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Abstract

High-dimensional data pose challenges in statistical learning and
modeling. Sometimes the predictors can be naturally grouped where
pursuing the between-group sparsity is desired. Collinearity may oc-
cur in real-world high-dimensional applications where the popular l1

technique suffers from both selection inconsistency and prediction in-
accuracy. Moreover, the problems of interest often go beyond Gaus-
sian models. To meet these challenges, nonconvex penalized gener-
alized linear models with grouped predictors are investigated and a
simple-to-implement algorithm is proposed for computation. A rig-
orous theoretical result guarantees its convergence and provides tight
preliminary scaling. This framework allows for grouped predictors
and nonconvex penalties, including the discrete l0 and the ‘l0 + l2’
type penalties. Penalty design and parameter tuning for nonconvex
penalties are examined. Applications of super-resolution spectrum es-
timation in signal processing and cancer classification with joint gene
selection in bioinformatics show the performance improvement by non-
convex penalized estimation.

1 Introduction

Penalized log-likelihood estimation is a useful technique in high-dimensional
statistical modeling. Two basic and popular penalties are the l2-penalty or
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ridge penalty, and the l1-penalty or LASSO (Tibshirani, 1996). Both are
convex and are computationally feasible. The ridge-penalty usually has the
advantage of estimation and prediction accuracy. It is everywhere smooth
and standard optimization methods such as Newton-Raphson can be applied.
By contrast, the l1-penalty is not differentiable at zero. This characteristic
is however useful and necessary in high-dimensional model selection, because
exact zero components can be obtained in the LASSO estimate so that a
number of nuisance features can be discarded. For the l1 optimization algo-
rithms in the Gaussian setup, refer to Efron et al. (2004), Daubechies et al.
(2004), Friedman et al. (2007) among others.

On the other hand, the l1-penalty cannot deal with collinearity. Small co-
herence in the design, in form of the irrepresentable conditions (Zhao and Yu,
2006), RIP (Candes and Tao, 2005), sparse Riesz (Zhang and Huang, 2008)
or others, is a must for the l1-type regularization to have good performance.
Many real-world applications in signal processing and bioinformatics cannot
fulfill this stringent requirement. For example, the super-resolution spectral
estimation must apply an overcomplete dictionary at fine enough frequency
resolution and thus many sinusoidal atoms are highly correlated (see Section
6). When such collinearity occurs, (a) the prediction performance of the l1-
penalty is much worse than that of the l2-penalty (Zou and Hastie, 2005);
(b) the sparsity recovery with the l1 relaxation is inconsistent (Zhao and Yu,
2006).

To see the necessity of applying nonconvex penalties, we remind that
there are two objectives involved in the task of statistical learning and mod-
eling when one does not know the ground truth practically: (O1) accurate
prediction, and (O2) parsimonious model representation. O1+ O2 is con-
sistent with Occam’s razor principle. A good approach must reflect both
concerns to produce a stable parsimonious model with generalizability.

Seen fromO1, a ridge penalty is desired to account for noise and collinear-
ity in the data. But it never encourages sparsity. In the elastic net which uses
a linear combination of the l1 penalty and the l2 penalty, the ridge part may
counteract the parsimony (O2) in the estimate (Zou and Hastie, 2005). Yet
the l1-norm already provides the tightest convex relaxation of the l0-norm.
Therefore, to maintain accuracy and promote sparsity, one must take into
account nonconvex penalties such as those of type ‘l0 + l2’.

This paper studies some computational problems in statistical modeling
in the following setup:

1. The data are high-dimensional, and correlated.
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2. The predictors can be naturally grouped, where pursuing the between-
group sparsity is desired.

3. A large family of penalties should be allowed for regularization, such
as the l0-penalty, lp-penalties, and SCAD, in addition to the convex
penalty family.

4. The methodology and analysis should go much beyond Gaussian models
to cover more applications such as classification.

We briefly summarize some important (but absolutely not exhaustive)
works in the literature as follows. In the Gaussian setup, Daubechies et al.
(2004) showed an iterative soft-thresholded procedure solves the l1 penalized
least-squares. Friedman et al. (2007) discovered a coordinate descent algo-
rithm which can be viewed as a variant of the previous procedure. Recently
Friedman et al. (2010b) extended the algorithm to penalized generalized lin-
ear models (GLMs), by approximating the optimization problem at each iter-
ation via penalized weighted least-squares. However, this approximation has
no guarantee of convergence and may not provide a solution to the original
problem. These works focus on convex penalties.

Zou and Li (2008) recently proposed the local linear approximation (LLA)
for GLMs. An adaptive LASSO optimization is carried out at each iteration
step. The resulting algorithm has theoretical guarantee of convergence, but
may not be efficient enough. Another popular approach is the DC program-
ming (Gasso et al., 2009), which solves nonconvex penalized problems that
can be represented as a difference of two convex functions (Fan and Li, 2001,
Zhang, 2009, Zou and Li, 2008). Similarly, a weighted LASSO problem is
solved at each iteration. Neither of the techniques directly applies to dis-
crete penalties, such as l0 and l0 + l2, or group penalties.

To address the grouping concern, Yuan and Lin (2006) proposed the
group LASSO. An algorithm was developed under the assumption that the
predictors within each group are orthogonal to each other. Friedman et al.
(2010a) provided an algorithm for solving convex group penalties in the Gaus-
sian framework. How to address the nonconvex group penalties, e.g., the
group l0 + l2, for GLMs remains unsolved.

This paper provides a general framework for penalized log-likelihood op-
timization for any GLMs, to address all points 1-4. Our proposed algorithm
significantly generalizes She (2009) which was designed for Gaussian models
only and could not attain discrete or group penalties. Using a q-function
trick, this framework allows for essentially any penalties including the l0, lp,
and SCAD penalties. The predictors can be grouped to pursue the between-

3



group sparsity. Moreover, the convergence analysis in this paper is less re-
strictive than She (2009). No condition is imposed on the penalty function.
The proof is self-contained and the conclusion applies to any thresholding
rules (satisfying the mild conditions given in Definition 2.1).

The rest of the paper is organized as follows. Section 2 introduces the
thresholding based algorithm with rigorous theoretical convergence analysis
and presents concrete penalty examples. Section 3 discusses algorithm details
and how to use numerical techniques and probabilistic screening for fast
computation in high dimensions. Section 4 investigates different choices of
the penalty function by simulation studies, from which a nonconvex hard-
ridge penalty is advocated. Section 5 proposes a selective cross-validation
(SCV) scheme for parameter tuning. In Section 6, super-resolution spectrum
reconstruction is studied and a real microarray data example is analyzed to
illustrate the proposed methodology. Technical details are left to Appendix.

2 Solving the Penalized Log-likelihood Esti-

mation Problem

This paper assumes a group GLM setup that goes beyond Gaussianity.
Assume the observations y1, · · · , yn are independent and yi follows a distri-
bution in the natural exponential family f(yi; θi) = exp(yiθi − b(θi) + c(yi)),
where θi is the natural parameter. Let Li = log f(yi, θi), L =

∑

Li. Then
µi , E(yi) = b′(θi). Let X = [x1,x2, · · · ,xn]

T be the model matrix. The
canonical link function, denoted by g, is applied. The Fisher information
matrix at β is given by I(β) = XTWX with W , diag

{

b′′(xT
i β)

}

. We
assume the predictors are naturallygrouped, i.e., the design matrix is grouped
into K blocks: X = [X1, · · · ,XK ] ∈ R

n×p, so that in model selection one
wants to keep or kill a group of predictors as a whole. For a real example see
the super-resolution spectral analysis in Section 6. The predictor groups do
not overlap but the group sizes can be different. When there are p groups,
each being a singleton, the model reduces to the common ‘ungrouped’ GLM.
The criterion of the group Pk-penalized log-likelihood is defined by

F (β) , −L(β) +

K
∑

k=1

Pk(‖βk‖2;λk), (1)
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where L =
∑n

i=1 Li is the log-likelihood, βk are the coefficients associated
with Xk, and Pk are the penalty functions that can be discrete, nonconvex,
and nondifferentiable at zero. The dimension p may be much greater than
the sample size n. There may exist a large number of nuisance features.

Directly optimizing (1) can be tricky for a given penalty function. For
example, the l0-penalty

λ2

2
‖β‖0 = λ2

2
|{i : βi 6= 0} (where | · | is the set

cardinality) used for building a parsimonious model is discrete and noncon-
vex. We turn to another class of estimators defined via an arbitrarily given
thresholding rule to solve (1) for essentially any Pk.

2.1 Θ-estimators

Somewhat interestingly, it is more convenient to tackle (1) from a thresh-
olding viewpoint. The main tool of this paper is the so-called Θ-estimators.
First we define the thresholding rules rigorously as follows.

Definition 2.1 (Threshold function). A threshold function is a real valued
function Θ(t;λ) defined for −∞ < t < ∞ and 0 ≤ λ < ∞ such that

1. Θ(−t;λ) = −Θ(t;λ),

2. Θ(t;λ) ≤ Θ(t′;λ) for t ≤ t′,

3. limt→∞ Θ(t;λ) = ∞, and

4. 0 ≤ Θ(t;λ) ≤ t for 0 ≤ t < ∞.

In words, Θ(·;λ) is an odd monotone unbounded shrinkage rule for t, at
any λ. A vector version of Θ (still denoted by Θ) is defined componentwise
if either t or λ is replaced by a vector. Clearly, Θ−1(u;λ) , sup{t : Θ(t;λ) ≤
u}, ∀u > 0 must be monotonically increasing and so its derivative is defined
almost everywhere on (0,∞). For any Θ, we introduce a finite positive
constant LΘ such that dΘ−1(u;λ)/ du is bounded below almost everywhere
by 1 − LΘ. For example, it is easy to show LΘ can be 0 and 1 for soft-
thresholding and hard-thresholding respectively.

A multivariate version of Θ, denoted by ~Θ, is defined for any vector
α ∈ R

p:

~Θ(α;λ) = α◦Θ(‖α‖2;λ), (2)
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where α◦ =

{

α
‖α‖2

, if α 6= 0

0, if α = 0
. Obviously, ~Θ is still a shrinkage rule because

‖~Θ(α;λ)‖2 = Θ(‖α‖2;λ) ≤ ‖α‖2.

Now we define group Θ-estimators. Given any threshold functions Θ1, . . . ,ΘK ,
the induced group Θ-estimator satisfies the following nonlinear equation

βk = ~Θk(βk +XT
k y −XT

kµ(β);λk), 1 ≤ k ≤ K, (3)

where µi = g−1(xT
i β) with g as the canonical link function. To avoid the

influence of the ambiguity in defining some threshold functions (e.g., hard-
thresholding), we always assume the quantity to be thresholded does not

correspond to any discontinuity of ~Θk. This assumption is mild because a
practical thresholding rule usually has at most finitely many discontinuity
points and such discontinuities rarely occur in any real application.

As will be shown later, there is a universal connection between the penal-
ized estimators and the group Θ-estimators, but the latter are much easier
to compute: at each iteration step j, the new β(j+1) can be updated through
the multivariate thresholding

Group-TISP : β
(j+1)
k = ~Θk(β

(j)
k +XT

k y −XT
kµ(β

(j));λk), 1 ≤ k ≤ K, (4)

provided that the norm of the global design X is not large (as will be ex-
plained in Theorem 2.1). This suggests the need of scaling the data before-
hand (which does not affect the sparsity of β). We refer to (4) as group
thresholding-based iterative selection procedure (Group TISP). It general-
izes the work by She (2009) in the Gaussian nongrouped setup. Next, we
show (4) converges properly to a group Θ-estimate under some appropriate
conditions, which in turn solves the penalized log-likelihood problem (1) in
a general sense.

Theorem 2.1. Let Θk (1 ≤ k ≤ K) be arbitrarily given thresholding rules
and β(0) be any p-dimensional vector. Denote by β(j), j = 1, 2, · · · , the group
TISP iterates defined via (4). Define ρ = supξ∈A ‖I(ξ)‖2 where A = {ϑβ(j)+

(1− ϑ)β(j+1) : ϑ ∈ (0, 1), j = 1, 2, · · · }. If

ρ ≤ max(1, 2− max
1≤k≤K

LΘk
), (5)
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then for any penalty functions Pk satisfying

Pk(θ;λk)− Pk(0;λk) =

∫ |θ|

0

(sup{s : Θk(s;λk) ≤ u} − u) du+ qk(θ;λk),

with qk(θ, λk) nonnegative and qk(Θk(t;λk);λk) = 0, ∀t ∈ R, the value of the
corresponding objective function F in (1) decreases at each iteration

F (β(j))− F (β(j+1)) ≥ C‖β(j) − β(j+1)‖22, j = 1, 2, · · · (6)

where C = max(1, 2−maxk LΘk
)−ρ. If, further, ρ < max(1, 2−maxk LΘk

),
any limit point of β(j) must be a fixed point of (3), or a group Θ-estimate.

See A for its proof. The theorem allows for p > n and applies to any
threshold functions, even if they are not nonexpansive. This covers essentially
any penalties of practical interest, as will be shown below.

2.2 Concrete examples

The theorem indicates no matter how the predictors are grouped, for an ar-
bitrarily given model matrix, performing a simple preliminary scaling X/k0
always guarantees the convergence of the algorithm of (4), provided k0 is ap-
propriately large. For a specific GLM, the choice of k0 can be made regardless
of Θ, λ, and K.

Example 2.1 (Gaussian GLM). If yi are Gaussian, µ(β) = Xβ in (4)
and I = Σ = XTX. Therefore, k0 ≥ ‖X‖2 suffices regardless of the specific
thresholding rules. This covers She (2009) where the predictors are ungrouped
(K = p) and all Θk’s are identical.
Example 2.2 (Binomial GLM). If yi ∼ Bernoulli(πi) as in classification
problems, we can write µ(β) as 1/(1+exp(−Xβ)) with the operations being
elementwise except for the matrix-vector multiplication of Xβ. Now the
proposed algorithm reduces to

β
(j+1)
k = ~Θk

(

β
(j)
k +XT

k y −XT
k

[

1

1 + exp(−Xβ(j))

]

n×p

;λk

)

, 1 ≤ k ≤ K. (7)

For ungrouped predictors (K = p) and identical Θk’s, the iteration can be
simplified to

β(j+1) = Θ

(

β(j) +XTy −XT

[

1

1 + exp(−Xβ(j))

]

n×p

;λ

)

. (8)
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In either case, since wi = b′′(xT
i β) = πi(1 − πi) ≤ 1/4, a somewhat crude

but general choice is k0 ≥ ‖X‖2/2, regardless of Θ. The procedure based on
(8) is different than the algorithm in Friedman et al. (2010b) that approxi-
mates the original penalized logistic regression problem by penalized weighted
least-squares at each iteration. Our algorithm has theoretical guarantee of
convergence.

On the other hand, the experience indicates that if the algorithm con-
verges, smaller values of k0 lead to faster convergence. It is a meaningful
question in computation to find the least possible k0 in concrete applica-
tions. Theorem 2.1 provides useful guidance in this regard: the ρ-bound
based on LΘ seems to be tight enough in implementation for various Θ. In
the following, we give some examples of Θ and P to show the power of the
proposed algorithm for solving penalized likelihood estimation. See Figure 1
for an illustration. The function q in the theorem is often 0, but we use non-
trivial q’s in Example 2.5 and Example 2.8 to attain the discrete l0 penalty
and the l0 + l2 penalty.
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Figure 1: Some examples of the thresholding rules and their corresponding penal-
ties. Left to right: Soft, Ridge, Hard, SCAD, and Hard-ridge.

Example 2.3 (L1). When Θ is the soft-thresholding – ΘS(t;λ) = sgn(t)(|t|−
λ)1|t|≥λ, the associated penalty is P (θ;λ) = λ|θ|. Since we can set LΘ = 0,

the scaling constant can be relaxed to k0 = ‖X‖2/
√
2 in regression and k0 =
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‖X‖2/(2
√
2) in classification. For grouped predictors, the algorithm of (4)

solves Problem (1) with the group l1-penalty
∑

k λk‖βk‖2 for any GLM, the
scaling constant being the same. In comparison to Yuan and Lin (2006), we
do not have to make the simplistic assumption that the predictors must be
orthogonal to each other within each group.

Example 2.4 (Elastic net). Define Θ(t;λ1, λ2) , ΘS(
t

1+λ2
; λ1

1+λ2
), where ΘS

is the soft-thresholding. Then the elastic net (Zou and Hastie, 2005) problem
is solved, where P (θ;λ1, λ2) = λ1|θ|+ λ2θ

2/2.

Example 2.5 (L0). Let Θ be the hard-thresholding t1|t|≥λ. Then LΘ = 1.
According to the theorem, letting q ≡ 0, our algorithm solves for the ‘hard
penalty’

PH(θ;λ) =

{

−θ2/2 + λ|θ|, if |θ| < λ

λ2/2, if |θ| ≥ λ.
(9)

Interestingly, setting

q(θ;λ) =

{

(λ−|θ|)2

2
, if 0 < |θ| < λ

0, if θ = 0 or |θ| ≥ λ,

we obtain the discrete l0-penalty P (θ;λ) = λ2

2
1θ 6=0. Similarly, we can justify

that the continuous penalty P (θ;λ) = αPH(θ;λ/
√
α) mimics the l0-penalty

and results in the same Θ-estimate, for any α ≥ 1. For grouped predic-

tors, our algorithm provides a solution to the group l0-penalty
∑K

k=1
λ2
k

2
1‖β

k
‖6=0

which can attain more between-group sparsity than the group LASSO.

Example 2.6 (Firm & SCAD). The firm shrinkage (Gao and Bruce, 1997)
is defined by

Θ(t;λ, α) =











0, if |t| < αλ
t−αλsgn(t)

1−α
, if αλ ≤ |t| < λ

t, if |t| ≥ λ,

(10)

where 0 ≤ α ≤ 1. The penalty function is then αPH(t;λ). An equivalent
form of this penalty is used in MCP (Zhang, 2010). A related thresholding is
the SCAD-thresholding (Fan and Li, 2001) and the SCAD-penalized GLMs
with grouped predictors can be solved by (4).
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Example 2.7 (Lp). We focus on 0 < p < 1. Assuming λ ≥ 0, define a
function

g(θ;λ) = θ + λpθp−1

for any θ ∈ [0,+∞). It is easy to verify that (i) g attains its minimum
τ(λ) = λ1/(2−p)(2 − p)[p/(1 − p)1−p]1/(2−p) at θo = λ1/(2−p)[p(1 − p)]1/(2−p);
(ii) g(θ) is strictly increasing on [θo,+∞); (iii) g(θ) → +∞ as θ → +∞.
Therefore, given any t > τ(λ), the equation g(θ) = t has one and only
one root in [θo,+∞) (or [θo, t), as a matter of fact), which can be found
numerically. Given p ∈ (0, 1), introduce the following function

Θlp(t;λ) =

{

0, if |t| ≤ τ(λ)

sgn(t)max{θ : g(θ) = |t|}, if |t| > τ(λ).
(11)

Based on the properties of g, it is not difficult to show that Θlp(·;λ) is indeed
a threshold function, i.e., an odd monotone unbounded shrinkage rule. From
the theorem, Θlp can handle PΘlp

(θ;λ) = λ|θ|p.
Example 2.8 (Hard-ridge (L0 +L2)). The hybrid hard-ridge-thresholding is
defined based on the hard-thresholding and the ridge-thresholding (She, 2009)

Θ(t;λ, η) =

{

0, if |t| < λ
t

1+η
, if |t| ≥ λ.

(12)

Letting q ≡ 0, we obtain a penalty function fusing the hard-penalty and the
ridge-penalty

PHR(θ;λ, η) =

{

−1
2
θ2 + λ|θ|, if |θ| < λ

1+η
1
2
ηθ2 + 1

2
λ2

1+η
, if |θ| ≥ λ

1+η
.

(13)

Moreover, for q(θ;λ, η) = 1+η
2
(|θ| − λ)210<|θ|<λ, we obtain the l0 + l2 penalty

P (θ) =
1

2
ηθ2 +

1

2

λ2

1 + η
1θ 6=0. (14)

This hard-ridge penalty offers both selection and shrinkage into regulariza-
tion, interplaying with each other during the iteration for nonorthogonal
designs. In the group situation, the algorithm aims for a penalty of form
∑K

k=1
λ2
k

2(1+ηk)
1‖βk‖6=0+

∑K
k=1

ηk
2
‖βk‖22 which is able to deal with collinearity in

the design in the pursuit of between-group sparsity.
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3 Algorithm Design and Fast Computation

3.1 Algorithm design details

Either the global scaling of X based on LΘ or the iteration (4) is simple to
implement. We give more algorithm design details as follows.

First, the range of the threshold parameter is finite and can be determined
from (3). Assuming λ is the threshold and X has been column normalized,
we can let λ vary over the interval 0 to ‖XTy −XTµ(0)‖∞.

The termination criterion can be based on β(j) or F (β(j)). Extensive
simulation studies showed that the approximate solution β(j) often had good
enough performance as j is reasonably large. Each iteration involves only
low-cost operations like matrix-vector multiplications. Setting a maximum
number of iterations can provide a tradeoff between performance and com-
putational complexity. Moreover, it can be shown (proof omitted) that for
hard-thresholding or hard-ridge thresholding, the limiting β(∞) is an ML esti-
mate or a ridge estimate, restricted to the selected dimensions. This fact can
be used in implementation when the maximum number of iterations allowed
has been reached.

It remains to specify the starting point for any given λ. Our theory guar-
antees local optimality given any initial point β(0). One can try multiple
random starts in computation, but a nice fact is that pursuing the globally
optimal solution to (1) is not at all needed to achieve significant perfor-
mance gains over the l1 technique. We have found simply using the zero
start, i.e., β(0) = 0, makes a good choice empirically. It finds a Θ-estimate
close to zero in building a parsimonious model. (Of course, other initial-
izations are available – see, e.g., Gasso et al. (2009).) Note that since the
solution path associated with a nonconvex penalty is generally discontinu-
ous in λ for nonorthogonal models, even though the penalty and threshold
function are differentiable to any order on (0,+∞), such as the transformed
l1 (Geman and Reynolds, 1992), a pathwise algorithm with warm starts is
easy to trap into poor local optima. Warm starts for a grid of values of λ is
not recommended over the zero start unless the problem is convex.

Finally, the λk in (4) are not necessarily equal to each other. The reg-
ularization vector λ can be component-specific to offer relative weights in
regularizing the coefficients. This weighted form can handle GLMs with
dispersion: f(yi; θi, φ) = exp[(yiθi − b(θi))/(Aiφ) + c(yi, φ)], where φ is a dis-
persion parameter orthogonal to θi, and Ai is a known prior weight (Agresti,
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2002). The normal and binomial GLMs are concrete examples. Introducing
weights is also useful when a shift vector α appears in the model but is un-
penalized. Two examples are mean-shift outlier detection (She and Owen,
2011) and the intercept estimation. (Note that although one can center both
X and y in a Gaussian model to make the intercept vanish, centering the
response may violate the distribution assumption for nonGaussian GLMs.)

3.2 Fast Computation

The iteration of the proposed algorithm involves no high-complexity opera-
tions like matrix inversion. We aim to improve its convergence speed espe-
cially for high-dimensional computation.

Numerical techniques. Although (4) is a nonlinear process, relaxation
and asynchronous updating can be incorporated to accelerate the conver-
gence. The asynchronous updating of (4) leads to in-place computation of
β, and the mean vector µ is always calculated using the recently updated β.
Under the assumptions that yi are Gaussian and the penalty is convex, this
exactly corresponds to the coordinate descent algorithm in Friedman et al.
(2007). Yet for nonGaussian GLMs, experience shows that the original syn-
chronous form seems to be more efficient. The relaxation of (4) is introduced
as

ξ(j+1) = (1− ω)ξ(j) + ω(β(j) +XTy −XTµ(β(j))),

β
(j+1)
k = ~Θk(ξ

(j+1)
k ;λk), 1 ≤ k ≤ K.

(15)

We used (15) with ω = 2 in experiments, where the number of iterations can
be reduced by about 40% in comparison to the original form.

Iterative quantile screening. To reduce the computational cost even more
dramatically in high dimensions without losing much performance, proba-
bilistic means must be taken into account apart from the numerical tech-
niques. A reasonable idea is to screen the predictors (features) preliminarily
before running (4). But for correlated data applications much more caution
is needed to (a) avoid too greedy preliminary screenings, and (b) keep the
screening principle consistent with the final model fitting criterion. We per-
form iterative feature screening by running group TISP in a quantile fashion:
at each iteration step of (4), we set a threshold value to have exactly αn
nonzero components arise in β(j+1). Similar to Section 2, we can show the
procedure is associated with the constrained form of the optimization prob-
lem (1). After convergence, αn candidate predictors are picked. As long as α
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is reasonably large, all relevant predictors can be maintained with high prob-
ability. Under the sparsity assumption, one can set α < 1; we have found
α = 0.8 to be safe empirically. Sparsity-pursuing algorithms converge much
faster on the screened (relatively) large-n data. If the model is Gaussian,
the first step of the iterative quantile screening corresponds to independence
screening (Fan and Lv, 2008) based on marginal correlation statistics.

4 Penalty Comparison

The design of the penalty P or the threshold function Θ is an important topic
in applying penalized log-likelihood estimation into real-world problems. We
performed systematic simulation studies to compare difference penalty func-
tions in sparse modeling. Five methods were studied: LASSO (with calibra-
tion), one-step SCAD, the nonconvex l0-penalty, SCAD-penalty, and hard-
ridge penalty. The first two are convex but multi-stage. Similar to the idea
of the LARS-OLS hybrid (Efron et al., 2004), we calibrated the LASSO es-
timate by fitting an unpenalized likelihood model restricted to its selected
predictors. One-step SCAD is an example of the one-step LLA (Zou and Li,
2008) which fits a weighted LASSO with the weights constructed from the
ML estimate and the penalty function. We used the previous tuned LASSO-
MLE as the initial estimate in weight construction which behaves better
than the ML estimate and applies to p > n. The remaining three nonconvex
methods were all be computed by the proposed algorithm. Neither SCAD
nor l0 introduces estimation bias for large coefficients. Hard-ridge penalty
does simultaneous selection and shrinkage with a thresholding parameter λ
and a ridge parameter η. For efficiency, we did not run a full two-dimensional
grid search when looking for the best parameters. Instead, for each η in the
grid {0.5η∗, 0.05η∗, 0.005η∗} where η∗ is the optimal ridge parameter, we find
λ(η) to minimize the validation error; then for λ fixed at the optimal value,
we find the best η to minimize the validation error.

We seek to evaluate and compare the performances of different penal-
ties in this section. To understand the true potential of each method in an
ideal situation and allow us to draw a stable performance comparison, we
tuned all regularization parameters on a very large independent validation
dataset. The simulation setup is as follows. Let β = (b, 0, b, b, 0, · · · , 0)T ,
X = [x1,x2, · · · ,xn]

T and xi are i.i.d. ∼ MVN(0,Σ) where Σjk = ρ|j−k|,
1 ≤ j, k ≤ p. Note that all group penalties in (1) use the same l2-norm
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for within-group penalization. The difference lies in between-group penal-
ties. In the experiment, to make this difference more prominent, we let each
predictor fall into an individual predictor group. The control parameters
were varied by (n, p) = (100, 20), (100, 100), (100, 500), ρ = 0.1, 0.5, 0.9,
and b = .75, 1, 2.5. We generated an additional large test dataset with
10,000 observations to evaluate the performance of any algorithm, as well
as an validation dataset of the same size to tune the regularization pa-
rameters. All 33 = 27 combinations of the problem size, design correlation,
and signal strength were covered in the simulations. We measured an algo-
rithm’s performance by prediction accuracy and sparsity recovery, for each
model simulated 50 times. We evaluated the scaled deviance error (SDE)
100(

∑N
i=1 log f(yi; β̂)/

∑N
i=1 log f(yi;β) − 1) on the test data. For stability,

we reported the 40% trimmed-mean of the SDEs from the 50 runs. We
also reported variable selection results via three benchmark measures: the
mean masking (M) and swamping (S) probabilities, and the rate of success-
ful joint detection (JD). The masking probability is the fraction of unde-
tected relevant variables (misses), the swamping probability is the fraction
of spuriously identified variables (false alarms), and the JD is the fraction
of simulations with zero miss. In variable selection, masking is a much
more serious problem than swamping, and an ideal method should have
M ≈ 0%, S ≈ 0%, and JD ≈ 100%. The simulation results for logistic
regression are summarized in Figures 2, 3, and 4.

We briefly summarize the conclusions as follows. Seen from the results,
the Lasso-MLE that chooses λ according to the bias corrected lasso allevi-
ated the issue that even when the signal-to-noise ratio is pretty high, the lasso
overselects (Leng et al., 2006), but still leaves much room for improvement.
The nonconvex l0 yields a restricted ML estimate, too, but is single-stage,
and often did better in variable selection. The weighting technique in one-
step SCAD, though theoretically effective for p fixed and n → ∞, requires
a careful choice of the initial estimate in finite samples. The improvement
brought by weighting was somewhat limited, especially when some predictors
are correlated. Fully solving the nonconvex SCAD problem, though using a
näıve zero start, showed good large-p performance. In the 27 experiments,
the nonconvex hard-ridge penalization (13) (or (14)) had striking advantage
in prediction and sparsity recovery simultaneously, in various challenging sit-
uations of large p, low signal strength, and/or high collinearity. Its l2-portion
dealt with collinearity well and adapted to different noise levels; meanwhile,
its l0-portion, nondifferentiable at zero, enforced higher level of sparsity than

14



20 100 500
0

5

10

P
re

d
ic

ti
o
n
 e

rr
o
r 

(S
D

E
)

ρ=0.1

Lasso−MLE

One−step SCAD

L0

SCAD

Hard−Ridge

20 100 500
0

2

4

6

8

10

P
re

d
ic

ti
o
n
 e

rr
o
r 

(S
D

E
)

ρ=0.5

20 100 500
0

1

2

3

P
re

d
ic

ti
o
n
 e

rr
o
r 

(S
D

E
)

ρ=0.9

20 100 500
0

20

40

60

80

100

M
a
s
k
in

g
 f
re

q
u
e
n
c
y
 (

M
)

Lasso−MLE

One−step SCAD

L0

SCAD

Hard−Ridge

20 100 500
0

20

40

60

80
M

a
s
k
in

g
 f
re

q
u
e
n
c
y
 (

M
)

20 100 500
0

20

40

60

M
a
s
k
in

g
 f
re

q
u
e
n
c
y
 (

M
)

20 100 500
0

2

4

6

8

10

S
w

a
m

p
in

g
 f
re

q
u
e
n
c
y
 (

S
)

Lasso−MLE

One−step SCAD

L0

SCAD

Hard−Ridge

20 100 500
0

2

4

6

8

S
w

a
m

p
in

g
 f
re

q
u
e
n
c
y
 (

S
)

20 100 500
0

2

4

6

8

10

S
w

a
m

p
in

g
 f
re

q
u
e
n
c
y
 (

S
)

20 100 500
0

20

40

60

80

100

Dimension (p)

J
o
in

t 
d
e
te

c
ti
o
n
 r

a
te

 (
J
D

)

Lasso−MLE

One−step SCAD

L0

SCAD

Hard−Ridge

20 100 500
0

20

40

60

80

100

Dimension (p)

J
o
in

t 
d
e
te

c
ti
o
n
 r

a
te

 (
J
D

)

20 100 500
0

20

40

60

80

100

Dimension (p)

J
o
in

t 
d
e
te

c
ti
o
n
 r

a
te

 (
J
D

)

Figure 2: Performance comparison of different penalties in terms of test error,
masking/swamping probabilities, and joint identification rate for logistic regression
models with b = 0.75.
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Figure 3: Performance comparison of different penalties in terms of test error,
masking/swamping probabilities, and joint identification rate for logistic regression
models with b = 1.
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Figure 4: Performance comparison of different penalties in terms of test error,
masking/swamping probabilities, and joint identification rate for logistic regression
models with b = 2.5.
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convex techniques. Not surprisingly, in computation, nonconvex penalties
required more computational time than the l1, but the cost is acceptable.
For example, in the setup of (n, p) = (100, 500), ρ = 0.5, b = 0.75, the total
running time (in seconds) was 322.6, 1184.1, 1910.5, 1553.3 for l1, l0, SCAD,
and hard-ridge, respectively. The performance boost, with some sacrifice in
computational time, is affordable.

5 Choice of the Regularization Parameter

Parameter tuning plays an important role in penalized log-likelihood estima-
tion. If we assume β is sparse and the sample size n is large relative to the true
dimensionality (denoted by, say, pnz), then BIC can be used but may still
suffer from overselection (Chen and Chen, 2008). Directly cross-validating
(CV) the regularization parameter λ is also popular in the literature. How-
ever, it may not be appropriate for nonconvex penalties. (i) The optimal
value of λ in the penalized criterion (1) is a function of the true β and the
data (X,y). As the training data change, the optimal value of the penalty
parameter may not remain the same. But K-fold CV requires K different
trainings. (ii) Even if a nonconvex penalty and its corresponding threshold
function are smooth on (0,∞), the solution path β̂(λ) is typically discontin-
uous in λ for nonorthogonal designs. As a consequence, for any given value
of λ, the K fitted models in CV may not be directly comparable, and thus
averaging the CV errors can be unstable and misleading. A crucial question
is how to guarantee the K trainings (and validations) are associated with the
same model.

To address the issue in sparsity problems, we propose K-fold selective
cross-validation (SCV) outlined below. Let A be a given sparsity algorithm.

1. RunA on the whole dataset for λ in a grid of values, getting the solution
path β̂l, 1 ≤ l ≤ L. The associated sparsity patterns are denoted by
nzl = nz(β̂l), 1 ≤ l ≤ L.

2. For each l, run cross-validation to fit K models with only the predictors
picked by nzl. We use degree-of-freedom (df) matching to find proper
shrinkage parameter in each training.

3. Summarize the CV deviance errors and determine the optimal estimate
and sparsity pattern in the solution path.

Step 1 determines candidate sparsity patterns to be used in the training step.
Given k (1 ≤ k ≤ K), on the data without the kth subset, Step 2 fits models
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restricted to the selected dimensions only. Specifically, if β̂l is from the l0
penalization, the df is essentially the number of nonzero components in β̂l.
Therefore, in each CV training, we simply fit a model with MLE, unpenalized
and restricted to nzl. For the hard-ridge penalty, the contribution of the
ridge parameter η must be considered, for the df of an l2-penalized GLM
with estimate β̂ is approximately Tr{(I(β̂) + ηI)−1

I(β̂)} (Agresti, 2002).
To guarantee the kth trained ridge model has the same df as β̂l, bisection
search can be used to find the appropriate value ηk. Finally, in Step 3,
the prediction errors on the left-out piece of data can be summarized by

−2
∑n

i=1 log f(yi; β̂
−k(i)

l ) =: SCV(l), where β̂
−k(i)

l denotes the above local
estimate without the k(i)th subset and restricted to the selected dimensions.
If the model is very sparse—pnz ≪ n and pnz ≪ p, a BIC correction term
can be added: SCV-BIC(l) = SCV(l) + logn · df(β̂l). Empirically, this new
criterion can overcome the overselection issue of BIC, through replacing the
training error by the SCV error. A similar idea is used in Bunea and Barbu
(2009).

In summary, SCV runs the given sparse algorithm only once and globally,
instead of K times locally, to determine the common sparsity patterns. It
can reduce the computational cost and resolve the model inconsistency issue
of the plain CV.

6 Applications

We demonstrate the efficacy of our algorithm for computing nonconvex pe-
nalized models by super-resolution spectral analysis in signal processing, and
cancer classification and gene selection in microarray data analysis.

6.1 Super-resolution spectral analysis

The problem of spectral estimation studies how the signal power is dis-
tributed over frequencies, and has rich applications in speech coding and
radar sonar signal processing. It becomes very challenging when the required
frequency resolution is high, because the number of the frequency levels at a
desired resolution can be (much) greater than the sample size, referred to as
super-resolution spectral estimation. Super-resolution spectral analysis goes
beyond the traditional Fourier analysis and is one of the first areas where
the l1-relaxation technique, i.e., the Basis Pursuit by Chen et al. (1998),
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was proposed. Here we revisit the problem and demonstrate the advantage
brought by group nonconvex penalized likelihood estimation. We focus on
the classical TwinSine signal arising from target detection:

y(t) = a1 cos(2πf1t + φ1) + a2 cos(2πf2t+ φ2) + n(t)

where a1 = 2, a2 = 3, φ1 = π/3, φ2 = π/5, f1 = 0.25Hz, f2 = 0.252Hz
and n(t) is white Gaussian noise with variance σ2. Obviously, the frequency
resolution needs to be as fine as 0.002 Hz to perceive and distinguish the two
sinusoidal components. For convenience, assume the data sequence is evenly
sampled at n = 100 time points ti = i, 1 ≤ i ≤ n. (Our approach does not
require uniform sampling.) An overcomplete dictionary to attain the desired
frequency resolution can be constructed by setting the maximum frequency
fmax = 1/2 = 0.5 Hz, and the number of frequency bins D = 250. Concretely,
let fk = fmax ·k/D for k = 0, 1, · · · , D and define the frequency atomsXcos =
[cos(2πtifk)]1≤i≤n,1≤k≤D and Xsin = [sin(2πtifk)]1≤i≤n,1≤k≤D−1, where the
last sine atom vanishes because sin(2πtifD) = 0 for integer-valued ti. Then
X = [Xcos Xsin] is of dimension 100-by-499 without the intercept, resulting
in a challenging high-dimensional learning problem. In this situation, the
classical Fourier transform based periodogram or least-squares periodogram
(LSP) suffers from severe power leakage, while the basis pursuit (BP) is able
to super-resolve under the spectral sparsity assumption. On the other hand,
the pairing structure of cosine and sine atoms is often ignored in spectrum re-
covery. More seriously, when the desired frequency resolution is sufficiently
high, the dictionary contains many similar sinusoidal components and the
high pairwise correlations may make the l1 relaxation of the l0-norm cor-
rupted in selecting all frequencies consistently.

We simulated the signal model at given noise levels σ2 = 8, 1, 0.1, each
with 20 times to evaluate the performance of an algorithm. At each run,
we generated additional test data at N = 2000 time points different than
those of the training data to calculate the effective prediction error MSE∗ =
∑N

i=1(yi−xT
i β̂− α̂)2/N−σ2. The median of MSE∗ was reported, denoted by

Err, as the goodness of fit of the obtained model. The frequency detection
is measured by joint detection rates – JD, misses – M, and false alarms – S

defined in Section 4. Table 1 compares the performance of BP, grouped lasso,
hard-ridge and grouped hard-ridge penalized regressions on the TwinSine
signal, all of which were computed via the proposed algorithm.

To see the true potential of each penalty in an ideal situation, in the first 4
experiments we used independent large validation data (of 2000 observations)
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Table 1: Performance comparison of basis pursuit, grouped lasso (G-Lasso), hard-
ridge and grouped hard-ridge (G-Hard-Ridge) penalized regressions for spectral
estimation.

σ
2 = 8 σ

2 = 1 σ
2 = 0.1

Tuning SNR = 18.13 SNR = 8.13 SNR = −0.90
Err JD M S Err JD M S Err JD M S

Basis pursuit Large-Val 4.15 0 55 0.5 3.00 0.0 50 0.3 2.87 0.0 50 0.3
Hard-Ridge Large-Val 1.70 45 16.3 0.4 0.36 80 5 0.2 0.03 100 0 0.1

G-LASSO Large-Val 1.58 90 5.0 1.8 0.25 100 0 1.6 0.04 100 0 2.8
G-Hard-Ridge Large-Val 0.66 95 2.5 0.1 0.16 100 0 0.0 0.02 100 0 0.0

G-Hard-Ridge SCV-BIC 1.11 85 7.5 0.0 0.27 100 0 0.0 0.12 100 0 0

to tune the parameters. The penalty comparison showed the improvement
of the nonconvex hard-ridge penalty in both time-domain prediction and
frequency-domain spectrum reconstruction. In the last experiment, the hard-
ridge was run with no additional validation data. We used SCV with BIC
correction on the 100 training observations.

Again, our results showed that pursuing the global minimum of the non-
convex criterion (1) is not necessary; the zero start in (4) offered good ac-
curacy and regularization. In the experiments we predefined a maximum
iteration number Mmax = 5000 (see Section 3.1). To solve the l0 + l2 type
problems, our algorithm required 4 to 6 times as much time as the l1 in
computing one solution path. The higher computational complexity is ex-
pected but is an acceptable tradeoff between performance and computational
complexity in super-resolution spectral analysis.

6.2 Classification and gene selection

We then illustrate our algorithms with an example of cancer classification
with joint gene selection. We analyzed real acute lymphoblastic leukemia
(ALL) data conducted with HG-U95Av2 Affymetrix arrays (Chiaretti et al.,
2004). Following Scholtens and von Heydebreck (2005), we focus on the B-
cell samples and would like to contrast the patients with the BCR/ABL fusion
gene resulting from a translocation of the chromosomes 9 and 22, with those
who are cytogenetically normal (NEG). The preprocessed data can be loaded
from the Bioconductor data package ALL. This leads to 2,391 probe sets and
79 samples, 42 labeled with “NEG” and 37 labeled with “BCR/ABL”.
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We first ran iterative quantile screening introduced in Section 3.2 for di-
mension reduction. Specifically, we ran quantile TISP with the hard-ridge
thresholding function for η in a small grid of values, and then chose the op-
timal one by 5-fold SCV. We used α = 0.8. Then we ran the original form
of the algorithm (4) to solve hard-ridge penalized logistic regression. The
parameters were tuned by 5-fold SCV with no/AIC/BIC correction. For
comparison, we tested another two up-to-date classifiers with joint gene se-
lection: the nearest shrunken centroids (Tibshirani et al., 2002) (denoted by
NSC) and the Ebay algorithm (Efron, 2009). (The results of the l1 penalized
logistic regression are not reported, because in comparison, it gave similar
error rates but selected too many (> 30) genes.) For an implementation of
NSC, refer to the package pamr in R. The R-code for Ebay is also available
online (Efron, 2009). Their regularization parameters were tuned by cross-
validation. To prevent from getting over-optimistic error rate estimates, we
used a hierarchical cross-validation procedure where an outer 10-fold CV was
used for performance evaluation while the inner CVs were used for parameter
tuning. Table 2 summarizes the prediction and selection performances of the
three classifiers. The proposed algorithms had excellent performance. Hard-
ridge-penalty with SCV-BIC tuning behaved the best for the given data: it
gave the smallest error rate and produced the most parsimonious model with
only about 8 genes involved.

Table 2: Prediction error and the number of selected genes.

Misclassification error rate # of selected genes
(mean, median) (mean, median)

NSC 16.4%, 12.5% 19.3, 14

Ebay 12.7%, 12.5% 16.2, 16

Hard-Ridge with SCV 11.3%, 12.5% 21.4, 22.5
Hard-Ridge with SCV-AIC 10.2%, 6.3% 11.2, 9.5
Hard-Ridge with SCV-BIC 8.9%, 6.3% 8.1, 8

Next we identify the relevant genes. We bootstrapped the data 100 times.
For each bootstrap dataset, after standardizing the predictors, we fit a hard-
ridge penalized logistic regression with the parameters tuned by 5-fold SCV-
BIC. Figure 5 plots the frequencies of the coefficient estimates being nonzero
and the estimate histograms over the 100 replications. The bootstrap results
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give us a confidence measure of selecting each gene. The top three probesets
had nonzero coefficients more frequently (> 50% of the time) and they jointly
appeared 63 times in the selected models, the most frequently visited triple
in bootstrapping. Annotation shows that all three probe sets – 1636 g at,
39730 at, and 1635 at – are associated with the same gene – ABL1.
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Figure 5: Upper panel: Proportions of the coefficient estimates being nonzero
over the 100 bootstrap replications (only the top 100 genes are plotted). Lower
panel: Histograms of the bootstrap coefficient estimates of the top 8 genes.

7 Conclusion

The paper proposed a simple-to-implement algorithm for solving penalized
log-likelihoods. The predictors can be arbitrarily grouped to pursue the
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between-group sparsity and we do not require the within-group predictors
to be orthogonal. Our treatment is rigorous and applies to any GLM. We
proved a convergence condition in theory and it leads to a tight prelimi-
nary scaling which helps reduce the number of iterations in implementation.
Our algorithm and theoretical analysis allow for essentially any nonconvex
penalty, and a q-function trick was used to attain the exact discrete l0 and
l0 + l2 penalties.

A Proof of Theorem 2.1

Lemma 1. Given an arbitrary thresholding rule Θ, let P be any function

satisfying P (θ;λ)−P (0;λ) = PΘ(θ;λ)+q(θ;λ) where PΘ(θ;λ) ,
∫ |θ|

0
(sup{s :

Θ(s;λ) ≤ u} − u) du, q(θ;λ) is nonnegative and q(Θ(t;λ)) = 0 for all t.
Then, the minimization problem

min
β∈Rn

1

2
‖y − β‖22 + P (‖β‖2;λ) , Q(β;λ)

has a unique optimal solution given by β̂ = ~Θ(y;λ) for every y provided that
Θ(·;λ) is continuous at ‖y‖2.
Note that P (and PΘ) may not be differentiable at 0 and may be nonconvex.
For notational simplicity, we simply write Q(β) for Q(β;λ) when there is no
ambiguity. This lemma may be considered as a generalization of Proposition
3.2 in Antoniadis (2007).
Proof of Lemma 1. First, it suffices to consider β satisfying yiβi ≥ 0 because
for any β, Q(β) ≥ Q(β′) with β ′

i = sgn(yi)|βi|. By definition, we have

Q(β)−Q(β̂) = −yT (β − β̂) +
1

2
(‖β‖22 − ‖β̂‖22) + PΘ(‖β‖2;λ)− PΘ(‖β̂‖2;λ)

+q(‖β‖2;λ)− q(Θ(‖y‖2;λ);λ)

= −yT (β − β̂) +

∫ ‖β‖2

Θ(‖y‖2;λ)

(u+Θ−1(u;λ)− u) du+ q(‖β‖2;λ).

On the other hand,

−yT (β − β̂) = −yTβ + ‖y‖2Θ(‖y‖2;λ)
≥ −‖y‖2‖β‖2 + ‖y‖2Θ(‖y‖2;λ)
= −‖y‖2(‖β‖2 −Θ(‖y‖2;λ)
= −‖y‖2(‖β‖2 − ‖β̂‖2).
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Hence Q(β)−Q(β̂) ≥
∫ ‖β‖2
Θ(‖y‖2;λ)

(Θ−1(u;λ)− ‖y‖2) du+ q(‖β‖2;λ).
Suppose ‖β‖2 > Θ(‖y‖2;λ). By definition Θ−1(‖β‖2;λ) ≥ ‖y‖2, and

thusQ(β) ≥ Q(β̂). Furthermore, there must exist some u ∈ [Θ(‖y‖2;λ), ‖β‖2)
s.t. Θ−1(u;λ) > ‖y‖2, and hence Q(β) > Q(β̂) due to the monotonicity
of Θ−1. In fact, if this were not true, we would have Θ(t;λ) > ‖β‖2 ≥
Θ(‖y‖2;λ) for any t > ‖y‖2, and Θ(·;λ) would be discontinuous at t. A
similar reasoning applies to the case when ‖β‖2 < Θ(‖y‖2;λ). The proof is
now complete.

Hereinafter, we always assume Θ(t;λ) is continuous at any t to be thresh-
olded, since a practical thresholding rule usually has at most finitely many
discontinuity points and such discontinuities rarely occur in any real appli-
cation.

Lemma 2. Let Q0(β) = ‖y−β‖22/2+PΘ(‖β‖2;λ). Denote by β̂ the unique
minimizer of Q0(β). Then for any δ, Q0(β̂+δ)−Q0(β̂) ≥ C1‖δ‖22/2, where
C1 = max(0, 1− LΘ).

Proof of Lemma 2. Let s(u;λ) = Θ−1(u;λ)− u = sup{t : Θ(t;λ) ≤ u} − u.
We have

Q0(β̂ + δ)−Q0(β̂) =
1

2
‖β̂ + δ − y‖22 −

1

2
‖β̂ − y‖22 + PΘ(‖β̂ + δ‖2)− PΘ(‖β̂‖2)

=
1

2
‖δ‖22 + (β̂ − y)Tδ +

∫ ‖β̂+δ‖2

‖β̂‖2

s(u;λ) du (16)

(i) If β̂ = 0, ~Θ(y;λ) = 0 and so Θ(‖y‖2;λ) = 0, from which it follows that
‖y‖2 ≤ Θ−1(0;λ). Therefore,

(β̂ − y)Tδ ≥ −‖y‖2 · ‖δ‖2 ≥ −Θ−1(0;λ)‖δ‖2 = −
∫ ‖β̂+δ‖2

‖β̂‖2

s(‖β̂‖2;λ) du.

(ii) If β̂ 6= 0, it is easy to verify by Lemma 1 that β̂ satisfies y − β̂ =

s(‖β̂‖2;λ)y◦ = s(‖β̂‖2;λ)β̂
◦
, and thus

(β̂ − y)Tδ = −s(‖β̂‖2;λ)δT β̂
◦
.

For any a 6= 0, it follows from Cauchy’s inequality that

bTa◦ + ‖a‖2 = aT (a+ b)/‖a‖2 ≤ ‖a+ b‖2,
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or ‖a+ b‖2 − ‖a‖2 ≥ bTa◦. Making use of this fact, we obtain

(β̂ − y)Tδ ≥ −(‖δ + β̂‖2 − ‖β̂‖2)s(‖β̂‖2;λ) = −
∫ ‖β̂+δ‖2

‖β̂‖2

s(‖β̂‖2;λ) du.

In either case, (16) can be bounded in the following way:

Q0(β̂ + δ)−Q0(β̂) ≥
1

2
‖δ‖22 +

∫ ‖β̂+δ‖2

‖β̂‖2

(s(u;λ)− s(‖β̂‖2;λ)) du

=
1

2
‖δ‖22 +

∫ ‖β̂+δ‖2

‖β̂‖2

(

(Θ−1(u;λ)−Θ−1(‖β̂‖2;λ))− (u− ‖β̂‖2)
)

du.

By the Lebesgue Differentiation Theorem, (Θ−1)′ exists almost everywhere
and

∫ ‖β̂+δ‖2

‖β̂‖2

(Θ−1(u;λ)−Θ−1(‖β̂‖2;λ)) du ≥
∫ ‖β̂+δ‖2

‖β̂‖2

∫ u

‖β̂‖2

(Θ−1)′(v;λ) dv du.

By the definition of LΘ, Q0(β̂+δ)−Q0(β̂) ≥ 1
2
‖δ‖22− LΘ

2
(‖β̂+δ‖2−‖β̂‖2)2.

Lemma 2 is now proved.
Now we prove the theorem. Recall that the model matrix is X =

[x1,x2, · · · ,xn]
T = [X1, · · · ,XK ] ∈ R

n×p. Define

G(β,γ) = −
n
∑

i=1

Li(γ) +

K
∑

k=1

Pk(‖γk‖2;λk) +
1

2
‖γ − β‖22

−
n
∑

i=1

(b(xT
i γ)− b(xT

i β)) +
n
∑

i=1

µi(β)(x
T
i γ − xT

i β). (17)

Given β, algebraic manipulations (details omitted) show that minimizing G
over γ is equivalent to

min
γ

1

2

∥

∥γ −
[

β +XTy −XTµ(β)
]
∥

∥

2

2
+

K
∑

k=1

Pk(‖γk‖2;λk). (18)

By Lemma 1, the unique optimal solution can be obtained through multi-
variate thresholding

γk = ~Θk(βk +XT
k y −XT

kµ(β);λk), 1 ≤ k ≤ K
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even though Pk may be nonconvex. This indicates the iterates defined by (4)
can be characterized by β(j+1) = argminγ G(β(j),γ). Furthermore, for any
δ ∈ R

p we obtain

G(β(j),β(j+1) + δ)−G(β(j),β(j+1)) ≥ C ′
1

2
‖δ‖22 +

∑

k

qk(‖β(j+1)
k + δk‖2;λk),

(19)

where C ′
1 = max(0, 1 − maxk LΘk

), by applying Lemma 2, and noting that

qk(‖β(j+1)
k ‖2;λk) = 0 by definition. Taylor series expansion gives

n
∑

i=1

(b(xT
i β

(j+1))− b(xT
i β

(j)))−
n
∑

i=1

µi(β
(j))(xT

i β
(j+1) − xT

i β
(j))

=
1

2
(β(j+1) − β(j))TI(ξ(j))(β(j+1) − β(j))

for some ξ(j) = ϑβ(j) + (1− ϑ)β(j+1) with ϑ ∈ (0, 1). Therefore,

F (β(j+1)) +
1

2
(β(j+1) − β(j))T (I − I(ξ(j)))(β(j+1) − β(j))

= G(β(j),β(j+1)) ≤ G(β(j),β(j))− C ′
1

2
(β(j+1) − β(j))T (β(j+1) − β(j))

= F (β(j))− C ′
1

2
(β(j+1) − β(j))T (β(j+1) − β(j)).

(6) follows from the following inequality

F (β(j))− F (β(j+1)) ≥ 1

2
(β(j+1) − β(j))T

(

C ′
1I + I − I(ξ(j))

)

(β(j+1) − β(j)).

Now assume a subsequence β(jl) → β∗ as l → ∞. Under the condition
ρ < max(1, 2−maxk LΘk

), C > 0 and

‖β(jl+1) − β(jl)‖22 ≤ (F (β(jl))− F (β(jl+1)))/C ≤ (F (β(jl))− F (β(jl+1)))/C → 0.

That is, ~Θk(β
(jl)
k +XT

k y−XT
kµ(β

(jl));λk)−β
(jl)
k → 0. From the continuity

assumption, β∗ is a group Θ-estimate satisfying (3).

27



References

Agresti, A., 2002. Categorical Data Analysis, 2nd Edition. Wiley Series in
Probability and Statistics. Wiley-Interscience.

Antoniadis, A., 2007. Wavelet methods in statistics: Some recent develop-
ments and their applications. Statistics Surveys 1, 16–55.

Bunea, F., Barbu, A., 2009. Dimension reduction and variable selection in
case control studies via regularized likelihood optimization. Electron. J.
Stat. 3, 1257–1287.

Candes, E. J., Tao, T., 2005. Decoding by linear programming. IEEE Trans-
actions on Information Theory 51 (12), 4203–4215.

Chen, J., Chen, Z., 2008. Extended Bayesian information criterion for model
selection with large model space. Biometrika 95, 759–771.

Chen, S., Donoho, D., Saunders, M., 1998. Atomic decomposition by basis
pursuit. SIAM Journal of Scientific Computing 20 (1), 33–61.

Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli,
F., Ritz, J., Foa, R., 2004. Gene expression profile of adult t-cell acute
lymphocytic leukemia identifies distinct subsets of patients with different
response to therapy and survival. Blood 103 (7), 2771–2778.

Daubechies, I., Defrise, M., De Mol, C., 2004. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Commu-
nications on Pure and Applied Mathematics 57, 1413–1457.

Efron, B., 2009. Empirical bayes estimates for large-scale prediction prob-
lems. JASA 104, 1015–1028.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regres-
sion. Annals of Statistics 32, 407–499.

Fan, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood
and its oracle properties. J. Amer. Statist. Assoc. 96, 1348–1360.

Fan, J., Lv, J., 2008. Sure independence screening for ultrahigh dimensional
feature space. Journal of the Royal Statistical Society Series B 70 (5),
849–911.

28



Friedman, J., Hastie, T., Hofling, H., Tibshirani, R., 2007. Pathwise coordi-
nate optimization. Annals of Applied Statistics 1, 302–332.

Friedman, J., Hastie, T., Tibshirani, R., 2010a. A note on the group lasso
and a sparse group lasso. arXiv:1001.0736v1.

Friedman, J., Hastie, T., Tibshirani, R., 2010b. Regularized paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software
33 (1).

Gao, H.-Y., Bruce, A. G., 1997. Waveshrink with firm shrinkage. Stat. Sin.
7 (4), 855–874.

Gasso, G., Rakotomamonjy, A., Canu, S., 2009. Recovering sparse signals
with a certain family of nonconvex penalties and dc programming. IEEE
Transactions on Signal Processing 57 (12), 4686–4698.

Geman, D., Reynolds, G., 1992. Constrained restoration and the recovery of
discontinuities. IEEE PAMI 14 (3), 367–383.

Leng, C., Lin, Y., Wahba, G., 2006. A note on the lasso and related proce-
dures in model selection. Statist. Sinica 16 (4), 1273–1284.

Scholtens, D., von Heydebreck, A., 2005. Analysis of differential gene ex-
pression studies. In: Gentleman, R., Carey, V., Huber, W., Irizarry, R.,
Dudoit, S. (Eds.), Bioinformatics and Computational Biology Solutions
Using R and Bioconductor. Springer, pp. 229–248.

She, Y., 2009. Thresholding-based iterative selection procedures for model
selection and shrinkage. Electronic Journal of Statistics 3, 384–415.

She, Y., Owen, A. B., 2011. Outlier detection using nonconvex penalized
regression. Journal of the American Statistical Association 106 (494), 626–
639.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. JRSSB
58, 267–288.

Tibshirani, R., Hastie, T., Narashiman, B., Chu, G., 2002. Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proc. Nat’l
Academy of Sciences USA 99, 6567–6572.

29



Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with
grouped variables. JRSSB 68, 49–67.

Zhang, C.-H., 2010. Nearly unbiased variable selection under minimax con-
cave penalty. Ann. Statist. 38 (2), 894–942.

Zhang, C.-H., Huang, J., 2008. The sparsity and bias of the Lasso selection
in high-dimensional linear regression. Ann. Statist 36, 1567–1594.

Zhang, T., 2009. Some sharp performance bounds for least squares regression
with l1 regularization. Ann. Statist. 37, 2109–2144.

Zhao, P., Yu, B., 2006. On model selection consistency of lasso. Journal of
Machine Learning Research 7, 2541–2563.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic
net. JRSSB 67 (2), 301–320.

Zou, H., Li, R., 2008. One-step sparse estimates in nonconcave penalized
likelihood models. Annals of Statistics 36 (4), 1509–1533.

30


	1 Introduction
	2 Solving the Penalized Log-likelihood Estimation Problem
	2.1 -estimators
	2.2 Concrete examples

	3 Algorithm Design and Fast Computation
	3.1 Algorithm design details
	3.2 Fast Computation

	4 Penalty Comparison
	5 Choice of the Regularization Parameter
	6 Applications
	6.1 Super-resolution spectral analysis
	6.2 Classification and gene selection

	7 Conclusion
	A Proof of Theorem 2.1

