IX3 IY1

)T
,α2 = (0,−1,−1, 0, 1, 0, 2)

False sfalse
1 (X,β) = β (1, X1, X2)

T

sfalse
2 (X, Y1,β) = β

(
1, X1, X

2
2 , X

2
3 , Y1

)T
logit

{
π̂false
1 (X,α)

}
= α

(
1, IX2 , IX3

)T
logit

{
π̂false
2 (X,α)

}
= α

(
1, IY1

)T
3. Non-monotone longitudinal :

True s̃true
1 (X,β1) = β1

(
1,X2

)T
,β1 = (0, 1)

strue
2 (X,Y1,β2) = β2 (1, X, Y1)

T ,β2 = (0,−1, 2)
strue
1 (X,Y2,β1) = β1

(
1, X,X2, Y2

)
ptrue
1 (X,α11,α12) =

exp

{
α11

(
1,
√

|X|
)T

}
1+exp

{
α11

(
1,
√

|X|
)T

}
+exp

{
α12

(
1,
√

|X|
)T

}

ptrue
2 (X,α11,α12) =

exp

{
α12

(
1,
√

|X|
)T

}
1+exp

{
α11

(
1,
√

|X|
)T

}
+exp

{
α12

(
1,
√

|X|
)T

}
α11 = (2,−1),α12 = (0, 0.5)

logit {ptrue
2 (X,Y1,α2)} = α2

(
1, X, Y 2

1

)T
,α2 = (0,−2, 0.5)

False sfalse
1 (X,Y2,β1) = β1 (1, X, Y2)

T

sfalse
2 (X,Y1,β2) = β2

(
1, Y 2

1

)T
pfalse
1 (X,α11, α12) =

exp(α11)
1+exp(α11)+exp(α12)

pfalse
2 (X,α11, α12) =

exp(α12)
1+exp(α11)+exp(α12)

logit {ptrue
2 (X,Y1,α2)} = α2 (1, X, Y1)

T

4. Non-monotone non-longitudinal :

True s̃true
1 (X,β1) = β1

(
1,X2

)T
,β1 = (0, 1)

strue
2 (X,Y1,β2) = β2 (1, X, Y1)

T ,β2 = (0,−1, 2)
strue
1 (X,Y2,β1) = β1

(
1, X,X2, Y2

)
ptrue
1 (X,α11,α12) =

exp
{
α11(1,X,X2)T

}
1+exp

{
α11(1,X,X2)T

}
+exp

{
α12(1,X,X2)T

}
ptrue
2 (X,α11,α12) =

exp
{
α12(1,X,X2)T

}
1+exp

{
α11(1,X,X2)T

}
+exp

{
α12(1,X,X2)T

}
α11 = (1,−0.5, 0.2),α12 = (0, 0.5,−0.3)

logit {ptrue
2 (X,Y1,α22)} = α22 (1,X, Y1)

T ,α22 = (0,−1, 0.3)

logit {ptrue
1 (X,Y2,α21)} = α21 (1,X, Y2)

T ,α21 = (0,−1, 0.3)

False sfalse
1 (X,Y2,β1) = β1

(
1,X2, Y2

)T
sfalse
2 (X,Y1,β2) = β2 (1, Y1)

T

Key: IZl stands for I (Zl > 0)
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Table 2: The results of simulation studies comparing the doubly robust multiple imputation (RMI) estimator
with the inverse probability weighted complete case (IPW), outcome regression (OR) and multiple imputation (MI)
estimators; and the doubly robust (DR) estimator introduced by Bang and Robins. Results for the cross-sectional
univariate, monotone longitudinal, non-monotone longitudinal and non-monotone non-longitudinal cases are given.
No subscript indicates correct specification of the relevant model(s). π− false indicates that the estimator used an
incorrectly-specified POM model, y − false indicates that the estimator used an incorrectly-specified POD model
and π ⊕ y − false indicates that both the POM and POD models were incorrectly specified.

Estimator Bias True Estimated Coverage
variance variance probability

1. Cross-sectional univariate:
µ̂IPW −0.01 0.11 − −
µ̂OR −0.00 0.04 − −
µ̂DR −0.00 0.04 − −
µ̂RMI −0.00 0.04 0.04 0.95
µ̂IPW·π−false −0.36 0.13 − −
µ̂DR·π−false −0.00 0.04 − −
µ̂RMI·π−false −0.01 0.04 0.04 0.95
µ̂OR·y−false −0.35 0.12 − −
µ̂DR·y−false −0.01 0.11 − −
µ̂RMI·y−false −0.02 0.12 0.12 0.93
µ̂DR·π⊕y−false −0.35 0.13 − −
µ̂RMI·π⊕y−false −0.35 0.14 0.12 0.79

2. Monotone longitudinal :
µ̂IPW −0.11 10.98 − −
µ̂OR 0.06 1.92 − −
µ̂DR 0.06 1.92 − −
µ̂RMI 0.07 1.91 1.83 0.94
µ̂IPW·π−false −3.21 5.87 − −
µ̂DR·π−false 0.06 1.92 − −
µ̂RMI·π−false 0.08 1.92 1.83 0.93
µ̂OR·y−false −4.99 3.51 − −
µ̂DR·y−false −0.36 10.51 − −
µ̂RMI·y−false −0.37 10.63 4.28 0.74
µ̂DR·π⊕y−false −2.35 8.13 − −
µ̂RMI·π⊕y−false −2.37 7.38 3.67 0.57

3. Non-monotone longitudinal :
µ̂IPW 0.00 0.07 − −
µ̂MI −0.01 0.03 − −
µ̂RMI −0.02 0.03 0.03 0.95
µ̂IPW·π−false −0.59 0.05 − −
µ̂RMI·π−false −0.03 0.03 0.03 0.94
µ̂MI·y−false 3.07× 1031 2.16× 1065 − −
µ̂RMI·y−false 0.00 0.04 0.06 0.97
µ̂RMI·π⊕y−false 2.32 123.55 5.27× 108 0.94

4. Non-monotone non-longitudinal :
µ̂IPW 0.01 0.07 − −
µ̂MI 0.00 0.03 − −
µ̂RMI −0.00 0.03 0.03 0.95
µ̂IPW·π−false 0.25 0.06 − −
µ̂RMI·π−false 0.00 0.03 0.03 0.95
µ̂MI·y−false 0.49 0.05 − −
µ̂RMI·y−false −0.04 0.03 0.03 0.95
µ̂RMI·π⊕y−false 0.22 0.04 0.04 0.80
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