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ABSTRACT

ROBERT J. ERHARDT: Approximate Bayesian Computing for Spatial
Extremes.

(Under the direction of Richard L. Smith.)

Statistical analysis of max-stable processes used to model spatial extremes has been lim-

ited by the difficulty in calculating the joint likelihood function. This precludes all standard

likelihood-based approaches, including Bayesian approaches. Here we present a Bayesian

approach through the use of approximate Bayesian computing. This circumvents the need

for a joint likelihood function and instead relies on simulations from the (unavailable) like-

lihood. This method is compared with an alternative approach based on the composite

likelihood. When estimating the spatial dependence of extremes, we demonstrate that ap-

proximate Bayesian computing can provide estimates with a lower mean square error than

the composite likelihood approach, though at an appreciably higher computational cost.

As this approach very naturally incorporates parameter uncertainty into predictions,

it is well suited for use in pricing weather derivatives to manage environmental risks. We

discuss the construction and pricing of such weather derivatives. The method described

utilizes results from spatial statistics and extreme value theory to first model extremes in

the weather as a max-stable process, and then use these models to simulate payments for a

general collection of weather derivatives. These simulations capture the spatial dependence

of payments. Incorporating results from catastrophe ratemaking, we show how this method

can be used to compute risk loads and premiums for weather derivatives which are renewal-

additive.

We illustrate the performance of the approximate Bayesian computing method and

weather derivative pricing with applications to United States temperature data. The first

application considers pricing weather derivatives for temperature extremes in the Mid-

western United States. The second application demonstrates the use of the approximate

Bayesian computing method in estimating the risk of crop loss due to an unlikely freeze

event in northern Texas.
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1

Introduction

Modeling of spatial extremes is motivated by the need to model and predict environmental

extreme events such as hurricanes, floods, droughts, heat waves, and other high impact

events. Though the data have a natural spatial domain, standard spatial statistics methods

may fail to accurately model extremes. Models specifically designed for extremes are better

suited. The urgency of focusing on extremes is increased when one considers the potential

influence of climate change on the probability of such high impact events. We consider

point referenced data, usually taken as daily or hourly measurements yt,d at locations

d = 1, ..., D for time points t = 1, ..., T . When modeling extremes, as a first step one takes

block maxima over some temporal block (usually one year) and obtains block maxima

data yi,d where i is the block. In an environmental setting, for example, the data might be

annual maxima at each of D locations.

For a single location, univariate extreme value theory provides a full range of tools to

analyze the data. This theory is well developed and documented (Coles, 2001; de Haan and

Ferreira, 2006; Embrechts, et. al., 1999; Resnick, 1987, 2007). When one considers several

locations at once, multivariate extreme value theory is a natural extension. Multivariate

models often work well for lower dimensions, but if the data have a natural spatial domain

and the dimension grows rapidly, spatial extreme value theory becomes useful. Spatial

extremes are the infinite dimensional generalization of multivariate extremes. The goal then



is to fit these block maxima data to a spatial process model so that the spatial dependence

may be estimated. One promising class of models are max-stable processes. These arise as

the limiting distribution of the maxima of independent and identically distributed random

fields. A number of max-stable process models have been described (Schlather, 2002;

Kabluchko et. al., 2009) and one unpublished model was described by Smith in 1990. The

statistical analysis of these models is limited by the unavailability of the joint likelihood

function. However, the bivariate distributions are available in closed-form. This allows one

to write down the pairwise log-likelihood, which is the sum (taken over all unique pairs

of locations) of all bivariate log-likelihoods, and is thus also a composite log-likelihood.

Numerical maximization of the composite likelihood yields estimates of the parameters

which are consistent and asymptotically normal (Padoan et. al., 2010; Lindsay, 1988).

Maximum composite likelihood estimation has been the only method so far for analyzing

max-stable processes which is widely applicable, implemented computationally (R package

SpatialExtremes), and for which a viable asymptotic theory exists.

In this dissertation we develop a Bayesian alternative for analyzing the dependence

of spatial extremes. It circumvents the need for the joint likelihood, and instead relies

only on simulations. This approach, termed approximate Bayesian computing, has been

successfully applied in many areas, including extreme values (Bortot et. al., 2007). We

show three implementations of the approximate Bayesian computing approach for analyzing

spatial extremes. The first two rely on the bivariate distribution function, and like the

composite likelihood approach they consider the spatial dependence through all unique

pairs of locations. The third and most successful approach extends beyond pairs, and is

able to consider higher order k-tuples for k > 3. This feature is an important benefit of the

approximate Bayesian computing approach over all pairwise approaches. We show that the

approximate Bayesian computing method can result in a lower mean square error compared

to the competing composite likelihood approach when estimating the spatial dependence.
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We also discuss how this Bayesian approach naturally incorporates parameter uncertainty

into predictions, which is a central task in the field of extremes.

The method is computationally intensive, but open to a number of computational en-

hancements as well. The simplest implementation based on rejection sampling can be done

in parallel, and we demonstrate this. A more efficient implementation takes advantage of

adaptive computing, in which the sampler targets regions of the parameter space which

have shown greater promise. Not only does this approach reduce the computational cost,

but it also makes the choice of prior distribution an easier one. We advocate choosing

minimally informative, independent uniform priors on the natural parameters space Φ,

and show how adaptive approximate Bayesian computing can smoothly move from these

minimally informative priors to the target posterior distribution at a reasonable compu-

tational cost. Furthermore, computational considerations of various enhancements to the

algorithm are discussed.

We connect the statistical methodology with an application of rising interest in the

insurance industry - how to price weather derivatives for use as a risk management tool.

Weather derivatives are contingent contracts whose payments are determined by the dif-

ference between some underlying weather measurement and a pre-specified strike value.

They provide a useful risk management tool for any party facing weather risk. They also

provide investments which are often uncorrelated with more traditional financial instru-

ments, allowing investors to diversify. The first weather derivative was developed in 1996,

and by 1999 derivatives and their options were being traded on the Chicago Mercantile

Exchange (Kunreuther and Michel-Kerjan, 2009).

Finally, we demonstrate the use of max-stable processes for pricing weather derivatives

for extremes, both from a frequentist and Bayesian perspective. The Bayesian approach has

the added advantage of naturally incorporating parameter uncertainty into estimated risk

measures and premiums, resulting in larger but more accurate estimates of risk. In a second

3



application, we demonstrate how the approach can be used to extrapolate models from

regions of data to regions of interest, and serve as a rare event simulator. These simulators

often serve as an entry point to catastrophe ratemaking in the insurance industry.
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2

Extremes

2.1 Univariate and Multivariate Extremes

Let Y1, ..., Yn be univariate i.i.d. replicates from some distribution function F , and define

Mn = max(Y1, ..., Yn) as the maximum of the n random variables. The distribution of Mn

can be obtained exactly assuming F is known. In practice, then one could estimate F from

all of the data Y1, ..., Yn and estimate the distribution of Mn as P (Mn 6 z) = F n(z), but

this approach has two drawbacks. The first is that even minor discrepancies in estimating

F result in large discrepancies in F n, particularly in the tails of F . Put another way, why

should we expect a model which fits the bulk of data to also be a good fit in the tails? A

second drawback is that in the limit as n→∞, F n does not converge to a non-degenerate

distribution.

Instead, we model renormalized maxima Mn−bn
an

for sequences an > 0 and bn. If there

exist sequences an > 0 and bn such that

lim
n→∞

P

(
Mn − bn
an

6 z

)
→ G(z)

for some non-degenerate distribution function G, then G is a member of one of the three
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Figure 2.1: Standard unit-Fréchet, Weibull, and Gumbel density functions. These are obtained
by setting a = 1, b = 0, and α = 1 in equations (2.1), (2.2), and (2.3).

following families:

I : G(z) = exp

{
− exp

[
−
(
z − b
a

)]}
, −∞ < z <∞ (2.1)

II : G(z) =

 0, z 6 b

exp{−
(
z−b
a

)−α}, z > b
(2.2)

III : G(z) =

 exp
{
−
[
−
(
z−b
a

)α]}
, z < b

1, z > b,
(2.3)

with parameters a > 0, b, and α > 0 for types II and III. This result is known as the Three-

Types Theorem (Fisher and Tippett, 1928), and the three families are Gumbel, Fréchet, and

Weibull, respectively. The Fréchet case corresponds to a heavy tailed distribution, Gumbel

is intermediate, and Weibull has a bounded upper limit. Standard density functions for

the three families are shown in Figure 2.1.

A challenge to working with the three-types representation is that in practice, first one
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must choose one of the families, and then all subsequent inference assumes the choice to be

correct. To avoid this, the three families are often written as a single Generalized Extreme

Value (GEV) family, with distribution function

G(z) = exp

[
−
(

1 + ξ
z − µ
σ

)−1/ξ

+

]
.

Here a+ = max(a, 0), and µ, σ, and ξ are the location, scale, and shape parameters,

respectively (Coles, 2001; Gnedenko, 1943). The sign of the shape parameter ξ corre-

sponds to the three classical extreme values distributions: ξ > 0 is Fréchet with support

z ∈ [µ−σ/ξ,+∞), ξ < 0 is Weibull with support z ∈ (−∞, µ−σ/ξ], and ξ → 0 is Gumbel

with support z ∈ (−∞,+∞). When using this model, one allows the estimate of ξ to

guide which of the three types is selected.

The Generalized Extreme Value distribution G has the property of max-stability, un-

derstood as follows: if Y1, ..., Yn are i.i.d. from G, then max(Y1, ..., Yn) also has distribution

G, meaning

Gn(Anz +Bn) = G(z)

for appropriate sequences An > 0 and Bn. In fact, a distribution is max-stable if and only

if it is a member of the GEV family (Leadbetter et. al., 1983). If block maxima are taken

over a block size large enough to allow the GEV to be a valid approximation, then if one

further increased the block size (from monthly to annual maxima, for example) the GEV

model would still hold, with only a change in the three parameters. While these results

for the GEV family assume i.i.d. data, this assumption can be relaxed and the limiting

distribution still holds so long as certain mixing conditions are satisfied (Leadbetter et.

al., 1983).

A useful member of the GEV family is the unit-Fréchet distribution, with distribution

7



function

P (Z 6 z) = exp

(
−1

z

)
.

The simplicity of the distribution function is helpful when one considers multivariate and

ultimately spatial extremes. Any member of the GEV family may be transformed to have

unit-Fréchet margins as follows: if Z has a GEV distribution, and a new variable U is

defined as

U =

(
1 + ξ

Z − µ
σ

)1/ξ

, (2.4)

then U has unit-Fréchet margins. This transformation assumes that the parameters are

known. If the parameters are unknown, they may first be estimated and then the transfor-

mation to U is taken. Ultimately, when we have extreme values data in a spatial setting, the

first step will be to transform data at each location to unit-Fréchet by fitting all marginal

distributions. Then we will proceed to analyze the spatial dependence among sites once

every location has been transformed. Thus, for the remainder of this dissertation there is

no loss of generality when one assumes unit-Fréchet margins.

The GEV model can be fit to observed data using maximum likelihood estimation.

Call the parameter vector φ. This parameter can be as simple as three fixed parameters,

as φ = (µ, σ, ξ). Alternatively, one can model the GEV parameters using temporal or

spatial covariates. A few examples include µ = µ1 + µ2 · t, where t is time, or σ =

σ1 +σ2 · lat+σ3 · lon+σ4 · elev, which considers effects of latitude, longitude, and elevation

on the scale parameter. No matter the structure of the parameter φ, define the density

function g(z;φ) = d
dz
G(z;φ). Then, the maximum likelihood estimate of φ is

φ̂MLE = argmaxφ
∏
i

g(z | φ) (2.5)

This maximization is often done numerically, and has been implemented in a number of

software programs including R (R Development Core Team, 2010) using the function fgev

8



in the package evd. The density function for the fitted model is obtained by plugging in

the maximum likelihood estimate as g(z; φ̂MLE).

We may extend this approach to handle multivariate extremes. Let (Xi1, ..., XiD),

i = 1, ..., n be a D−dimensional random vector and let Mn = (Mn1, ...,MnD) be the vector

of componentwise maxima, where Mnd = max(X1d, ..., Xnd) for d = 1, ..., D. It is worth

noting that Mn will not appear in the data record unless the occurrence times of each

element’s block maximum happen to coincide. In a spatial context, this vector Mn might

refer to the annual maxima of some variable at D locations. A non-degenerate limit for

Mn exists if there exist sequences and > 0 and bnd, d = 1, ..., D such that

lim
n→∞

P

(
Mn1 − bn1

an1

6 z1, ...,
MnD − bnD

anD
6 zD

)
= G(z1, ..., zD).

Then G is a multivariate extreme value distribution (MEVD), and is max-stable if there

exist sequences And > 0, Bnd, d = 1, ..., D such that, for any n > 1

Gn(z1, ..., zD) = G(An1z1 +Bn1, ..., AnDzD +BnD).

The marginal distributions of a multivariate extreme value distribution are all necessar-

ily GEV distributions. Thus, for each margin one can define a transformation like the one

shown in equation (2.4) with parameter (µd, σd, ξd) and transform to unit-Fréchet. Since

all GEV distributions can be transformed into unit-Fréchet, all MEVD can be transformed

into multivariate unit-Fréchet, and thus we may assume, without loss of generality, that all

MEVD have unit Fréchet margins. This is because the domain of attraction condition is

preserved under monotone transformations of the marginal distributions (Resnick, 1987).

Thus for D fixed locations, the joint distribution function can be written as

P (Z(x1) 6 z1, ..., Z(xD) 6 zD) = exp (−V (z1, ..., zD)) (2.6)

9



where V (z1, ..., zD) is the exponent measure first described by Pickands (1981). This func-

tion takes the form

V (z) = D ·
∫

∆D

max
d=1,...,D

wd
zd
H( dw) (2.7)

where ∆D = w ∈ RD
+ | w1 + ...+ wD = 1 is the D−1 dimensional simplex, and the angular

(or spectral) measure H is a probability measure on ∆D which determines the dependence

structure of the random vector. Due to the common marginal distributions, H has moment

conditions
∫

∆D
wdH(w) = 1/D for d = 1, ..., D. Max-stability implies that for all N ,

P (Z1 6 z1, ..., ZD 6 zD)N = exp(−N · V (z1, ..., zD)) = exp(−V (z1/N, ..., zD/N))

with the final equality following from the homogeneity property of the exponent measure.

The measure also satisfies two bounds: if all locations are independent, V (z1, ..., zD) =

1/z1 + ...+ 1/zD; if all locations are totally dependent, V (z1, ..., zD) = max(1/z1, ..., 1/zD).

Thus, we always have max(1/z1, ..., 1/zD) 6 V (z1, ..., zD) 6 1/z1 + ...+ 1/zD.

There are two challenges to working with the spectral representation of the joint distri-

bution function shown in equation (2.6). First, even if we assume that a closed form for the

exponent measure can be found by solving equation (2.7), the joint density function un-

dergoes a combinatorial explosion as the dimension D increases. Differentiating exp(−V )

with respect to the values z1, ..., zD leads to a rapid growth in terms:

• −V1 exp(−V ) (first partial derivative)

• (V1V2 − V12) exp(−V ) (second partial derivative)

• (−V1V2V3 + V12V3 + V13V2 + V23V1 − V123) exp(−V ) (third partial derivative)

• ...

where Vi is the partial derivative of V with respect to zi. Thus even if a reasonable choice

for V can be found, as the dimension D increases one is left with an unwieldy likelihood

10



function, which may be difficult to maximize. More common, though, is the situation

where closed-form expressions for the exponent measure cannot be obtained by solving

equation (2.7). This holds for all of the widely used max-stable process models, resulting

in an unavailable joint likelihood function.

2.2 Background on Spatial Statistics

The basic object in spatial statistics is a stochastic process Y (x), x ∈ X where X is a

subset of Rp, usually with p = 2. Let

δ(x) = E(Y (x)), x ∈ X

be the mean of the process defined for all of X, and assume that the variance of Y (x)

exists everywhere in X. Then the process can be rewritten as

Y (x) = δ(x) + e(x)

where δ(x) is the non-random mean function and e(x) is a zero-mean stochastic process.

One often models the mean of the process with covariates, i.e. δ(x) = W (x)Tβ, where

W (x) are covariates and β is a vector of regression covariates.

The process is said to be Gaussian if for any D > 1 and locations x1, ..., xD, the

vector (e(x1), ..., e(xD)) has a mean-zero multivariate normal distribution, which in turn

implies that the vector (Y (x1), ..., Y (xD)) has a multivariate normal distribution with

mean (δ(x1), ..., δ(xD)). The process is strictly stationary if the joint distribution of

(Y (x1), ..., Y (xD)) is the same as (Y (x1 + h), ..., Y (xD + h)) for any h ∈ X and for any D

11



points x1, ..., xD. For a Gaussian process, strict stationarity implies

Cov(Y (x1), Y (x2)) = C(x1 − x2) for all x1, x2 ∈ X.

That is, the covariance of the process at any two locations is some function C which

depends only on the separation vector between points, and not the particular locations.

This is also called second-order stationarity. Next, we define the variogram through the

relation

Var(Y (x1)− Y (x2)) = 2γ(x1 − x2)

where the quantity 2γ is the variogram, and γ is the semi-variogram. Under the assumption

of strict (or second-order) stationarity,

γ(h) = C(0)− C(h) = C(0)(1− ρ(h))

where ρ(h) is the correlation between two locations separated by vector h. Further, if

we have γ(h) = γ(||h||) for all h ∈ X, meaning if the semi-variogram only depends on

h through its length ||h||, then the process is isotropic. The correlation function ρ(h) is

then usually chosen from one of the valid families of correlation functions for Gaussian

processes. A few common choices of isotropic, stationary correlation functions are the

Whittle-Matérn,

ρ(h) = c1
21−ν

Γ(ν)

(
h

c2

)ν
Kν

(
h

c2

)
, 0 6 c1 6 1, c2 > 0, ν > 0, (2.8)

Cauchy,

ρ(h) = c1

{
1 +

(
h

c2

)2
}−ν

, 0 6 c1 6 1, c2 > 0, ν > 0, (2.9)
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Figure 2.2: A few correlation functions for Gaussian processes. Left panel: Whittle-Matérn.
Center panel: Cauchy. Right panel: Power Exponential. Each function is shown with
nugget c1 = 1, smooth ν = 1, and range c2 = 1, 3, and 5, using equations (2.8), (2.9),
and (2.10).

and powered exponential

ρ(h) = c1 exp

{
−
(
h

c2

)ν}
0 6 c1 6 1, c2 > 0, 0 < ν 6 2, (2.10)

where c1, c2 and ν are the nugget, range, and smooth parameters, Γ is the gamma function

and Kν is the modified Bessel function of the third kind with order ν. A few sample

correlation functions are shown in Figure 2.2.

It is common to fix the nugget as c1 = 1, which forces ρ(h) → c1 = 1 as h → 0.

This is a reasonable assumption for many environmental processes, and we make this

assumption throughout this dissertation and do not attempt to model the nugget. We

should clarify, though, that the theory and methods described in this dissertation would

apply even if c1 6= 1, and so this restriction is not required. Throughout the remainder

of this dissertation, the unknown spatial dependence parameter is called φ = (c2, ν), and

unless stated otherwise we will assume spatial extremes models which are both stationary

and isotropic. Methods for handling non-isotropic models are discussed in the next section.
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2.3 Spatial Extremes and Max-stable Processes

Max-stable processes arise as the infinite dimensional generalization of multivariate extreme

value theory. Let Z(x), x ∈ X ⊆ Rp be a spatial process. If for all n > 1, there exists

sequences an(x), bn(x), x ∈ X such that for any x1, ..., xD ∈ X,

P n

(
Z(xd)− bn(xd)

an(xd)
6 z(xd), d = 1, ..., D

)
→ Gx1,...,xD(z(x1), ..., z(xD))

then Gx1,...,xD is a multivariate extreme value distribution. If the above holds for all possible

subsets x1, ..., xD ∈ X for any D > 1, then the process is max-stable.

The definition of a max-stable process as the infinite dimensional generalization of the

multivariate extreme value distribution gives a well-defined model, but not an obvious way

of constructing such a process. A conceptual construction with spectral representation was

given by de Haan (de Haan, 1984; de Haan and Ferreira, 2006). Let Y (x) be a non-negative

stationary process on Rp such that E(Y (x)) = 1 at each x. Let Π be a Poisson process on

R+ with intensity s−2ds. If Yi(x) are independent replicates of Y (x), then

Z(x) = max si · Yi(x), x ∈ X

is a stationary max-stable process with unit Fréchet margins . From this, the joint distri-

bution may be represented as

P (Z(x) 6 z(x), x ∈ X) = exp

(
−E

[
sup
x∈X

Y (x)

z(x)

])
,

where E
[
supx∈X

Y (x)
z(x)

]
is the exponent measure V (z) shown in equation (2.6). Varying

the choice of the process Y (x) gives different max-stable processes. Smith (unpublished

manuscript, 1990) constructed a process known as the Gaussian extreme value process. Let

(si, xi), i > 1 denote the points of a Poisson process on (0,∞)×Rp with intensity measure

14



s−2dsdx. Take f(x, xi) to be the multivariate Gaussian density function,

f(x, xi) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
(x− xi)TΣ−1(x− xi)

)
.

Then Z(x) = maxisif(x, xi) is a max-stable process with unit-Fréchet margins. Smith also

introduced the “rainfall-storms” interpretation: think of Rp as the space of storm centers,

si as the magnitude of the ith storm, and f(x, xi) as the shape of the storm centered

at position xi. The maximum of independent storms at each location x is taken to be

the max-stable process. With this framework, the bivariate distribution function of the

max-stable process Z can be written as

P (Z1 6 z1, Z2 6 z2) = exp

[
− 1

z1

Φ

(
a

2
+

1

a
log

z2

z1

)
− 1

z2

Φ

(
a

2
+

1

a
log

z1

z2

)]
(2.11)

where Φ is the standard normal distribution function, a2 = (x1− x2)TΣ−1(x1− x2), and Σ

is the covariance matrix of f with covariance σ12 and standard deviations σ1 and σ2. The

dependence parameter a represents a transformed distance between the two sites, and the

limits a→ 0 and a→∞ correspond to perfect dependence and independence, respectively.

Figure 2.3 shows one realization of this process.

Schlather (2002) introduced a more flexible set of models for max-stable processes by

taking Y (x) to be any stationary Gaussian process (and not just a multivariate normal

density) with finite expectation. He considered a stationary Gaussian process Y on Rp

with correlation function ρ(·) and finite mean µ = Emax(0, Y (x)) ∈ (0,∞). Let si be a

Poisson process on (0,∞) with intensity measure µ−1s−2ds. Then

Z(x) = max
i
si max(0, Yi(x))

is a stationary max-stable process with unit-Fréchet margins. The bivariate distribution
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Figure 2.3: Gaussian extreme process with parameters (σ1 = σ2 = 9/8, σ12 = 0)

.

function is

P (Z1 6 z1, Z2 6 z2) = exp

[
−1

2

(
1

z1

+
1

z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)]
(2.12)

where ρ(h) is the correlation of the underlying Gaussian process Y and h = ||x1−x2||. The

correlation is chosen from one of the valid families of correlations for Gaussian processes,

such as those shown in equations (2.8), (2.9) and (2.10). Following the rainfall-storms

interpretation from Smith, the Schlather model takes maxima over a series of storms with

the same dependence structure, but their realizations vary stochastically. This allows

storms to have random shapes, unlike the deterministic multivariate normal shapes of

the Smith model. Figure 2.5 shows one realization of a process with the Whittle-Matérn

correlation function. This is generally considered a more realistic representation of an

environmental process than the Gaussian extreme value process. In this dissertation we
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Figure 2.4: Whittle-Matérn correlation function with nugget=1, range=10, and smooth=1 for
the isotropic case (left panel) and non-isotropic case (right panel).

focus on the Schlather model exclusively, but the methodology can be applied to any

parametrically specified max-stable process from which realizations can be simulated.

Although the correlation functions ρ(·) shown above all assume isotropy, the Schlather

model does not explicitly require this assumption. Ribatet (2011) gives a convenient

method for extending the approach to non-isotropic data through a space warping ar-

gument. Given a valid, isotropic correlation function ρ(·), one may define an elliptical

correlation function ρe(∆x) = ρ(
√

∆xTA∆x) where ∆x is the vector between two loca-

tions, and the matrix A handles the space-warping into an elliptical measure of distance

(and would contain additional dependence parameters). An example of an elliptical corre-

lation function in R2 is shown in Figure 2.4.

One drawback to the Schlather model is that it cannot attain the case of independence

for extremes as distance h → ∞. To overcome this problem, the process Y (x) can be

restricted to a random set B, i.e.,

Z(x) = max
i
si max(0, Yi(x))IBi(x− xi)
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Figure 2.5: Extremal Gaussian process with Whittle-Matérn correlation with nugget c1 = 1,
range c2 = 3, and smooth ν = 1.

where IB is the indicator function for a random set B ⊂ X and xi. If Yi is again a Gaussian

process, then the bivariate distribution function can be written as

exp

{
−
(

1

z1

+
1

z2

)[
1− α(h)

2

(
1−

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)]}

where α(h) = E|B ∩ (h+ B)|/E(|B|) ∈ [0, 1]. This modification permits independent ex-

tremes in the limit as h→∞. One possible choice for B is a disc of radius r, which implies

α(h) = {1 − |h|/(2r)}+, which equals 0 when |h| > 2r. Choices for B were explored by

Davison and Gholamrezaee (2010).

Kabluchko et. al. (2009) proposed an alternative specification for the Y (·) processes, one

with a weaker assumption than second-order stationarity. Let Y (x) = exp{εs(x)− 1
2
σ2(x)}

where εs(x) is a Gaussian process with stationary increments and σ2(x) = V ar{ε(x)}. Then

the process defined is called the Brown-Resnick process. The bivariate CDF transformed
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Figure 2.6: Brown-Resnick process with Whittle-Matérn correlation with nugget c1 = 1, range
c2 = 3, and smooth ν = 0.5.

to unit Fréchet margins is the same as the Smith model where the dependence parameter

a2 = γ(h), and γ(·) is the variogram of ε(·). The closed form of the bivariate distributions

for the Brown-Resnick process associated to the variogram γ are given by

P {Z(x1) 6 z1, Z(x2) 6 z2}

= exp

{
− 1

z1

Φ

(√
γ(h)

2
+

1√
γ(h)

log
z2

z1

)
− 1

z2

Φ

(√
γ(h)

2
+

1√
γ(h)

log
z1

z2

)}
(2.13)

where Φ is the standard normal distribution function and h is the Euclidean distance

between location x1 and x2. A realization is shown in Figure 2.6.

Each of the max-stable processes introduced above share some common features. First,

they are all well defined, and can all be simulated using the point process approach outlined

by de Haan (1984) with different choices of stochastic process Y (x). Additional results on

the simulation of max-stable processes are also found in Schlather (2002), Oesting et. al.
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(2012), and Dombry et. al. (2012). Second, all finite dimensional distributions follow a

MEVD, and we know that all marginal distributions at all locations x1, ..., xD follow a

GEV distribution, all of which can thus be transformed to unit-Fréchet by the one-to-one

transformations

Y (xd) =

(
1 + ξ(xd)

Z(xd)− µ(xd)

σ(xd)

)1/ξ(xd)

.

Without loss of generality then, one may assume that a max-stable process has unit-Fréchet

margins. Finally, bivariate distribution functions can be written out as shown in equations

(2.11), (2.12), and (2.13), and in each case the spatial dependence parameters Σ, ρ(·),

or γ(·) appear in these bivariate functions. To generalize and simplify notation for the

remainder of this dissertation, we will call the generic dependence parameter φ.

2.4 The Extremal Coefficient

Let Z(x) be a stationary, isotropic max-stable random field with unit-Fréchet margins.

As shown in equation (2.6), for D fixed locations the joint distribution function for a

max-stable process can be written as

P (Z(x1) 6 z1, ..., Z(xD) 6 zD) = exp {−V (z1, ..., zD)}

where V (z1, ..., zD) is the exponent measure first described by Pickands (1981). Max-

stability implies that for all N ,

P (Z1 6 z1, ..., ZD 6 zD)N = exp{−NV (z1, ..., zD)} = exp{−V (z1/N, ..., zD/N)}.

The final equality arises as a consequence of the homogeneity property of the exponent

measure. For each of the studied classes of max-stable processes, for D 6 2 locations

the function V (·) can be written out explicitly, but for D > 3 it cannot (an exception
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to this is for the Smith model, where the trivariate distribution can be written in closed

form if X ⊂ R2, explored in Genton et. al. (2011). However, for the other max-stable

processes only univariate and bivariate distributions are available in closed-form). If we

further consider the joint distribution of D locations evaluated at the same value z, we get

P (Z(x1) 6 z, ..., Z(xD) 6 z) = exp

{
−θ(x1, ..., xD)

z

}

where θ(x1, ..., xD) = V (1, ..., 1) is the extremal coefficient for the D locations. Since the

bounds on the extremal coefficient V (z1, ..., zD) are 1/z1+...+1/zD and max(1/z1, ..., 1/zD),

bounds on the extremal coefficient are D and 1, respectively, with a value of D correspond-

ing to complete independence and a value of 1 corresponding to complete dependence. The

value can be thought of as the number of effectively independent locations among the D

under consideration.

Many results are available for the pairwise extremal coefficient, which arises when

considering any pair of locations,

P (Z(x1) 6 z, Z(x2) 6 z) = exp

(
−θ(x1, x2)

z

)

Since the bivariate distribution functions are available in closed form equation (2.12) for

the Schlather process, one may write out the pairwise extremal coefficients explicitly as

θ(h) = 1 +

{
1− ρ(h;φ)

2

}1/2

(2.14)

where h = ||x1 − x2||. One may estimate the pairwise extremal coefficients directly from

the data, and then through those estimates obtain an estimate of ρ(·). Smith (Smith 1990,

unpublished manuscript) and Coles and Dixon (1999) proposed an estimate of the pairwise

extremal coefficients as follows. First, assume that the field Z(·) has been transformed to
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unit-Fréchet. This means that 1/Z(·) is unit exponential, and 1/max(Z(x1), Z(x2)) is

exponential with mean 1/θ(x1, x2). A simple estimator then is

θ̂(x1, x2) =
n∑n

i=1 1/max(zi(x1), zi(x2))
(2.15)

where i is the index for the block. In this dissertation, we move beyond the pairwise

extremal coefficient and also focus on the tripletwise extremal coefficient, which is defined

for any triplet of locations in the relation

P (Z(xj) 6 z, Z(xk) 6 z, Z(xl) 6 z) = exp

{
−θ(xj, xk, xl)

z

}
.

Since the trivariate distribution function for Z(·) is unavailable, so too is any closed-form

expression for θ(xj, xk, xl). However, following the same argument as in the pairwise case,

we may estimate the coefficients using the estimator

θ̂(xj, xk, xl) =
n∑n

i=1 1/max(zi(xj), zi(xk), zi(xl))
(2.16)

where i is the index for the block. These estimated triplets will serve a key function in the

approximate Bayesian computing algorithm. This argument may be extended to estimate

all k-point extremal coefficients for any collection of k locations with k > 3.

2.5 Maximum Composite Likelihood Estimation

A barrier to fitting max-stable processes to data is that closed-form expressions for the

joint likelihood can only be written out in low dimensional settings. The likelihood for the

Smith model in R2 can be written out for dimension D 6 3 (Genton et. al., 2011), but

the likelihood for all other max-stable processes can only be written for dimension D 6 2

(and we write this dissertation for this more general case). This means if the data are
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observed at D > 2 locations in space, the joint likelihood cannot be written in closed form.

Padoan et. al. (2010) proceeded with a likelihood-based approach to fitting max-stable

processes by substituting a composite likelihood for the unavailable joint likelihood. We

first introduce composite likelihoods, then show the connection to max-stable processes.

If f(z;φ) is a statistical model for data z and we have a set of measurable events

{Ai : i = 1, ...,m}, then a composite log-likelihood is a weighted sum of log-likelihoods for

each event (Lindsay, 1988; Varin, 2008)

`C(φ;Z) =
∑
i

wi · log f(z ∈ Ai;φ).

One example of a composite log-likelihood is the pairwise log-likelihood, defined as

`C(φ; z) =
n∑
i=1

D−1∑
d=1

D∑
d′=d+1

log f(zi,d, zi,d′ ;φ),

where each term f(zi,d, zi,d′ ;φ) is a bivariate marginal density function based on locations d

and d′. The two inner summations sum over all unique pairs, while the outer sums over the

n i.i.d. replicates. Similar to the full likelihood function, the parameter which maximizes

a composite log likelihood can be found, and is termed a maximum composite likelihood

estimate, or MCLE. Under suitable regularity conditions (Lindsay, 1988) (Cox and Reid,

2004), the maximum composite likelihood estimator is consistent and asymptotically nor-

mal as

φ̂MCLE ∼ N (φ, Ĩ) with Ĩ = H(φ)J−1(φ)H(φ),

where H(φ) = E(−Hφ`C(φ;Z)) is the expected information matrix, J(φ) = V (Dφ`C(φ;Z))

is the covariance of the score, Hφ is the Hessian matrix, Dφ is the gradient vector, and

V is the covariance matrix. When one has the full likelihood, H(φ) = J(φ), but in the

composite likelihood setting these matrices are not equal.
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Padoan et. al. (2010) used the composite likelihood to model the joint spatial depen-

dence of extremes, and implemented their work in the R package SpatialExtremes (R

Development Core Team, 2010). The maximum composite likelihood estimator φ̂MCLE is

found numerically. The variance of the estimate is found through

Ĥ(φ̂MCLE) = −
n∑
i=1

D−1∑
d=1

D∑
d′=d+1

Hφ log f(zi,d, zi,d′ ; φ̂MCLE)

Ĵ(φ̂MCLE) = −
n∑
i=1

D−1∑
d=1

D∑
d′=d+1

Dφ log f(zi,d, zi,d′ ; φ̂MCLE)Dφ log f(zi,d, zi,d′ ; φ̂MCLE)T .

In general we call the dependence parameter φ, but for the Smith model the spatial

dependence parameter is Σ, for the Schlather model it is the parameter embedded within

the Gaussian correlation function ρ(h;φ), and for the Brown-Resnick model it is the pa-

rameter embedded within the variogram γ(h;φ). Notice for each of these models the target

parameter shows up in the corresponding bivariate density functions, and thus also in the

pairwise log-likelihood.

Model selection is based on minimizing the composite likelihood information criteria

(CLIC) (Varin and Vidoni, 2005), equal to

−2`C(φ̂MCLE;Z)− tr
(
Ĵ(φ̂MCLE)Ĥ(φ̂MCLE)−1

)
,

where the second term is the pairwise log-likelihood penalty term.

Thus fitting a max-stable process proceeds in two stages. We begin with an observed set

of spatial extremes data, for locations x1, ..., xD. For each location, we transform the GEV

data to unit-Fréchet margins by first estimating all GEV parameters µ̂(xd), σ̂(xd), ξ̂(xd), d =

1, ..., D, then use these to transform all margins to unit-Fréchet using equation (2.4). Next,

the maximum composite likelihood estimate for the dependence parameter φ̂MCLE of the

max-stable process is obtained using the composite likelihood approach on the transformed
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data. The result is a fitted model for the extremes at the D specific locations, with spatial

GEV parameter (µ̂(xd), σ̂(xd), ξ̂(xd), d = 1, ..., D) and spatial dependence parameter φ̂.
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3

Approximate Bayesian Computing

Approximate Bayesian Computing is at its heart a Bayesian method, meaning it seeks to

move from a prior distribution to a posterior distribution following Bayes’s Rule:

π(φ | Z) =
f(Z | φ)π(φ)∫
f(Z | φ)π(φ) dφ

(3.1)

Here, Z is taken to be the observed data, φ is the unknown parameter of interest, π(φ) is

the prior distribution and π(φ | Z) is the posterior distribution. Typically, the likelihood

f(Z | φ) is available in closed form, which allows for the possibility of an exact calculation

using equation (3.1). As the dimension of the parameter space Φ increases, computing

the integral in the denominator becomes increasingly complicated, to the point where

most contemporary Bayesian applications do not even attempt to analytically evaluate it.

Instead, the integral may be circumvented using a Monte-Carlo approach. If it is possible

to generate random variables φ1, ..., φm from π(φ), then by the Law of Large Numbers we

may approximate any function of the posterior g(φ | Z) by (Robert, 2007)

1

m

m∑
i=1

g(φi)f(Z | φi)→
∫
g(φ)f(Z | φ)π(φ) dφ (almost surely)



and similarly if an i.i.d. sample φi, ..., φm can be produced from π(φ | Z), then the average

1

m

m∑
i=1

g(φi)→
∫
g(φ)f(Z | φ)π(φ) dφ∫
f(Z | φ)π(φ) dφ

(almost surely). (3.2)

Further, when var(g(φ) | Z) is finite, the Central Limit Theorem holds and the error

remains of order 1/
√
m regardless of the dimension of Φ.

As computational complexities of the problem grow, a powerful technique for approxi-

mating the posterior is to use Markov Chain Monte Carlo (MCMC) methods. Rather than

attempt to construct an independent sample φ1, ..., φm from the posterior, we instead con-

struct a Markov chain φm which has stationary distribution equal to π(φ | Z). We accept

the fact that our chain will be a series of dependent draws, but we gain an overwhelming

amount of computational power that dramatically increases the reach of Bayesian methods.

One of the most popular MCMC approaches is the Metropolis-Hastings algorithm

(Hastings, 1970; Metropolis et. al., 1953), which proceeds as follows:

1. Start with arbitrary initial value φ0 and set m = 0

2. Generate φ′ from some proposal distribution q(φ′ | φm)

3. Define

α = min

(
1,

f(Z | φ′)π(φ′)q(φm | φ′)
f(Z | φm)π(φm)q(φ′ | φm)

)

4. Take φm+1 = φ′ with probability α, and stay at φm otherwise

The algorithm defines a Markov chain whose stationary distribution is the target pos-

terior π(φ | Z). After a sufficient burn-in period, values from this chain may be used as a

collection of particles from π(φ | Z), and quantities of interest can be empirically estimated

(equation (3.2)).
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3.1 Approximate Bayesian Computing

To compute the exact posterior, or to implement the MCMC algorithm, one needs the

closed-form expression for the likelihood f(Z | φ), but there are many cases where the

likelihood function is either analytically intractable or computationally prohibitive. These

settings were common in evolutionary genetics literature in the 1990s and 2000s, and led

to a series of approximations based on simulations used to circumvent the need for the

likelihood function. We review some of the major papers in this section.

Tavaré et. al. (1997) investigated the coalescence time (time to most recent common

ancestor) for a random sample of n sequences of DNA. The target of their study was

the simple posterior distribution π(φ | Z), where Z is the full data available. Standard

Bayesian techniques failed since an explicit expression for P (Z | φ) was unavailable for all

but the most trivial cases. Instead, they drew φ′ ∼ π(φ) and accepted φ′ if and only if

P (S = s | φ′) > cU

where S is a low, fixed dimension summary statistic, s is the value of S for observed data

Z, U is a random uniform variable on (0,1), and c is a constant satisfying c > maxφP (S =

s | φ). Thus, in lieu of the unavailable likelihood, draws from the prior were accepted with

probability proportional to P (S = s | φ). This is, in some sense, the core of ABC methods.

The authors also began the discussion of how to rely on a summary statistic S when it is

not a sufficient statistic, a theme that will occur again and again in the ABC literature.

Fu and Li (1997) extended the idea by adding a second simulation step for greater

generality. They first drew φ′ ∼ π(φ), but next simulated a data set Z ′ | φ′, and accepted

the draw if the observed and simulated summary statistics s and s′ matched. The intro-

duction of a simulated data set Z ′ needed at each iteration of the ABC algorithm began

to dramatically increase the computation time of ABC methods.
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Weiss and von Haeseler (1998) further extended the idea by replacing the single sum-

mary statistic with vectors of statistics s and s′, accepting φ′ whenever ||s− s′|| 6 ε for an

appropriate metric || · || and threshold ε. They simulated from a grid of values for φ and

not from a true prior, but Pritchard et. al. (1999) reintroduced a proper prior distribution

to the method.

The first reference often cited by statisticians developing the theory of ABC methods

is Beaumont et. al. (2002). This was the first paper to try to obtain a smooth, functional

form for the posterior density rather than simply a posterior sample. Beaumont proposed

the use of kernel smoothing through equations

π̂(φ0 | s) =

∑
iK∆(φ′i − φ0)Kε(||s′i − s||)∑

iKε(||s′i − s||)
(3.3)

where K∆ and Kε are kernels with bandwidths ∆ and ε respectively. This led to an estimate

of the posterior mean

β̂ =

∑
i φ
′
i ·Kε(||s′i − s||)∑
iKε(||s′i − s||)

. (3.4)

The kernel K∆ is a smooth, symmetric function centered at each accepted draw φ′i. The

kernel Kε(||s′i−s||) weights the posterior in preference of particles φ′i with smaller values of

||s′i − s||. Typically, the kernel Kε is taken as the indicator function Iε(t) = 1 ⇐⇒ t 6 ε,

in which case equations (3.3) and (3.4) reduce to

π̂(φ0 | s) =

∑
iK∆(φ′i − φ0)Iε(||s′i − s||)∑

i Iε(||s′i − s||)
(3.5)

β̂ =

∑
i φ
′
i · Iε(||s′i − s||)∑
i Iε(||s′i − s||)

(3.6)

From equation (3.6), it is easiest to see that as the bandwidth ε increases, the posterior
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mean converges to the prior mean. As the bandwidth ε increases, more and more of the

φ′i ∼ π(φ) are accepted. Ultimately, all draws are accepted, so the posterior mean equals

the prior mean (the same holds for medians, or any other function of the posterior).

This demonstrates that for any nonzero bandwidth ε, the resulting posterior mean will

be biased back towards the prior mean. The same holds for all functions of the posterior

distribution, meaning that one must always be aware that ABC methods are biased “back

towards the prior”, but this bias disappears as ε→ 0.

Marjoram et. al. (2003) gave a nice (5 page!) statistical summary of ABC methods, and

explicitly stated what can be considered the basic ABC-Rejection (ABC-REJ) algorithm

with its two most common concessions:

ABC-REJ Algorithm

1. Draw φ′ ∼ π(φ)

2. Simulate data Z ′ from f(Z | φ′), and compute summary S ′ = s′

3. Accept φ′ if d(s, s′) 6 ε, and return to step 1. (This is equivalent to Iε(||s′ − s||) in

the notation of equations (3.5) and (3.6).)

The use of summary statistic S, distance function d(·), and threshold ε ensures that the

acceptance probability is workably high. Choosing these quantities is necessarily a trade-off

between accuracy of the approximation and computational efficiency. The following two

limits hold:

• If ε→ 0, then f(φ | d(s, s′) 6 ε)→ π(φ | s)

• If ε→∞, then f(φ | d(s, s′) 6 ε)→ π(φ)

As stated earlier, in practice ε will be some positive number larger than 0, so in practice

the approximate posterior will retain some degree of bias back towards the prior. Further,
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if the statistic S is sufficient for parameter φ, then the first limiting distribution is equal

to π(φ | Z), the exact posterior distribution.

Marjoram et. al. (2003) showed how ABC methods may be integrated into ABC-MCMC

with Metropolis-Hastings as follows:

1. Use transition kernel q(φ→ φ′)

2. Generate data Z ′ ∼ f(Z | φ′)

3. If d(S, S ′) 6 ε, go to step 4. Otherwise, stay at φ and return to step 1.

4. Calculate

α = min

(
1,
π(φ′)q(φ′ → φ)

π(φ)q(φ→ φ′)

)

5. Accept φ′ with probability α, otherwise stay at φ and return to step 1.

The stationary distribution of this chain is f(φ | d(S, S ′) 6 ε). The key difference

between ABC-MCMC and ordinary MCMC is that the likelihood f(Z | φ) is not available

in the computation of α. In this particular implementation, the ABC-MCMC algorithm

has a non-zero probability of moving from φ to φ′ only when the distance between s and s′

is below the threshold ε, which is equivalent to an accept step in the ABC-REJ algorithm.

If flat priors are chosen with π(φ′)/π(φ) = 1 and a symmetric transition kernel (such as a

random walk) is selected then q(φ′ → φ) = q(φ→ φ′), and the ABC-MCMC is equivalent to

moving only when an ABC-REJ acceptance occurs. As our preference is for flat, minimally

informative priors and a random walk is the most natural choice for a transition kernel,

there is no added value in choosing this implementation of ABC-MCMC over ABC-REJ.

One could modify the transition probability α to involve a transition kernel other than the

one shown in equation (3.7), but we found far greater success with adaptive computing,

and discuss this in Section 4.2.
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More recent literature within the statistics community focuses on the underlying theory

of ABC methods within the familiar Bayesian framework. From this base, it becomes

easier to envision improvements to the algorithm by drawing from computational results

in traditional Bayesian statistics. Improvements to the efficiency allow the threshold ε to

be set to a lower value and/or more informative but computationally summaries S to be

utilized, both of which improve the approximation.

Sisson and Fan (2010) drew the connection between ABC methods and augmented

Bayesian statistics. The target is the posterior distribution π(φ | Z) ∝ f(Z | φ)π(φ),

where Z is the observed data. ABC methods facilitate the computation by introducing an

auxiliary parameter Z ′ (a simulated dataset) on the same space as observed data Z. Thus

the ABC method actually computes

πABC(φ, Z ′ | Z) ∝ π(Z | Z ′, φ)π(Z ′ | φ)π(φ).

Integrating out the simulated dataset yields the target posterior of interest

πABC(φ | Z) ∝ π(φ)

∫
π(Z | Z ′, φ)π(Z ′ | φ) dZ ′.

When π(Z | Z ′, φ) is exactly a point mass at the point Z ′ = Z and zero everywhere else,

the posterior is recovered exactly. This is likely to occur with probability 0 (for continuous

data), or probability close to zero (for discrete but high dimensional data), so in practice

the form is usually taken to be

π(Z | Z ′, φ) =
1

ε
K

(
|S(Z ′)− S(Z)|

ε

)
Under this form, the intractable likelihood is weighted in regions where S(Z ′) ≈ S(Z).

When S is a sufficient statistic and in the limit as ε → 0, we have limε→0 πABC(φ | Z) =

π(φ | Z). Under the most familiar kernel,
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πε(Z | Z ′, φ) ∝ 1 if d(S(Z ′), S(Z)) 6 ε (3.7)

then K becomes a uniform density kernel.

3.2 Approximate Bayesian Computing for Spatial Ex-

tremes

Here we utilize the theory of max-stable processes to construct appropriate summary statis-

tics to implement the approximate Bayesian computing algorithm for fitting max-stable

processes to spatial extremes data. The challenge is to find a statistic which is highly

informative (ideally sufficient) for φ, but also of low dimension and quickly computable,

otherwise the cost of the ABC algorithm might be unreasonably high. In the following

few subsections we discuss the construction of three summary statistics. The first two

are based on pairs of data, but the third and most successful extends to triplets (and in

principle all k-tuples for any k > 3).

3.2.1 The Madogram Method

Let Z(x) be a stationary, isotropic max-stable random field with Generalized Extreme

Value margins with ξ < 1. The madogram is defined as:

m(h) =
1

2
E|Z(x+ h)− Z(x)|,

and its natural estimator is defined as

m̂(h) =
1

2n

n∑
i=1

|zi(x)− zi(x+ h)|, (3.8)
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where zi(x) is the realization of the ith observed process at position x. This estimator is

unbiased. Cooley et. al. (2006) showed the relationship between the madogram and the

extremal coefficient θ(h). If the Generalized Extreme Value shape parameter ξ < 1, then

the madogram m(h) and extremal coefficient θ(h) verify

θ(h) =


uβ + m(h)

Γ(1−ξ) if ξ < 1 and ξ 6= 0

exp
(
m(h)
σ

)
if ξ = 0,

where uβ =
(
1 + ξ u−µ

σ

)1/ξ

+
and Γ(·) is the Gamma function. Note in particular that for unit-

Gumbel margins (with ξ = 0 and σ = 1), we have the simple relationship m(h) = log θ(h).

We will exploit this simple relationship by first transforming all margins of a max-stable

process to unit-Gumbel (and not the usual unit-Fréchet). This is easily done by taking the

log of data with unit-Fréchet margins.

Thus assuming that the marginal parameters of the process are known, the estimator

of the madogram is unbiased, and we have a closed-form expression for the madogram as

a function of the underlying correlation ρ(h;φ), which is the target of our method. We

can naturally define a residual as e(h) = m̂(h) − log θ(h). Thus, for the Schlather model,

plugging in equations (2.14) and (3.8) we obtain residuals

e(h) =
1

2n

n∑
i=1

|zi(x)− zi(x+ h)| − log

{
1 +

(
1− ρ(h;φ)

2

)1/2
}
.

The parameter value which minimizes the sum of squared residuals is the ordinary least

squares estimator, equal to

φ̂OLS = argminφ
∑
h

e(h)2. (3.9)

The summary statistic S is chosen to be the ordinary least squares fit to the madogram,
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Figure 3.1: Example of a madogram (solid line), estimate (points), and ordinary least squares fit
(dashed line). The entire dashed line is the summary statistic, defined by parameter
φ̂OLS .

subject to the constraint that it be a valid madogram. Mathematically, this is

S = log{θ(h; φ̂OLS)}. (3.10)

An example of a madogram, estimate, and summary statistic is shown in Figure 3.1.

The procedure for utilizing the summary statistic is as follows. For observed data Z,

the madogram is estimated and the OLS fit is obtained using equation (3.9). Then the

summary statistic S = s is computed using equation (3.10). For each successive iteration

of the approximate Bayesian computing algorithm, a simulated data set Z ′ is obtained

from parameter φ′ ∼ π(φ). The madogram is estimated and an OLS fit to the madogram

S ′ = s′ is obtained. What remains is some means of computing the distance between s

and s′. We have chosen this as

d(s, s′) =

∫
|s(h)− s′(h)| dh.
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The integral of the absolute differences between the two curves s and s′ is computed

numerically, and taken as a measure of the distance between s and s′. The final step in

approximate Bayesian computing is to accept φ′ for the posterior if d(s, s′) 6 ε for some

suitably chosen ε.

The output of this is a collection of M particles φ′1, ..., φ
′
M which is taken to be a sample

from the approximate posterior. From this, we computed the correlation function ρ(h;φ)

evaluated for each φ′m. The analog of a posterior mean in this setting is the pointwise mean

of all accepted functions,

ρ̂(h) =
1

M

M∑
m=1

ρ(h;φ′m). (3.11)

We use the pointwise mean when evaluating the performance in a simulation study.

3.2.2 The Pairwise Extremal Coefficient Method

This approach is very similar to the preceding madogram approach, but instead of fitting

a smooth curve to the madogram we fit the curve directly to the pairwise extremal coef-

ficients. We define the residual as e(h) = θ̂(h) − θ(h). Plugging in equations (2.14) and

(2.15), the parameter value which minimizes the sum of squared residuals is equal to

φ̂OLS = argminφ
∑
h

e(h)2.

The summary statistic S is chosen to be the ordinary least squares fit to the extremal

coefficient, subject to the constraint that it be a valid extremal coefficient. Mathematically,

this is

S = θ(h; φ̂OLS). (3.12)

The remainder proceeds exactly as in the madogram method, using the summary shown

in equation (3.12).
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3.2.3 The Tripletwise Extremal Coefficient Method

Both the madogram approach and the pairwise extremal coefficient approach rely on pairs

of locations. This is also true for the composite likelihood approach (Padoan et. al.,

2010). A natural improvement is an approximate Bayesian computing method which moves

beyond pairs and considers higher order k-tuples. The use of triplets was explored by

Genton et. al. (2011), but only for the Smith model (Smith, 1990), a small subset of

max-stable processes that does not include the Schlather model. In this section we use the

estimated triplet extremal coefficients from equation (2.16) as the basis for the summary

statistic S(·), and thus utilize information from triplets in the estimation of Schlather

max-stable processes.

The number of unique sets of triplets in a set of data with D locations is
(
D
3

)
=

D(D−1)(D−2)
6

, which grows quite rapidly as D increases. For example, with only D = 20

locations we have 1140 unique triplets. This combinatorial explosion as D increases poses a

problem for an approximate Bayesian computing approach. Higher dimensional summaries

can only decrease the probability of acceptances, which may quickly leave an approach

uncomputable in any practical sense. On the other hand, the uncertainty in estimating a

single triplet extremal coefficient using equation (2.16) can be quite large (as compared with

the known bounds [1,D]), so there is a natural desire to group estimates into homogeneous

groups and take averages to reduce the uncertainty in estimation. The idea then is to group

the
(
D
3

)
triplets intoK groups, which are ideally homogeneous within groups, heterogeneous

across groups, and all such that K �
(
D
3

)
.

To reduce the dimension of the summary, we group these
(
D
3

)
triplets into K groups

using Ward’s method (Ward, 1963). This method only requires a measure of distance

between items, and the number of groupings. A triplet of locations is a triangle between

3 points, which produces 3 Euclidean distances A = (a1, a2, a3). To measure the distance
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Figure 3.2: A simple example of 3 triplets labeled A, B, and C. Using the distance measure in
equation 3.13, we see dist(A,B) = 0.16 while dist(A,C) = 4.21

between two triplets A and B, we take

dist(A,B) = min
π

∑
i

|ai − bπ(i)| (3.13)

where π(i) is a permutation of {1, 2, 3}. Two sets of triplets A and B with identical lengths

but different rotations, translation, and reflection would give a distance measure of zero.

Such two sets should also have the same theoretical tripletwise extremal coefficients since

the underlying field is isotropic and stationary. On the other hand, as two triangles become

more dissimilar in their respective lengths, the distance measure will increase. Thus the

clustering is based entirely on the geometry of the locations, and not on the actual estimates

of the tripletwise extremal coefficients. An example is shown in Figure 3.2

For a data set with D locations, the first step is to compute an upper triangular

dissimilarity matrix of size
(
D
3

)
by
(
D
3

)
which contains all distances computed using equation

(3.13). In our simulations based on D = 20 locations, we chose to group the triplets into

K = 100 clusters. This was selected to achieve a balance between maintaining within-group
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homogeneity and ensuring that enough triplets fall into each group to reduce variability in

group averages. Ward’s method is a hierarchical algorithm which first assigns each item to

its own cluster, and then merges two clusters chosen to minimize the overall increase in the

sum of squares (which is the sum of squared distances from each item to its cluster center).

Thus, the sum of squares begins at zero, and Ward’s method proceeds by merging items

which would result in the smallest increase. In our setting this clustering only needs to be

done once, since all of the simulated draws will be at the same locations as the observed

data. The requirement to enumerate all
(
D
3

)
triplets is a practical limitation to how large

D may be. For values of D where the dissimilarity matrix is computable, it may be time

consuming to run the clustering algorithm.

The
(
D
3

)
triplet extremal coefficients are estimated for the observed data using equation

(2.16), and then values are averaged within the K clusters. The result is the summary of

the observed data, s = (θ̄1, ..., θ̄K). Next, we begin the approximate Bayesian computing

procedure. Independent draws from the prior φ′ ∼ π(φ) are taken. The parameter space

is Φ = (0,∞) × (0,∞), except when a powered exponential is used in which case it

is Φ = (0,∞) × (0, 2]. For each draw from the prior, a max-stable process with unit-

Fréchet margins is simulated on the same locations and for the same number of years as

the observed data. We estimate all triplet extremal coefficients for this simulated data,

compute s′ = (θ̄′1, ..., θ̄
′
K), and use the sum of the absolute deviations as the distance metric

d:

d(s, s′) =
K∑
k=1

|sk − s′k|. (3.14)

This entire process is repeated I times. The result is a collection of candidate parameter

values (φ′i, di), i = 1, ..., I, which are then filtered as (φ′i : di 6 ε). This final filtra-

tion is an independent and identically distributed collection of M particles drawn from

π(φ | d(s, s′) 6 ε), which for very small ε may be taken as an approximation to the true

posterior. For each particle one can compute the spatial correlation function ρ(h;φ′m). Pos-
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terior standard deviations are obtained by simply regarding ρ(φ′m) as an independent and

identically distributed collection of draws from the posterior, and empirical 95% credible

intervals can be constructed.

3.2.4 Simulation Study

We study the performance of the approximate Bayesian computing algorithm for estimating

the spatial dependence of a Schlather process with Whittle-Matérn correlation ρ(c1 =

1, c2, ν). Simulations were conducted in R. We specified uniform, independent priors on

[0,10] for the range c2 and smooth ν parameters. This nicely spans the range of possible

dependence functions on the space X (see Figure 3.3), and is consistent with the preference

for minimally informative priors. While this prior may not be the most efficient choice, it

does suffice to show the advantages of approximate Bayesian computing over the composite

likelihood approach. We make the comparison using mean square error as our measure of

performance. The simulations were all carried out for n = 100 years of data at D = 20

locations drawn from a uniform distribution on a 10 by 10 grid.

For each dataset we estimated the spatial dependence using both the composite like-

lihood approach and the approximate Bayesian computing approach shown in equation

(3.11). Figure 3.3 shows an example. Approximate Bayesian computing was done with

I = 1, 000, 000 draws. Due to the substantial computing time needed, we ran the simula-

tions in parallel on 50 nodes on a research computing cluster, with each node only responsi-

ble for simulating 20,000 datasets. In parallel, total computing time for one dataset in one

model was around 8 hours for the madogram method (which contains a numeric optimiza-

tion step for each iteration), but often faster for the ABC pairwise and ABC tripletwise

approaches. Given this constraint, we chose to limit the number of repetitions to only 5

replications for each model. In all there were 6 models, therefore 30 simulation runs (in

the next chapter we discuss a faster implementation with more simulations).
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The output from each simulation was filtered as (φ′i : di 6 εP ), where εP is the 0.02%

percentile of di. This ensures exactly M = 200 particles are accepted for the approximate

posterior distribution for each simulation. We found that the spacings of the (D = 20)

locations can shift the overall distribution of di, so for identical model specifications one

may need different thresholds of ε to ensure enough particles are accepted. Thus, it is

better not to specify a fixed threshold ε but instead set as a very low percentile.

We judged relative performance of the methods based on estimating the true correlation

ρ(h;φTRUE), not in estimating the true parameter φTRUE. Two very different parameters

φ1 and φ2 can produce similar correlations ρ(h;φ1) ≈ ρ(h;φ2) (by moving the range and

smooth parameters in opposite directions, for example). A diffuse posterior distribution of

φ can actually produce a tight posterior distribution of ρ(h;φ); we have observed that the

ABC method shows this behavior. Thus, the comparison is made between the true correla-

tion function ρ(h;φTRUE) and estimated correlation function under the various approaches:

ρ̂(h) = ρ(h; φ̂MCLE) for the composite likelihood method, and for the ABC approaches the

pointwise posterior mean in equation (3.11).

Mean square error was computed as a numeric approximation to

MSE =

∫
{h>0: ρ(h;φTRUE)>0.1}

(ρ(h;φTRUE)− ρ̂(h))2 dh (3.15)

Taking the interval over the range {h > 0 : ρ(h;φTRUE) > 0.1} focuses the comparison

on the regions of higher spatial correlation, which are of greater interest. If we computed

mean square error over the entire range of ρ(·), results of this dissertation would not

differ in any meaningful way. We stress that the pointwise mean in equation (3.11) is

used only to compare the ABC methods with the composite likelihood approach in the

simulation study. When the ABC approach is used alone in practice, one would use the

full approximate posterior to handle prediction, credible intervals, and assess uncertainty.

The applications in Chapter 6 show examples of this.
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Figure 3.3: Left: Span of models included in simulation study. Models range from short-range
dependence (A) to long-range dependence (F) on the scale of simulated data. In the
three models labeled A, B, and C (solid lines) the adaptive ABC tripletwise approach
outperformed MCLE. Right: Example of approximate Bayesian computing (dashed
line) and maximum composite likelihood (dotted line) estimates from one model run,
as compared to the true model (solid line).

Table 3.1: Mean Square Error using equation (3.15) for both the composite likelihood and three
approximate Bayesian computing methods. Reported values are averages from 5 sim-
ulations of each of the six models. Standard error estimates are shown in brackets.
The values reported have order of magnitude is 10−4 (multiply each entry by 10−4 to
show the true value). The final column shows the relative reduction in MSE when
using the approximate Bayesian computing tripletwise method, as compared to the
composite likelihood method.

ABC ABC ABC Composite Reduction: ABC Tripletwise
Model Madogram Pairwise Tripletwise Likelihood vs. Composite Likelihood

A (c2 = 0.5, ν = 1) 99 [68] 45 [27] 15 [9] 26 [13] 40.1%
B (c2 = 1, ν = 1) 207 [81] 262 [102] 125 [77] 146 [121] 14.5%
C (c2 = 1, ν = 3) 314 [104] 272 [37] 103 [46] 140 [43] 26.6%
D (c2 = 3, ν = 1) 98 [38] 284 [155] 99 [69] 163 [74] 39.4%
E (c2 = 3, ν = 3) 385 [208] 555 [241] 287 [100] 283 [105] −1.3%
F (c2 = 5, ν = 3) 269 [92] 645 [174] 70 [41] 485 [374] 85.6%
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Results are shown in Table 3.1. The first two columns show the performance of the two

pairwise ABC methods, the madogram and extremal pairwise coefficient methods, followed

by the ABC tripletwise and MCLE approaches. The average MSE over 5 runs is lowest for

the ABC tripletwise in 5 of 6 models, and essentially tied with composite likelihood in the

sixth. Within each model specification, having only five repetitions means standard error

estimates remain large, and it is difficult to make firm conclusions. However, when viewed

as a whole, these 30 runs do show evidence in favor of the ABC tripletwise approach. The

ABC tripletwise method outperformed the ABC pairwise method in 25 out of 30 of the

model runs, and it outperformed the composite likelihood approach in 19 out of 30 runs.

The ABC tripletwise method also gave the best estimate out of the four methods in 16

out of 30 runs, whereas the composite likelihood was best in only 8 of 30 runs. We found

the greatest correlation in performance between the ABC madogram and ABC pairwise

methods (0.613), as expected, since these two methods are the most similar and utilize

essentially the same information in the summary statistics. These findings motivated the

larger simulation study discussed in the next chapter.
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4

Computational Enhancements

Having established the basic ABC algorithm in Chapter 4, here we discuss modifications

to improve estimation and decrease the computational cost. We state right at the start

that we do not resort to Markov Chain Monte Carlo, which is often the solution to many

Bayesian computational challenges. Although there are implementations of ABC which

utilize MCMC (Bortot et. al., 2007), we found much greater benefit by relying on adaptive

(or sequential) computing, which moves from a diffuse prior to an approximate posterior

into multiple stages. The method begins with a diffuse prior, and ABC-REJ is first used to

produce a first approximation π1 at threshold ε1. This then serves as the prior for a second

ABC step, which produces a second approximation π2 with a lower threshold ε2 < ε1, and

so on. This is the major improvement discussed in detail in this chapter. We also document

and discuss other computational issues associated with the algorithm.

4.1 Weighting the Summary Statistic

Recall that our summary statistic is s = (θ̄1, ..., θ̄K), where θ̄k is the mean of the Nk

estimated extremal tripletwise coefficients which fall into group k. We have shown that

estimating an extremal tripletwise coefficient is equivalent to estimating the rate of an

exponential distribution, and we used the maximum likelihood estimator for the latter.



Thus, we know our estimates of θi,j,k are consistent and asymptotically normal, and further

by the Central Limit Theorem we know var(θ̄) = var(θ̂)/Nk, where Nk is the number of

triplets we average over in group k.

To capture the overall discrepancy between observed and simulated data Z and Z ′, we

chose d(s, s′) =
∑K

k=1 |sk−s′k|, so the kth element of the sum captures the absolute difference

for cluster group k, in which there are Nk items averaged for both s and s′. Consider

two groups k1 and k2 with Nk1 < Nk2 items, respectively, and suppose the discrepancies

between observed and simulated summaries are roughly equal, i.e. |sk1 − s′k1| ≈ |sk2 − s
′
k2
|.

Intuitively, we want the ABC algorithm to down-weight this discrepancy for group k1 since

there are fewer items Nk1 , our estimates of the tripletwise extremal coefficients are more

variable, and thus there is less evidence the observed and simulated summaries truly differ.

The discrepancy in group k2 is more informative. A natural improvement, then, is to weight

the summary statistic to reflect the unequal numbers of triplets in each group. Thus, a

standardized distance measure is

d2(s, s′) =
K∑
k=1

√
Nk|sk − s′k| (4.1)

where Nk is the number of items in group k. This measure appropriately weights discrep-

ancies more for groups with more members, and down-weights discrepancies for groups

with only a few members.

4.2 Adaptive Approximate Bayesian Computing

Motivated by the promising results for the ABC tripletwise approach shown in Table 3.1,

we carried out a second simulation study using a more computationally efficient adaptive

approximate Bayesian computing (AABC) algorithm to more closely compare the perfor-

mance of the ABC tripletwise and MCLE approaches. The aim of this simulation study
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was to increase computational efficiency and the number of simulations per model, but

avoid the use of parallel computing. Beaumont et. al. (2009) describe the adaptive algo-

rithm in detail. It is a sequential algorithm which uses ABC rejection sampling to produce

a first approximation, and then re-samples from this first approximation for second round

of ABC rejection sampling to produce a subsequent approximation. This allows the second

stage of ABC to sample more efficiently, thus increasing the efficiency of the algorithm.

We implemented the AABC algorithm exactly as described by Beaumont et. al. (2009).

Specifically, the steps were to:

1. Run the ABC rejection algorithm exactly as described in subsection 3.2.3, but with

I = 100, 000 simulations to produce a first approximation φ
(1)
1 , ..., φ

(1)
J (the J = 500

particles filtered as (φ′i : di 6 εP ), where εP is the 0.5% percentile of di)

2. Compute Ω as twice the empirical variance of φ
(1)
1 , ..., φ

(1)
J .

(a) Resample a particle φ∗ from φ
(1)
1 , ..., φ

(1)
J

(b) Mutate using kernel K(φ′ | φ∗) = N (φ∗,Ω), where N (·) is a multivariate normal

density with mean φ∗ and covariance matrix Ω.

(c) Simulate Z ′ | φ′, compute summary s′ and weighted distance d2(s, s′) from

equation (4.1)

(d) (Repeat 100,000 times)

3. Filter the 100,000 particles as (φ′i : di 6 εP ), where εP is the 0.5% percentile, ensuring

exactly 500 particles are accepted. Call these φ
(2)
m ,m = 1, ..., 500.

4. For accepted particle φ
(2)
m compute rescaled weight

wm ∝
1∑J

j=1
1
J
· N (φ

(2)
m | φ(1)

j ,Ω)
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where N (φ
(2)
m | φ(1)

j ,Ω) is the density of a multivariate normal with mean φ
(1)
j and

variance Ω evaluated at the point φ
(2)
m . Note that the rescaled weights wm sum to

one.

The only additional consequence of this adaptive algorithm is that we have produced

a weighted sample from the approximate posterior, and thus have to modify our estimate

of the correlation function from equation (3.11) to now be

ρ̂(h) =
1

M

M∑
m=1

wm · ρ(h;φ(2)
m ), (4.2)

where wm is the rescaled weight from step 4 above.

4.2.1 Simulations

The more efficient AABC approach could be run without the use of any parallel computing,

freeing up nodes, which allowed for 30 runs in each model (thus 6 · 30 = 180 simulations

in total). We chose an initial sampling of 100,000 and a re-sampling of 100,000 to keep

the computational cost to around 8 hours per run. This means the performance of AABC

as shown in Table 4.1 is roughly what a user might expect when analyzing a dataset on

a single computer in a single day. One example run is shown in Figure 4.1. The AABC

method resulted in a lower MSE for the three short range processes (A, B, and C) but a

larger MSE for the three longer range processes (D, E, and F). Clearly, the adaptive ABC

approach was not shown to outperform MCLE for all of the models, but there is a clear

statistical benefit for the short-range processes. We discuss this more in chapter 7.

4.3 Clustering and the Choice of K

In the implementation discussed thus far, Ward’s method (Ward, 1963) was used to cluster

the
(
D
3

)
extremal coefficient estimates into K groups. To cluster T objects using Ward’s
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Figure 4.1: An example of the AABC method. The top row shows the noninformative prior,
the middle shows the first ABC approximation, and the third row shows the final
adaptive ABC approximation to the posterior. The left column shows 500 draws
from each distribution on the parameter space with true parameter value (shown as
the triangle), while the right column shows the same draws on the functional space
along with the true correlation function (shown as the heavy black line).
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Table 4.1: Mean square error of the pointwise mean correlation function estimates (taken with
respect to the true correlation function) for the MCLE and AABC methods. Reported
values are averages from 30 simulations of each of the six models. Standard error
estimates are shown in brackets. The values reported have order of magnitude is 10−4

(multiply each entry by 10−4 to show the true value).

Model MCLE AABC

A (c2 = 0.5, ν = 1) 265 [134] 217 [23]
B (c2 = 1, ν = 1) 330 [36] 115 [33]
C (c2 = 1, ν = 3) 162 [33] 76 [17]
D (c2 = 3, ν = 1) 225 [44] 395 [26]
E (c2 = 3, ν = 3) 158 [7] 238 [11]
F (c2 = 5, ν = 3) 47 [8] 79 [6]

method, the computation is O(T 2), which is a result of the necessary upper triangular

matrix of dimension T × T . Computing this matrix becomes costly as T increases. Recall

that for a data set with D fixed locations, there are
(
D
3

)
= O(D3) extremal tripletwise

coefficients to be clustered, so under Ward’s method the overall cost if O(D6). We found

in practice that this limited the ABC method with Ward’s method to small spatial datasets.

An alternative is to use the k-means++ algorithm (Arthur and Vassilvitskii, 2006;

Ostrovsky et. al., 2006). Call the location vectors of the J items to be clustered xj, j =

1, ..., J .

1. Initialize K cluster means m1, ...,mK (more on this later).

2. For each of the j items, compute the distance to each current cluster centroid mi as

di(xj)
(t) = ||xj −m(t)

i ||

and assign the item to the cluster with the smallest distance. Repeat for all j.
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3. Update the cluster means as

m
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj

where |S(t)
i | is the number of items in the ith group, and repeat steps 2-3 until all j

items remain in their clusters.

The main advantage is that for
(
D
3

)
items, one only needs to compute

(
D
3

)
·K terms,

which is O(D3). This substantially reduces the computational complexity as D is increased.

To initialize the K cluster means, one can simply randomly choose K of the locations.

There are more elegant ways of ensuring a reasonable initial set, however. A simple one

based on biased sampling as follows:

1. Randomly choose the first centroid as m1.

2. For each of the j points, compute the distance to m1 as

d(xj)
(1) = ||xj −m(1)

1 ||

and sample an additional point with probability ∝ d(xj)
(1). Set m2 equal to this

point.

3. Given centroids mi, i = 1, ..., k, for each of the remaining J − k points compute

d(xj)
(k) = mini||xj −m(k)

i ||

and sample an additional point with probability ∝ d(xj)
(k). Set mk+1 equal to this

point.

4. Repeat until K means are selected.
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This approach encourages initial cluster means to span the full space of items. Fig-

ures 4.2 and 4.3 show examples of clustering for D = 20 locations and K = 24 groups

using both Ward’s method and the k-means++ algorithm. There is some evidence of sub-

optimal clustering, but that is a feature of all clustering routines which do not enumerate

every single cluster combination.

There are a few other challenges: if a cluster becomes empty during the algorithm,

the centroid no longer exists, and the approach may fail. To correct for this, we simply

re-sampled a point at random from the triplet space to serve as the new centroid, and then

continued. Perhaps more significantly, the number of clusters must be specified in advance,

and it is not obvious how to handle this. To address this, we repeated simulations for a

sequence of K values to determine an optimal choice. These are shown in Figures 4.5 and

4.6, and discussed later.

To further study the benefits of k-means++ over Ward’s method, we ran a simulation

study and recorded the run times for various clustering algorithms. For each run, we

randomly placed D data points on a 10 by 10 grid, and used Ward’s method along with

two versions of the k-means++ clustering algorithm. Both Ward’s and the first k-means++

algorithm clustered the items into K = d
√

D(D−1)(D−2)
12

e clusters, where d·e is the ceiling

function which rounds the argument up to the next nearest integer. An alternate k-

means++ algorithm fixes the total number of clusters at K = min(d
√

D(D−1)(D−2)
12

e, 100)

which for D > 50 results in a smaller number of clusters, and thus presumably a lower

mean run time. Results are shown in Figure 4.4.

The ABC algorithm we have outlined requires a choice of K, the number of clusters

of tripletwise extremal coefficients and dimension of the summary statistic. This should

be regarded as a tuning parameter. Increasing the number of clusters K helps to increase

the within-group homogeneity but simultaneously results in fewer triplets per group. Con-

versely, reducing the number of clusters K reduces within-group homogeneity but increases
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Figure 4.2: Results from clustering with the k-means++ method. Data from D = 20 locations
(thus 1140 triplets) are clustered into K = 24 clusters using the k-means++ method.
Each triangle is drawn as follows: first, the longest length is drawn vertically from the
fixed origin. The second longest length is drawn to the left, and the shortest length
connects. Thus, all triangles share a single point (the origin), and are oriented in the
same manner. This helps to see the degree of homogeneity in each cluster.
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Figure 4.3: Results from clustering with Ward’s method. Data from D = 20 locations (thus
1140 triplets) are clustered into K = 24 clusters using the k-means++ method. Each
triangle is drawn as follows: first, the longest length is drawn vertically from the
fixed origin. The second longest length is drawn to the left, and the shortest length
connects. Thus, all triangles share a single point (the origin), and are oriented in the
same manner. This helps to see the degree of homogeneity in each cluster.
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Figure 4.5: Mean square error as a function of K (the number of clusters) for K = 10, ..., 100 for
the six model choices using ABC-REJ. Averages over the 30 runs are shown by the
heavy red line.

the number of triplets per group. The aim then is to balance these two competing benefits.

We ran the ABC-REJ algorithm for D = 20 locations, Y = 100 years and K =

10, 20, ..., 100 clusters to investigate the impact K has on the performance. Results are

shown in Figures 4.5 and 4.6. Somewhat surprisingly, we see very little impact in perfor-

mance. There is a very slight decrease in average MSE as K increases to 100, but for most

runs in most models the performance of the ABC algorithm is not affected greatly on the

range K = 10, ..., 100. We conclude by suggesting that the user simply keep in mind the

trade-off involved.
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These are equivalent to the heavy red lines shown in Figure 4.5.

4.4 Extending Beyond Triplets

Extremal coefficients cannot be written out explicitly for D > 3, due to the unavailable

joint likelihood function. Erhardt and Smith (2012) discuss extremal coefficients based on

k-tuples, and the focus was on k = 3. In principle, the approach could be extended to

any k-tuples for k > 3 as well. Here we show the dramatic rise on computational cost of

considering higher order k-tuples. A max-stable process defined at D fixed point-referenced

locations allows for
(
D
k

)
unique k-tuples, each of which can be used to define an extremal

k-wise coefficient. The number of unique k-tuples is thus O(Dk). Figure 4.7 shows this

growth (on the log scale) for k = 3, 4, and 5.

The ABC approach reduces the dimension of the summary statistic by grouping these

k-tuples into K groups according to some clustering algorithm. All clustering algorithms

require a measure of dissimilarity, and we have used the following approach to clustering

triplets: a triplet of locations is a triangle between 3 points, which produces 3 Euclidean
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.

distances A = (a1, a2, a3). To measure the distance between two triplets A and B, we take

dist(A,B) = min
π

3∑
i

|ai − bπ(i)| (4.3)

where π(i) is a permutation of {1, 2, 3}. That is, we compare only the three lengths of

the two triplets, and find the permutation which results in the smallest sum of absolute

deviations. There are 6 such permutations, so a single distance computation between two

triplets requires taking a minimum over 6 permutations.

To generalize, let us now consider a k-tuple of points on the plane. These points produce∑k
i=1 i = k(k − 1)/2 unique line segments. So, if k = 3 there are 3 unique line segments;

for k = 4, there are 6, and so on. Following the same idea as above, let us call two k-tuples

A and B, with respective line segment distances (a1, ..., ak(k−1)/2) and (b1, ..., bk(k−1)/2).

Generalizing equation (4.3), the distance between them would be
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Table 4.2: Number of permutations when computing the distance between two k-tuples using
equation (4.4).

k [k(k − 1)/2]!
3 6
4 720
5 3,628,800
... ...

dist(A,B) = min
π

k(k−1)/2∑
i=1

|ai − bπ(i)| (4.4)

where π(i) is a permutation of {1, 2, ..., k(k − 1)/2}. The number of permutations in π is

[k(k − 1)/2]!. Thus, a single distance computation must take the minimum over a vastly

increasing number of items. Table 4.2 shows how quickly these add up.

Using this definition of distance, the computation of distance between two k-tuples is

O([k(k − 1)/2]!). We stress this is only to compute the distance between two singular

objects we have denoted as A and B; there are
(
D
k

)
total objects in a spatial data set of

D locations. To run the overall clustering, Ward’s method requires O(D2k) total distance

calculations, and k-means requires O(Dk). It should be clear that either approach quickly

leads to overwhelming computational cost. Only k = 3 or k = 4 could seriously be

implemented using the distance function we have described in equation (4.4). Otherwise,

some alternative definition of distance would be needed.

4.5 Choosing a Threshold ε

The choice for selecting a threshold ε is driven almost entirely by practical considerations.

One would always prefer a smaller threshold ε to ensure a high quality approximation to

the posterior. The trade-off is fewer accepted particles. Thus, the threshold should be

selected to be as small as possible so long as enough particles are accepted. We have
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Figure 4.8: This shows the relative stability in estimating MSE using various percentiles for
5,000,000 draws from Adaptive Approximate Bayesian Computing. These lines cor-
respond to the 30 individual model runs from a Whittle-Matérn with range c2 = 3
and smooth ν = 1. Here we have advocated selecting the 0.1%, which ensures exactly
500 particles are accepted for the approximate posterior.

handled this by setting ε to be a very low percentile of the distances, chosen to ensure a

reasonable fixed number of particles are accepted. An example of this trade-off is shown

in Figure 4.8.

Verifying that the resulting threshold is in fact low enough to obtain a quality posterior

approximation is handled through a robust simulation study, such as the one shown in

Table 4.1. Tables 4.4 and 4.5 also contain some results on how the selection of the threshold

affects the performance of the method.
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4.6 Selecting a Prior Distribution

We first point out a critical difference between approximate Bayesian computing and

other forms of Bayesian computing when it comes to the prior distribution. In ordi-

nary Bayesian computing, one seeks a collection of draws from the posterior distribution

π(θ | Z) ∝ π(θ) · f(Z | θ). Closed-form expressions are usually available, though of course

it may be difficult to compute the normalizing constant. To gain efficiency, one can sample

from a different density function g(θ) chosen to closely resemble the posterior. With an

appropriate accept/reject step, the result is a collection of particles from π(θ | Z). The

key point here is that one can define one prior π(θ) but sample from a distinct distribution

g(θ) for efficiency.

In approximate Bayesian computing, without a closed-form expression for the likeli-

hood one cannot write out π(θ | Z) ∝ π(θ) · f(Z | θ), and so there is no method for

identifying an alternative distribution g(θ) to increase sampling efficiency. Whichever dis-

tribution candidate parameter values are sampled from, that is the prior π(θ). Thus, if

one wishes to define non- (or minimally-) informative priors, necessarily this is what the

ABC algorithm must draw candidate parameter values from. The result can be a severe

loss of computational efficiency.

Fortunately, adaptive computing can move from a non-informative prior to a high

quality approximate posterior by splitting the transition up into a smoother sequence. If

the mixture of Bayesian and Frequentist viewpoints can be forgiven here, so long as one

chooses a prior containing an open neighborhood around the true parameter value, any

diffuse prior can be used. Adaptive computing combined with diffuse priors is thus a very

good general answer to the question “how does one choose the prior for ABC?”

There is one minor addition when it comes to defining what a “diffuse” prior is. In the

simulation study we advocated the use of independent uniform priors on the parameter

space Θ = c2 × ν, with upper limits sufficiently high to effectively cover the full range of
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Figure 4.9: This shows the non-even distribution of correlation functions using independent, uni-
form priors for the range c2 and smooth ν. For the Whittle-Matérn and Cauchy,
priors are independent exponentials c2 ∼ U(0, 10), ν ∼ U(0, 10), and for the powered
exponential priors are c2 ∼ U(0, 10), ν ∼ U(0, 2). Each figure shows 250 random
draws.

spatial dependence ranges on the space of observed data. While these priors appear to

show no preference on the space Θ, in fact they do tend to favor different spatial processes,

as shown in Figure 4.9. For the Whittle-Matérn, longer range processes are over-sampled,

and for the Cauchy and powered exponential shorter-range processes are over-sampled.

Alternatively, one can select a non-uniform prior on the space Θ which results in a more

homogeneous sampling of spatial processes. By selecting independent exponential priors

for the range and smooth, for example, one obtains a more even sampling of dependence

ranges for spatial processes, as shown in Figure 4.10.

4.7 Simulations and Asymptotics

Here we demonstrate the benefit of increasing the number of i.i.d. replicates (Y in the

notation throughout this dissertation) of spatial extremes data along with the benefit of

increasing the number of observation locations (D). The latter is sometimes referred to as
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Figure 4.10: This shows the roughly even distribution of correlation functions using priors for the
range c2 and smooth ν. For the Whittle-Matérn, priors are independent exponen-
tials c2 ∼ Exp(λ = 3/h), ν ∼ Exp(λ = 3/h), for the Cauchy priors are independent
exponentials c2 ∼ Exp(λ = 1/2h), ν ∼ Exp(λ = 1/2h), and for the powered expo-
nential priors are c2 ∼ Exp(λ = 1/h), ν ∼ U(0, 2). Each figure shows 250 random
draws.

“infill asymptotics”, meaning the number of observed locationsD increases while the spatial

domain X remains fixed (this is distinguished from “increasing domain asymptotics”, in

which additional locations are added in a way which also expands the spatial domain

X). We simulated 30 max-stable processes from a Schlather process with Whittle-Matérn

(c1 = 1, c2 = 1, ν = 1) correlation for D = 20 and 40 years, for Y = 50, 100, and 250 years.

This as the observed data Z. We then ran the AABC algorithm precisely as outlined in

Section 4.2. Table 4.3, 4.4 and 4.5 show results from these simulations. As expected, the

mean square error falls as Y increases for fixed D, and also as D increases for fixed Y .
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Table 4.3: Mean square error (taken over 30 runs) for the AABC method analyzing data from
a Schlather model with Whittle-Matérn (c1 = 1, c2 = 1, ν = 1) process for various
numbers of data points D and years Y . Standard error estimates are shown in brackets.
All values have order 10−4 (multiply each entry by 10−4 to show the true value).

HHH
HHHD

Y
50 100 250

20 172 [28] 143 [36] 97 [29]
40 160 [62] 119 [37] 31 [9]

Table 4.4: Mean square error (taken over 30 runs) for the AABC method analyzing data from a
Schlather model with Whittle-Matérn (c1 = 1, c2 = 1, ν = 1) process for D = 20 data
points. Standard error estimates are shown in brackets. All values have order 10−4

(multiply each entry by 10−4 to show the true value). Simulations are broken out by
number of years Y and threshold ε, shown as a percentile.

ε (percentile) Particles 50 100 250
.10 5000 197 [32] 151 [40] 131 [37]
.05 2500 182 [28] 149 [39] 118 [33]
.01 500 172 [28] 143 [36] 97 [29]
.05 250 181 [30] 140 [34] 91 [28]
.001 50 181 [31] 130 [30] 81 [25]

Table 4.5: Mean square error (taken over 30 runs) for the AABC method analyzing data from a
Schlather model with Whittle-Matérn (c1 = 1, c2 = 1, ν = 1) process for D = 40 data
points. Standard error estimates are shown in brackets. All values have order 10−4

(multiply each entry by 10−4 to show the true value). Simulations are broken out by
number of years Y and threshold ε, shown as a percentile.

ε (percentile) Particles 50 100 250
.10 5000 166 [60] 125 [39] 55 [14]
.05 2500 160 [59] 120 [39] 43 [12]
.01 500 160 [62] 119 [37] 31 [9]
.05 250 156 [62] 120 [37] 30 [9]
.001 50 157 [58] 103 [27] 26 [9]

63



5

Weather Derivatives

5.1 Introduction to Weather Derivatives

Richards et. al. (2004) give a list of 5 elements common to all weather derivatives. These

include (a) an underlying weather index, (b) a well-defined time period, (c) the weather

station used for reporting, (d) the payment attached to the index value, and (e) the strike

value which first triggers payment. The intention is for the buyer of the derivative to be

compensated by the seller for amounts which roughly correspond to actual business losses.

Ideally, these losses are perfectly correlated with the payments of the weather derivative,

though in practice this is rarely achieved. Tailoring the contract to the specific needs of

one buyer reduces its general appeal in a secondary market, and thus lowers the value of

the contract.

Weather derivatives offer benefits to the buyer and seller not found in traditional in-

surance. The buyer does not need to have an insurable interest, and they do not need to

demonstrate an actual loss to receive payment. The loss payment itself is generally propor-

tional to the difference between the weather index and strike value. Furthermore, weather

derivatives offer the buyer the opportunity to sell (or even buy back) the contract in a

secondary market such as the Chicago Mercantile Exchange, or over the counter. There

are no such markets for traditional insurance products. Derivatives are also in general



more lightly regulated, and payments are often considered taxable.

From the seller’s point of view, weather derivatives offer several advantages over tradi-

tional insurance. Weather derivatives avoid the higher administrative and loss adjustment

expenses of insurance contracts. They also eliminate concern for moral hazard, morale

hazard, and fraud, as the event triggering the payment is easily verified and completely

beyond the buyer’s control. When used to insure crops, weather derivatives help reduce

the perceived information asymmetry associated with crop insurance, wherein farmers of-

ten have more information about their individual risk than insurers (Goodwin and Smith,

1995).

We consider the use of weather derivatives to provide protection against high impact,

low probability business losses caused by extremes in the weather. Though not techni-

cally insurance, we model losses and price derivatives using actuarial techniques originally

developed to price insurance. The weather derivatives we consider define some payment

L = L(M ; s, t), where M is the unknown weather random variable, and s and t are the

pre-specified strike and limit values (occasionally we only write L or L(m) to refer to the

loss to simplify notation). Examples of three types of derivatives with payments based on

high exceedances include

1. L = α if {M > s} and 0 otherwise

2. L = β · (m− s) if {M > s} and 0 otherwise

3. L = β · (m − s) when {s 6 M 6 t} and L = β · (t − s) when {M > t}, and 0

otherwise,

where α and β are dollar values, and m is the realization of random variable M . The first

provides a flat payment whenever the event {M > s} occurs, the second provides a propor-

tional payment based on the difference (m− s), while the third limits the total payment.
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Unlike most derivatives, weather derivatives do not have an underlying tradable asset, and

thus many pricing approaches based on financial theory are inappropriate. Jewson and

Brix (2005) provide an excellent reference and discussion of pricing techniques for weather

derivatives. The pricing approach we take is based on computing expected losses and ex-

pected loss variability. We also show the estimation of several common risk measures in

actuarial science. The first step is to compute the expected payout E(L) =
∫
L(m)g(m) dm,

where g(m) is the density function of weather variable M . For the three derivatives, shown,

expected payments are

1. E(L) =
∫∞
s
α · g(m) dm = α · P (M > s)

2. E(L) =
∫∞
s
β · (m− s)g(m) dm

3. E(L) =
∫ t
s
β · (m− s)g(m) dm+ β · (t− s) · P (M > t).

When viewed from the point of view of insurance, the quantities E(L) are the pure

premiums of the contracts. In the absence of any expenses, profit, risk loadings and time-

value financial considerations, this is the price of the contract for the buyer. Such contracts

are fairly straightforward to price once one has an accurate estimate of the density function

g(m) in the region where m > s. Further, one can compute all second moments as

1. E(L2) =
∫∞
s
α2 · g(m) dm = α2 · P (M > s)

2. E(L2) =
∫∞
s
{β · (m− s)}2g(m) dm

3. E(L2) =
∫ t
s
{β · (m− s)}2g(m) dm+ {β · (t− s)}2 · P (M > t),

and from these compute the variance var(L) = E(L2)− (E(L))2. This information is often

incorporated into the premium by adding a risk load R(L), which is added to the pure

premium as P = E(L) + R(L). Risk loads are meant to account for the additional risk
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taken on by writing derivatives with larger variability of losses. Commonly, risk loads are

a function of the variance (or standard deviation) of loss (Feldblum, 1990). Mango (1998)

describes several common risk loadings such as R(L) = λ ·
√

var(L), or R(L) = λ · var(L),

where λ is a dollar amount chosen to satisfy some risk tolerance criteria.

Actuaries further consider a set of alternative risk measures designed to measure the

risks associated with an insurance policy (Dhaene et. al., 2006; Denuit et. al., 2005). Five

common measures are:

1. The Value-at-Risk, or VaR, defined as VaR(L; p) = F−1
L (p), where L is a loss random

variable, F is the cumulative distribution function, and 0 < p < 1. The Value-at-

Risk is simply a quantile of loss, typically taken with p close to one which gives a

high loss quantile.

2. The Tail Value-at-Risk, or TVaR, defined as TVaR(L; p) = 1
1−p

∫ 1

p
VaR(L; t) dt.

TVaR is the arithmetic average of quantiles of L, defined for all p on. TVaR is

designed to convey some information of the thickness of the tail of L in regions above

a high quantile VaR(L; p).

3. The Conditional Tail Expectation, defined as CTE(L; p) = E(L | L > VaR(L; p)).

This is the expected loss given a high threshold is exceeded.

4. The Conditional Value-at-Risk, or CVaR(L; p) = CTE(L; p)−VaR(L; p), which shows

the gap between CVaR and CTE

5. The Expected Shortfall, or ES(L; p) = E [(L− VaR(L; p))+]. If one sold an insurance

policy for premium P and held a reserve equal to P + VaR, the expected shortfall

describes the expected additional loss above the reserve.

These five risk measures are closely related, particularly when the loss random variable
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L is continuous. A few common relations are:

TVaR(L; p) = VaR(L; p) +
1

1− p
ES(L; p),

CTE(L; p) = VaR(L; p) +
1

1− FL(VaR(L; p))
ES(L; p),

and, if L is continuous,

TVaR(L; p) = CTE(L; p).

Next, consider a portfolio of K weather derivatives, with aggregate payment L =

L1+...+LK . The expected aggregate payment is simply the sum of the individual expected

payments,

E(L) =
K∑
k=1

E(Lk).

However, when we allow for possible dependence among contracts, the variance of the

aggregate payment is

var(L) =
K∑
k=1

var(Lk) +
K−1∑
k=1

K∑
k′=k+1

2 · cov(Lk, Lk′) (5.1)

The first issue when pricing weather derivatives (extreme or otherwise) is to properly

address the positive correlation among contracts, with its resulting impact on aggregate

loss variability as shown in equation (5.1). It is easy to envision positively correlated

payments in a portfolio of weather derivatives, since weather variables are often positively

correlated in space. This correlation implies the variance of the aggregate payment exceeds

the sum of individual payment variances, and thus risk loadings priced individually would

be insufficient for the portfolio as a whole.

Next, consider the challenges when focusing on extreme weather events. Examples of
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such events may include the maximum daily temperature exceeding some high threshold,

the minimum daily temperature falling below some low threshold, or the minimum monthly

rainfall falling below some low threshold. These events can often be written as {maxY > s}

or {minY 6 s} where Y is some weather-related random variable and s is a pre-specified

strike value. In all cases we are defining a contract not based on “typical” weather patterns

of temperature or precipitation, but on extremes. What is needed to accurately price these

contracts is the distribution function of extreme events. Furthermore, when one considers

a collection of K derivatives defined at different locations, one must carefully consider if

the dependence of extremes is different from the dependence exhibited by non-extreme

events. Putting the two issues together, what is needed to price weather derivatives for

extreme events is a model that (1) directly targets extremes, and (2) properly incorporates

the spatial correlation of weather extremes. One could further extend this to models which

incorporate time dependence of extremes as well. However, here we focus on the spatial

dependence of weather derivatives for extremes, as that is the largest omission of current

methodology.

We begin with the problem of pricing a single weather derivative in the Section 5.2. This

is handled through the Generalized Extreme Value distribution (Embrechts, et. al., 1999),

which is the only permissible limit of the maxima of independent, identically distributed

univariate random variables. We demonstrate the approach by pricing a weather derivative

based on extreme summer temperatures in Phoenix, Arizona. In Sections 5.3 and 5.4,

we extend our weather derivative pricing model to multiple locations through the use of

max-stable processes. These processes capture dependence in spatial extremes. Through

large numbers of simulations, we can estimate all marginal variances, covariances, and risk

measures when pricing a portfolio of weather derivatives. This information is ultimately

incorporated into risk loads added to the pure premiums. From the method presented, pure

premiums, risk loads and risk measures for a collection of K spatially dependent weather
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derivatives can be obtained.

5.2 Pricing a Weather Derivative at a Single Location

5.2.1 Pricing a Contract Through Simulations

Once we have a fitted model, we can use this to estimate the necessary pure premium

and risk loadings through a large collection of simulations. The first two moments of the

unknown payment variable L, are

E(Ld) =

∫
L(m; s, t)dg(m) dm

where L(m; s, t)d is the loss payment for realization M = m raised to the dth power (d = 1

or 2), and g(m) is the density function of the maxima. The first type of weather derivative

discussed has L(m; s, t)d = αd for m > s, which means the integral can be evaluated exactly

as

αd · P (M > s) = αd ·
(

1−G(s; φ̂)
)

(5.2)

Our ultimate goal is to describe a general approach to estimating risk for a collection of

weather derivatives. Even if we chose derivatives with a sufficiently simple mathematical

payment structure such that closed-form expressions for the moments and risk measures

could be obtained, once we extended to the spatial case with D > 2 locations we would

not have the joint likelihood function for aggregate loss L = L1 + ...,+LD. Since the

primary motivation for using max-stable processes to price weather derivatives is to prop-

erly incorporate spatial dependence, we will be forced to drop the search for closed-form

expressions for risk measures well before we meet our stated goal. Therefore we focus

on numeric approximations to all moments and risk measures, and demonstrate how the

approach extends to cover the spatial case. All numeric estimates will rely on a large i.i.d.
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sample Mi ∼ G(m) for i = 1, ..., I, and for each draw we compute the payment L(mi) for

a chosen type of weather derivative.

To estimate the first and second moments, assuming that E(|L(M)|2) is finite, by the

Strong Law of Large Numbers sample means converge to the first and second moments as

(Robert, 2007)

1

I

I∑
i=1

L(mi)→ E(L(M)) =

∫
L(m)g(m) dm (almost surely) (5.3)

and

1

I

I∑
i=1

L(mi)
2 → E(L(M)2) =

∫
L(m)2g(m) dm (almost surely). (5.4)

Furthermore, if the fourth moment is finite, as
∫
L(m)4g(m) dm <∞, then by the Central

Limit Theorem we know that the sample average in equation (5.3) is asymptotically normal

with variance var(L(M))/I, and the sample average in equation (5.4) is asymptotically

normal with variance var(L(M)2)/I.

Similarly, all five of the risk measures described (VaR, CTE, TVar, CVar, ES) can

be numerically estimated as a function of p once an approximate cumulative distribution

function for L is available. Value-at-Risk is estimated as a simple quantile of the loss

cumulative distribution function:

V̂aR(L; p) = w1 · L[j] + w2 · L[j+1] (5.5)

where j/n 6 p < (j + 1)/n, L[j] is the jth order statistic, and w1 + w2 = 1 are the weights

on the two order statistics. There are various methods for choosing the weights (Hyndman

and Fan, 1996), but as the number of simulated points n grows the discrepancies between

the various methods for quantile estimation vanish, so we will not focus on them here. For
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Expected Shortfall we use

ÊS(L; p) =
1

I

I∑
i=1

max
(
L(mi)− V̂aR(L; p), 0

)
. (5.6)

Conditional Tail Expectation can then be estimated as

ĈTE(L; p) = V̂aR(L; p) +
1

1− p
ÊS(L; p). (5.7)

Finally, Conditional Variance is the difference of CTE and VaR as

ĈVaR(L; p) = ĈTE(L; p)− V̂aR(L; p). (5.8)

One example of a risk-loaded premium based on marginal variance is

P̂ = Ê(L) + R̂(L) =
1

I

I∑
i=1

L(mi) + λ ·

1

I

I∑
i=1

L(mi)
2 −

(
1

I

I∑
i=1

L(mi)

)2
 (5.9)

for some dollar amount λ, chosen to satisfy some risk tolerance criteria.

5.2.2 Example: Extreme Temperature in Phoenix, Arizona

As an example of how this model may be used, consider pricing a weather derivative with

payments whenever the maximum daily summer temperature in the city of Phoenix, AZ

exceeds some high threshold s. On June 26, 1990, Phoenix airport was forced to close

because the temperature exceeded 122 degrees Fahrenheit. Aircraft operating manuals

did not provide information for takeoff and landing procedures in temperatures above 120

degrees Fahrenheit. The closure caused the predictable sort of economic disruption which

accompanies airport closures. We envision a weather derivative as a useful tool in this

situation.
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Figure 5.1: Left: Maximum annual summer temperature at Phoenix International Airport from
1933-2010 (with some missing values). The dashed line shows the annual trend, with
statistically significant positive slope (p-val = 0.007). Right: Empirical autocorrela-
tion of maximum daily summer temperatures. There is no evidence annual maximum
daily temperatures are autocorrelated, as the value at all lags greater than 1 falls be-
low the 95% confidence interval line obtained from white noise sequences.

To price the derivative, we collect maximum daily summer temperatures at the Phoenix

airport, yi,j for year i and day j, where j = 1, ..., 92 (the 92 days in June, July, and

August) for years 1933 to 2010. This data comes from the National Climatic Data Center.

For each year i, we take the block maximum mi = max(yi,1, ..., yi,92), and model these

annual maxima mi as a Generalized Extreme Value distribution. Plotting these data, we

observe evidence of a slight positive trend over time (Figure 5.1). A simple linear model

of maximum temperature versus year shows a statistically significant positive slope of

0.03363, with p-value 0.007. We also find no evidence that annual maximum temperatures

are autocorrelated.

We estimate the GEV parameter φ using maximum likelihood estimation, as shown in

equation (2.5), but with the possibility of a trend on the location parameter, as µ = µ1+µ2·t

where t is year. Thus, the GEV parameter here is actually φ = (µ1, µ2, σ, ξ). The maximum
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Figure 5.2: Diagnostics from the maximum likelihood fit to the Phoenix summer temperature
data. Top left: comparison of empirical and model probabilities. Top right: compari-
son of empirical and model quantiles. Bottom left: The return period is the expected
number of years required for the process to exceed the corresponding return level.
Bottom right: Model density function for 2011 maximum summer temperature in
Phoenix AZ.

likelihood estimates (with standard errors shown in brackets) are µ̂1 = 113.367 [0.250],

µ̂2 = 0.035 [0.011], σ̂ = 1.931 [0.176], and ξ̂ = −0.090 [0.078]. Figure 5.2 shows some

common diagnostics and the return level plot. The return level plot shows the expected

number of years before an exceedance of a certain level is reached. This is the same as the

reciprocal of the probability of a specified exceedance, and forms the basis for statements

such as describing an event as a“once every 50 years” event.

With the fitted model for maximum summer temperature, we can estimate the first

and second moments of various weather derivative payments in the year 2011. Estimated

moments for the three types of derivatives from Section 5.1 are shown in Tables 5.1, 5.2,
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Table 5.1: Phoenix, AZ example: Model first and second moments for the type 1 weather deriva-
tive with flat payment L = 1000 paid whenever the maximum daily temperature
M > s in the year 2011, using equation (5.2).

Threshold s 114 116 118 120 122 124

Ê(L) 759.11 391.84 144.11 41.61 9.72 1.79

Ê(L2) · 10−3 759.11 391.84 144.11 41.61 9.72 1.79

Table 5.2: Phoenix, AZ example: Model first and second moments for the type 2 weather deriva-
tive with proportional payment L = 1000 · (m − s) in the year 2011, for varying
thresholds of s. Estimates are based on I = 1, 000, 000 Monte Carlo draws used with
using equations (5.3) and (5.4).

Threshold s 114 116 118 120 122 124

Ê(L) 1,882.13 732.20 224.57 56.39 11.59 1.87

Ê(L2) · 10−3 7,336.56 2,369.34 627.82 137.98 24.45 3.26

5.3, and 5.4. As the limit t→∞, payments under the second and third types are equal.

We also use the simulated losses to provide estimates of each of the risk measures using

equations (5.5), (5.6), (5.7), and (5.8). These are shown in Figure 5.3.

Tables like these can be used to price a wide range of weather derivatives. Consider a

weather derivative with payment 1000·(M−118) for M 6 125 and 7000 for M > 125, where

M is the maximum summer temperature in Phoenix. Using equation (5.9) with λ = 0.0001,

the tables show the pure premium should be 223.89+0.0001·(618.16·103−223.892) = 280.69.

Table 5.3: Phoenix, AZ example: Model first moments for the type 3 weather derivative with
proportional payment L = 1000 · (m − s) up to limit 1000 · (t − s) in the year 2011,
for varying thresholds of s and t. Estimates are based on I = 1, 000, 000 Monte Carlo
draws used with using equations (5.3) and (5.4).

HH
HHHHt

s
114 116 118 120 122 124

119 1,766.86 616.93 109.30
121 1,855.93 705.99 198.37 30.18
123 1,877.34 727.41 219.78 51.59 6.80
125 1,881.44 731.51 223.89 55.70 10.90 1.18
∞ 1,882.13 732.20 224.57 56.39 11.59 1.87
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Table 5.4: Phoenix, AZ example: Model second moments for the type 3 weather derivative with
proportional payment L = 1000 · (m − s) up to limit 1000 · (t − s) in the year 2011,
for varying thresholds of s and t. Estimates are based on I = 1, 000, 000 Monte
Carlo draws used with using equations (5.3) and (5.4). Values shown have order 103

(multiply each entry by 103 to show the true value).

HH
HHHHt

s
114 116 118 120 122 124

119 5,894.14 1,383.33 98.21
121 6,914.34 2,050.63 412.61 26.27
123 7,243.24 2,294.71 571.86 100.69 5.84
125 7,321.98 2,357.23 618.16 130.77 19.70 0.97
∞ 7,336.56 2,369.34 627.82 137.98 24.45 3.26
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Figure 5.3: Empirical Estimates of the four risk measures for the Phoenix, AZ temperature ex-
ample. Shown are losses with a strike temperature of 114 degrees and limits of 119,
121, 123, 125 and ∞. Estimates are based on I = 1, 000, 000 simulated losses from
the fitted model.

.
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Premiums for other limits, strike values, and payment structures can be estimated from

the same general approach once a fitted model has been obtained.

5.3 Simulating Losses at Multiple Locations

From the fitted model, we can simulate a collection of max-stable processes Zi(xk), i =

1, ..., I for the same k = 1, ..., K locations as the observed data, and then transform back

to the original scale of extremes data by transforming margins using the estimated GEV

parameter φ̂. From this we can compute the payments from weather derivatives at each

location as L(mi,k; s, t).

To price a collection of K weather derivatives, with jointly dependent losses, there are

several quantities of interest. First, the total variability of loss payments is

var

(
K∑
k=1

Lk

)
=

K∑
k=1

var(Lk) +
K∑

k=k′+1

K∑
k′=1

2 · cov(Lk, Lk′). (5.10)

Now consider a portfolio of K − 1 derivatives, with the seller deciding whether or not to

write a Kth derivative. The additional derivative will increase the total portfolio variance

by

MVK = var

(
K∑
k=1

Lk

)
− var

(
K−1∑
k=1

Lk

)
. (5.11)

The covariance for any two derivatives at locations xk and xk′ is

cov(Lk, Lk′) = E(Lk · Lk′)− E(Lk)E(Lk′) (5.12)

The quantities in equations (5.10), (5.11) and (5.12) can each be estimated from a large
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collection of I simulations. The total variance of the portfolio is

v̂ar

(
K∑
k=1

Lk

)
=

1

I

I∑
i=1

K∑
k=1

L(mi,k)
2 −

(
1

I

I∑
i=1

K∑
k=1

L(mi,k)

)2
 , (5.13)

the marginal variance for adding a Kth derivative is

M̂VK = v̂ar

(
K∑
k=1

L(mi,k)

)
− v̂ar

(
K−1∑
k=1

L(mi,k)

)
, (5.14)

and the covariance between any two derivatives is

ĉov(Lk, Lk′) =

(
1

I

I∑
i=1

L(mi,k) · L(mi,k′)

)
−

(
1

I

I∑
i=1

L(mi,k)

)(
1

I

I∑
i=1

L(mi,k′)

)
(5.15)

As before, all estimates for the actuarial risk measures will be obtained from empirical

estimation on the I simulated aggregate losses.

5.3.1 Simulated Example

We simulated a max-stable process with parameters chosen to mimic annual temperature

maxima in North America. The process had unit-Fréchet margins and Whittle-Matérn

covariance with dependence parameter φ2 = (c1, c2, ν) = (1, 3, 1) for 75 years at 20 locations

randomly placed on a 10 by 10 grid. Call the vertical dimension latitude (lat) and the

horizontal longitude (lon). To make this data consistent with annual temperature maxima,

at each location we transformed to the GEV scale by specifying parameters µ(x) = 110−

lat/2, σ(x) = 1.5 + lat/5, and ξ(x) = −0.1. The basic idea was to imagine higher latitude

locations having overall lower extreme temperatures, but higher variability of extremes. We

used these transformations for each of the 20 locations to produce a max-stable process

with GEV(µ(x), σ(x), ξ(x)) margins. We fix this as the “observed” data.

Next, we analyzed these data using composite likelihood estimation. For each location
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Table 5.5: Simulated payments for weather derivatives paying 1 when T > 112. This information
shows the marginal variance for adding the 20th policy is 20.874 - 19.753 = 1.121.

Event L1 L2 ... L19

∑19
k=1 Lk L20

∑20
k=1 Lk

1 0 0 ... 0 0 0 0
2 1 0 ... 1 8 1 9
3 1 1 ... 0 4 0 4
... ... ... ... ... ... ... ...

1,000,000 0 0 ... 0 1 0 1

Mean 0.209 0.162 ... 0.123 3.028 0.069 3.097
Variance 0.165 0.136 ... 0.108 19.753 0.064 20.874

xk, we obtained a maximum likelihood estimate φ̂1(xk) = µ̂(xk), σ̂(xk), ξ̂(xk), k = 1, ..., K

using equation (2.5) and used these to transform each margin to unit-Fréchet using equation

(2.4). We fit a max-stable process with Whittle-Matérn correlation with nugget parameter

1, and obtained maximum composite likelihood estimate φ̂2MCLE = (ĉ2, ν̂). Using this

fitted model, we simulated a large number of processes and transformed them to the

temperature scale using µ̂(xk), σ̂(xk), ξ̂(xk) at each location xk.

Thus we have described a means of simulating i = 1, ..., I extreme temperature events

mi,k for locations x1, ..., xK from our fitted model. This information was used to estimate

payments for weather derivatives by computing L(mi,k; s, t). Table 5.5 shows results from

one simulation. We simulated 1,000,000 extreme temperature events at the same 20 loca-

tions, and used these to compute payments Li,k for i = 1, ..., 1, 000, 000 and k = 1, ..., K.

Shown are payments for a weather derivative paying 1 when T > 112, the aggregate pay-

ment
∑19

k=1 Lk, and the payments for a possible weather derivative L20. The marginal

variance of adding the 20th derivative was estimated as 20.874− 19.753 = 1.121, which is

clearly much larger than 0.064, the variance of the derivative ignoring dependence terms.

We also estimated the actuarial risk measures, shown in Figure 5.4.
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Figure 5.4: Empirical Estimates of the four risk measures for the simulation discussed in Section
5.3.1. The saw-tooth pattern arises because the aggregate loss distribution of L is
discrete on support 0,1,...,20, and not because of any poor quality estimation

.
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5.3.2 Simulation Study of Performance

We evaluated the performance of this method in estimating the marginal variance of adding

a 4th weather derivative to an existing portfolio composed of L1, L2, and L3. This quantity

is key to pricing a risk load for L4. We randomly placed K = 25 locations on a 10 by

10 grid, and randomly selected 4 of these to represent locations of weather derivatives.

The target quantity was MV4, the marginal variance of adding a fourth derivative. We

estimated this quantity using two methods:

1. Estimate MV4 using equation (5.14), which accounts for spatial dependence by fitting

a max-stable process and uses simulations from the model, with fitted parameter is

φ̂ = (µ̂(x1), σ̂(x1), ξ̂(x1), ..., µ̂(x4), σ̂(x4), ξ̂(x4), ĉ2, ν̂).

2. Estimate MV4 using equation (5.13), which fits a GEV to the data at location k =

4 but does not account for spatial dependence among the derivatives, with fitted

parameter is φ̂ = (µ̂4, σ̂4, ξ̂).

Call the true full parameter φ = (µ(x1), σ(x1), ξ(x1), ..., µ(xK), σ(xK), ξ(xK), c2, ν), and the

estimated parameter φ̂. Call the true marginal variance MV (φ), and an estimate M̂V (φ̂).

The true marginal variance was found by simulating I = 1, 000, 000 realizations of a max-

stable process under the true parameter φ, and using equation (5.14). Method 1 uses the

same approach, but with estimated parameter φ̂. The first measure of error we use is mean

relative error,

MRE =
1

J

J∑
j=1

(
M̂V j(φ̂)−MVj(φ)

)
MVj(φ)

(5.16)

where j = 1, ..., 500 refers to a simulation run. This choice preserves the sign of estimation

error. Results are shown in Figure 5.5. Here, we see the peril of ignoring spatial dependence

of losses in a collection of weather derivatives. The right column shows that as the range of
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Table 5.6: Mean absolute error (MAE) in estimating MV4, the marginal variance of adding a
fourth weather derivative to a portfolio. Estimates are based on 25 locations and are
computed from equation (5.17) for 50, 100, 250, and 500 years of data. For each spatial
dependence range shown, error falls as the number of years of data increases. Values
shown have order 10−3 (multiply each entry by 10−3 to show the true value).

Range c2 Y=50 Y=100 Y=250 Y=500
Short 0.5 160 121 71 51
Medium 3 233 139 108 64

Long 8 231 151 87 64

the spatial dependence increases, the underestimation bias of estimating marginal variance

MV4 increases. The left column shows the unbiased results obtained from incorporating

dependence using the method of this dissertation.

We also show the asymptotic results in Table 5.6. Here, we use a slight variant of

estimation error called mean absolute error,

MAE =
1

J

J∑
j=1

|M̂V j(φ̂)−MVj(φ)|
MVj(φ)

. (5.17)

This choice does not preserve the sign of error, but is more suited to showing asymptotic

results. Results from 150 simulations are shown in Table 5.6, using a variety of number

of years and dependence ranges. For all dependence ranges shown, the error in estimation

falls as more data is available.

5.4 Pricing a Collection of Weather Derivatives

Insurers price a new policy based on how much marginal risk is added to their entire

portfolio. Under many common forms of insurance (automobile, homeowners, etc.) losses

are independent, and the increase in total portfolio variance exactly equals the variance

of loss of the new policy (all covariances are zero). It thus does not matter in what order

policies are added to a portfolio. However, when losses are correlated the order policies
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Figure 5.5: The mean relative error in estimating the marginal variance MV4 under three spatial
dependence scenarios, with 500 simulations in each. The top row corresponds to a
short-range dependence process, the middle row is medium-range, and the third row
shows long-range spatial dependence. The left column uses the approach outlined in
this dissertation, which incorporates spatial dependence by first fitting a max-stable
process to the temperature, and thus recognizes the correlation of losses. The right
column ignores spatial dependence. Results are plotted as mean relative error from
the true marginal variance, using equation (5.16).

.
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are priced does matter. This has been recognized and discussed in actuarial journals

(Feldblum, 1990; Kreps, 1990; Philbrick, 1991; Gogol, 1992), and is best illustrated by a

toy example.

Consider two correlated policies, L1 and L2, and assume the risk load will be based

on marginal variance. Let us first view the portfolio as a whole, and determine a total

risk load. When both policies are active in a portfolio, it should be clear that the total

portfolio risk load is λ (var(L1) + var(L2) + 2 · cov(L1, L2)). The additional risk arising

from the correlated losses is 2λ · cov(L1, L2), and this would have to be reflected in the

premiums for L1 and L2 somehow. But next, consider building up the portfolio one policy

at a time:

1. First, policy L1 is priced and the risk load is λ · var(L1) (there are no other policies

yet in the portfolio, and thus no covariance terms).

2. Next, L2 is added, and the marginal risk load is λ(var(L2) + 2 · cov(L1, L2)). Notice

the entire portfolio risk load would be added to the premium for L2 because it was

priced after L1.

3. When L1 renews in the following year, it is being added to a portfolio consisting of

L2 and thus receives risk load λ(var(L1) + 2 · cov(L1, L2)). The renewal premium for

L1 is larger than the premium paid in step 1.

4. When L2 later renews, the marginal risk load is again λ · (var(L2) + 2 · cov(L1, L2)).

Thus the premium for L2 remains unchanged.

The sum of these renewal risk loads is λ (var(L1) + var(L2) + 4 · cov(L1, L2)), which

does not equal the total portfolio risk load λ (var(L1) + var(L2) + 2 · cov(L1, L2)). The

covariance has been double counted. The point here is that if one computes risk loads for

correlated policies based only on marginal variance, then the sum of individual risk loads

will not equal the required total portfolio risk load.
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The approach we take to pricing a portfolio of dependent weather derivatives follows

the work of Mango (1998). In Mango’s terminology, we use the covariance-share method,

which apportions the total covariance between policies Lj and LK and computes risk loads

as

R(LK) = λ

(
var(LK) + 2

K−1∑
j=1

aj,K · cov(LK , Lj)

)

for any 0 6 aj,K 6 1. This quantities aj,K are chosen to split the respective covariance

terms and ensure the sum of individual renewal risk loads matches the total portfolio risk

load. One reasonable choice splits the total covariance in proportion to the expected losses

of policies j and K, as

aj,K =
E(LK)

E(Lj) + E(LK)
.

Under this choice, we always have aj,K +aK,j = 1, so the risk loads will always be renewal-

additive. Relevant quantities are estimated from large numbers of event simulations, and

the risk load is

R̂(LK) = λ

(
v̂ar(LK) + 2

K−1∑
j=1

âj,K · ĉov(LK , Lj)

)
(5.18)

using equations (5.13) and (5.15), where

âj,K =
1
I

∑I
i=1 L(mi,K)

1
I

∑I
i=1 L(mi,j) + 1

I

∑I
i=1 L(mi,K)

. (5.19)

This procedure ensures that the sum of individual risk loads will equal to required total

portfolio risk load, and is demonstrated in the application in Section 6.1.
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6

Applications

In this chapter we illustrate how the ABC tripletwise method can be used to fit max-stable

processes to spatial extremes data, and how these models can then be used in actuarial or

risk management applications. In the first example, extreme summer temperatures in the

Midwest are modeled as a max-stable process with the intention of pricing a collection of

weather derivatives at a set of locations. First we use the composite likelihood approach to

build a model and estimate all quantities associated with actuarial risk, and then we use

the ABC approach to do the same. Risk estimates based on the ABC model are larger,

a direct consequence of incorporating parameter uncertainty. In the second example, we

model temperature extremes (this time October minima) and demonstrate how this fitted

model can be used as a rare-event generator, providing a large set of simulated rare events

which goes beyond the data record and serves as a starting point for catastrophe ratemaking

in insurance.



6.1 Pricing Derivatives for Midwestern Temperature

6.1.1 Composite Likelihood Approach

We illustrate the methodology on US temperature data. The data, freely available from

the National Climatic Data Center (http://cdiac.ornl.gov/ftp/ushcn_daily/),come

from 39 locations in the midwestern United States with complete summer (June 1 - August

31) temperature records from 1895 to 2009. All sites are located between longitudes 93 and

103 degrees west, and latitudes 37 to 45 degrees north, shown in Figure 6.1. We use all 39

locations to estimate the max-stable process, but we only consider weather derivatives at

4 of these locations, labeled 1-4 and drawn with triangles on the figure. Call the maximum

summer temperature at these K = 4 locations Mi,k, with payments Li,k defined as

1. Li,1 = 1000 if {Mi,1 > 107} and 0 otherwise

2. Li,2 = 300 · (Mi,2 − 105) when {105 6 M2 6 110}, 1500 when {Mi,2 > 110}, and 0

otherwise

3. Li,3 = 200 · (Mi,3 − 105) if {Mi,3 > 105} and 0 otherwise

4. Li,4 = 200 · (Mi,3 − 102) if 102 6 {Mi,4 6 112}, 2000 when {Mi,4 > 112} and 0

otherwise

These four particular choices for payments are arbitrary, and thresholds were selected

simply to target extremes in the temperature data. The application proceeds in two steps.

The first is to use data from all 39 locations to fit a max-stable process in the study region,

and the second is to then simulate temperature events from the fitted model only at

locations 1-4 to estimate the renewal-additive risk load and premium for adding a weather

derivative at location 4.

To investigate the possibility of a trend in maximum daily temperatures over time, we

fit simple linear models to maximum daily temperature versus year, but found only 4 out of
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39 locations showed statistically significant slopes at the p = 0.01 level (this lower level was

selected to reduce the false-positive rate which occurs with multiple tests). Furthermore,

all four slopes were negative. We also fit GEV models to data from each station allowing

for a time-varying location parameter as µk = µk,0 +µk,1 · t, where t is year, but found only

7 differed significantly from 0 (again at the p=0.01 level), and again, all were negative.

These 7 locations included the four identified from the simple linear regression models,

along with three additional locations. These locations were spread throughout the study

region, and showed no discernible spatial pattern or clustering. We concluded that there

was no evidence of a widespread shift in maximum temperatures over time throughout the

entire region, and dropped the time-varying GEV location parameter. However, just as a

precaution we also conducted a separate analysis of the data including these 7 negative

trends, but found it had little impact on the results.

We fit ordinary GEV models to each station, and obtained maximum likelihood estimate

φ̂ = (µ̂(xk), σ̂(xk), ξ̂(xk)) for k = 1, ..., 39. Diagnostics like those shown in Figure 5.2

gave no indication the GEV was inappropriate for any of these locations. These fitted

models were used to transform data at each location to unit-Fréchet. Next we assessed

the appropriateness of using a max-stable process for the dependence. For the Schlather

model, one method of detecting anisotropy would be to fit a model to Z(Ax), where z is

the 2 dimensional spatial coordinate and A is a 2 by 2 matrix which warps space (see 2.4).

The four parameters in A could be estimated along with the dependence parameter φ, and

one could check if Â suggested anisotropy. However, we chose the more direct method of

fitting a Smith process to the data, which automatically incorporates such a matrix Σ,

and did not see strong evidence of anisotropy. The parameter estimate of covariance Σ̂

were Σ̂11 = 2.064 [0.020] ≈ Σ̂22 = 1.897 [0.020], and Σ̂12 = −0.085 [0.009] ≈ 0, where the

number in brackets is the standard error of the estimate (when Σ11 = Σ22 and Σ12 = 0,

we have perfect isotropy). Having determined the data showed no significant evidence
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Figure 6.1: Locations of the 39 stations in the Midwest temperature example used to fit the max-
stable process to maximum summer temperature. The locations in triangles labeled
1-4 are the places where weather derivatives are priced.

of anisotropy, we then turned back to the more flexible Schlather model with Whittle-

Matérn, Cauchy, and powered exponential correlation functions, and found the Whittle-

Matérn to be the best with the lowest CLIC score. Using the Whittle-Matérn correlation

model, we obtained maximum composite likelihood estimates of the range and smooth

as ĉ2 = 4.6819 [1.2975] and ν̂ = 0.3155 [0.04625], where the number in brackets is the

standard error of the estimate.

Next, we simulated I = 1, 000, 000 max-stable processes from our fitted model at the

four locations with weather derivatives. Using the GEV estimates (µ̂(xk), σ̂(xk), ξ̂(xk)) for

k = 1, 2, 3, 4 we transformed the unit-Fréchet margins to GEV at each location. Thus,

we had simulations of maximum summer temperatures Mi,k for i = 1, ..., 1, 000, 000 at the

k = 4 locations. From these, we computed the payments Li,k under the four contracts

considered. Table 6.1 shows a few of these simulations. Figure 6.2 shows the estimated

risk measures.
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Table 6.1: Payments for weather derivatives in the Midwestern temperature example. I =
1, 000, 000 simulated extreme temperature events are simulated at locations 1-4 in
Figure 6.1. The covariance share quantities aj,K are estimated using equation (5.19).

Event L1 L2 L3

∑3
k=1 Lk L4

∑4
k=1 Lk

1 0 0 0 0 0 0
2 0 1500 0 1500 241.1445 1741.145
3 0 0 0 0 0 0
4 0 1500 543.84 2043.84 450.36 2494.20
... ... ... ... ... ... ...

1,000,000 0 0 0 0 0 0

Mean 14.804 619.938 211.762 846.504 195.932 1042.436
Variance (·10−3) 14.585 375.737 178.093 796.398 211.635 1426.356

Cov(Lk, L4)(·10−3) 21.13 87.674 100.358 209.161
âk,4 0.101 0.4192 0.4798

From equation (5.18) and the information in the table, we compute the risk load for

contract L4 as

R̂(L4) = {211.635+2 (0.4798 · 100.358 + 0.4192 · 87.674 + 0.1010 · 21.13)}·103·λ = 385, 712·λ.

This is 61.2% of the total increase of (1426.356 − 796.398) · 103 · λ = 629, 967 · λ. The

remainder would be apportioned to the risk loads of first three derivatives as they renew.

When we included the 7 time-varying location parameters, we computed a risk load of

375, 298 ·λ, a reduction of only 2.7%. This alleviates concerns that we might have wrongly

ignored trends in the GEV location parameter µ. If the inclusion of trends on the GEV

location parameters µk, k = 1, ..., 39 had resulted in a substantially larger risk estimate, it

might warrant the inclusion of trends as the more conservative choice. However, the limited

statistical evidence of trends combined with such a small reduction in the risk estimate

supports dropping them altogether.

We have described a means of pricing a collection of extreme weather derivatives based

on simulations from max-stable processes. Naturally, there will be some error between the
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Figure 6.2: Empirical Estimates of the four risk measures for the Midwest temperature data.
Measures are estimated before and after the fourth policy is added, this the increase
shown is the marginal risk added by the fourth policy.
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collection of simulated payments and actual payments. We discuss the errors introduced

from model selection, simulations, and parameter estimation.

We have taken the approach to modeling spatial extremes as max-stable processes with

Generalized Extreme Value margins, and naturally this model may not be appropriate

for some spatial extremes data. For weather derivatives with payments based on maxima

(or minima) of some weather variable, models based on block maxima (or minima) of the

data make the most sense, and certainly the GEV distribution has appealing asymptotic

properties for these data. Coles (2001) discusses diagnostics to check the validity of the

GEV for the marginal data. Max-stable processes very naturally extend the GEV to the

spatial domain, and are thus the logical choice for spatial block maxima data. While a goal

is to extend the approach presented in this dissertation to include non-stationary fields, at

present this approach can only handle stationary fields. Within the class of stationary max-

stable processes, there are some choices of models. One can model the GEV parameters

µ, σ, and ξ with spatial, temporal, or other covariates, and one can consider different

correlation functions ρ(h) for the spatial dependence of the max-stable process. In this

dissertation we did not show much detail on model selection, however the paper by Padoan

et. al. (2010) shows the use of composite likelihood information criteria to handle model

selection questions like these.

The computational cost of simulations from a max-stable process is minimal, and thus

one can simulate hundreds of thousands or millions of events with relative ease. Errors

arising from numerical approximation in estimating the moments of payments assuming

some fitted model are thus likely to be quite small, and can be made arbitrarily smaller

with greater numbers of simulated events.

The largest source of error in this approach is likely to come from parameter risk -

that is, the error in estimating the GEV and max-stable process parameters φ1 and φ2.

In the next subsection we discuss how approximate Bayesian computing can incorporate
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parameter risk. Within the composite likelihood framework, reducing parameter risk is

best handled through fitting the process to more weather data: more years of data, more

locations of data, or ideally both. A point worth stressing is that the data used to fit the

max-stable process can (and probably should) contain far more locations than the portfolio

of weather derivatives. By adding additional points of data to fit the process, one reduces

the parameter risk associated with estimating φ2, the spatial dependence parameter.

Our analysis is really a two-step procedure: the first transforms GEV margins to unit-

Fréchet by obtaining parameter estimate φ̂1 = (µ̂(x1), σ̂(x1), ξ̂(x1), ..., µ̂(xk), σ̂(xk), ξ̂(xk)),

and then in a second step we fit a max-stable process to the transformed data to obtain

dependence parameter estimates φ̂2 = (ĉ2, ν̂). We should point out that a single step

procedure is possible, and is implemented in the package SpatialExtremes, but this has

two drawbacks. The first is that the numeric optimization of the likelihood needs to

maximize a high dimension parameter. In our example on Midwestern temperature data,

the dimension would be 39 · 3 + 2 = 119 (and even larger if we kept time-varying GEV

location parameters). The dimension raises concerns that the numeric optimizer may

converge to a local maxima, not the global one. A second drawback is that single-step

maximization of a max-stable process can be a painfully slow process, requiring orders

of magnitude more time than a two-step procedure. With these drawbacks in mind, the

two-step procedure was selected.

One final comment is the potential mismatch between past and future weather extremes,

particularly in the context of climate change. One can model the location µ and scale σ

parameters of the GEV with time covariates to allow for the possibility of non-stationary

maxima in time. It is much less common to model the shape parameter ξ as anything

other than a fixed number. We have illustrated the use of time covariates for modeling

the location parameter as µ = µ1 +µ2 · t in the Phoenix airport temperature example. We

caution readers not to extrapolate models such as these too far into the future.
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6.1.2 Adaptive Approximate Bayesian Computing Approach

Here we repeat the example from the previous section using the AABC method instead of

the MCLE approach. Our aim is to incorporate parameter uncertainty into estimates of

the risk measures and risk premium.

As before, we fit ordinary GEV models to each station, and obtained maximum likeli-

hood estimate φ̂1 = (µ̂(xk), σ̂(xk), ξ̂(xk)) for k = 1, ..., 39. These fitted models were used

to transform data at each location to unit-Fréchet. We next ran the AABC procedure to

obtain an approximate posterior distribution for the range and smooth parameters. Priors

were independent, uniform(0,10).

1. Run the ABC rejection algorithm exactly as described in the section 4.1 but with

I = 100, 000 simulations to produce a first approximation φ
(1)
1 , ..., φ

(1)
J (the J = 1000

particles filtered as (φ′i : di 6 εP ), where εP is the 0.1% percentile of di)

2. Compute Ω as twice the empirical variance of φ
(1)
1 , ..., φ

(1)
J .

(a) Resample a particle φ∗ from φ
(1)
1 , ..., φ

(1)
J

(b) Mutate using kernel K(φ′ | φ∗) = N (φ∗,Ω)

(c) Simulate Z ′ | φ′, compute summary s′ and weighted distance d2(s, s′) from

equation (4.1)

(d) (Repeat 50,000 times)

3. Filter the 50,000 particles as (φ′i : di 6 εP ), where εP is the 1.0 % percentile and di

is the measure d2 applied to the ith particle. This ensures exactly 500 particles are

accepted. Call these φ
(2)
m ,m = 1, ..., 500.

4. For accepted particle φ
(2)
m compute weight

wm ∝
1∑J

j=1
1
J
· N (φ

(2)
m | φ(1)

j ,Ω)
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where N (φ
(2)
m | φ(1)

j ,Ω) is the density of a multivariate normal with mean φ
(1)
j and

variance Ω evaluated at the point φ
(2)
m .

The result of this algorithm is a weighted sample of particles φ1, ..., φ500 with weights

w1, ..., w500. These are shown in Figure 6.3. Our aim is to use these particles to simulate a

collection of I = 1, 000, 000 extreme temperature events to price the collection of weather

derivatives. To incorporate parameter uncertainty, we sampled one of the accepted φm with

sampling probability wm, and simulated a max-stable process conditional on this draw φm

at the four locations k = 1, 2, 3, 4. We used the estimated parameter φ̂1 to transform this

unit-Fréchet process back to the temperature scale, and then computed the four losses

L1, L2, L3, and L4 accordingly. This was repeated I = 1, 000, 000 times, and results are

shown in Table 6.2. Again using equation (5.18) and the information in Table 6.2, we

computed the risk load for contract L4 as

R̂(L4) = {212.842+2 (0.479 · 103.224 + 0.414 · 89.153 + 0.107 · 23.122)}·103·λ = 390, 497·λ.

Notice this is slightly larger (1.24%) than 385, 712·λ, the estimated risk load when ignoring

parameter uncertainty. In this particular case the overall increase in the risk load when

incorporating the parameter uncertainty of spatial dependence parameter φ is somewhat

small, though this does not mean it would always be small, or that such a small increase

would always result in a negligible increase in a risk-based premium. We also obtain

empirical estimates of the four risk measures, before and after the fourth policy is added.

These are shown in Figure 6.4.

As expected, empirical estimates of all four risk measures are greater when the AABC

approach is used instead of the MCLE approach. This is shown in Table 6.3. For example,

the estimated marginal increase in VaR at the 95th percentile was 828.8 when using the

AABC approach, but 824.4 when using the MCLE approach. In fact, marginal increases
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Table 6.2: Payments for weather derivatives in the Midwestern temperature example using the
AABC approach to fitting the max-stable process. I = 1, 000, 000 simulated extreme
temperature events are simulated at locations 1-4 in Figure 6.1. The covariance share
quantities aj,K are estimated using equation (5.19).

Event L1 L2 L3

∑3
k=1 Lk L4

∑4
k=1 Lk

1 0 181.87 0 181.87 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 1434.04 781.45 2215.49 2804.67
... ... ... ... ... ... ...

1,000,000 0 0 0 0 0 0

Mean 15.06 625.984 209.213 850.257 196.721 1046.978
Variance (·10−3) 14.833 376.614 176.989 798.956 212.842 1442.798

Cov(Lk, L4)(·10−3) 23.122 89.153 103.224 215.5
âk,4 0.107 0.414 0.479
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Figure 6.3: Left Panel: AABC posterior shown on the space of correlation functions. The solid
line is the pointwise posterior mean (equation (4.2)) and the dashed lines form an em-
pirical estimate of a pointwise 95% credible interval. Right Panel: The 500 accepted
particles from the AABC posterior shown on the parameter space ν × c2.
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Figure 6.4: Empirical estimates of the four risk measures for the Midwest temperature data, using
the AABC approach to fit the max-stable process. Measures are estimated before and
after the fourth policy is added, this the increase shown is the marginal risk added
by the fourth policy.
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Table 6.3: Estimated marginal increases in the four risk measures at the 90th and 95th percentiles,
using both the AABC and MCLE approach. In all cases, the AABC approach esti-
mates a slightly higher marginal increase in risk load, a reflection of the incorporated
parameter uncertainty.

90th percentile 95th percentile
Risk Measure AABC MCLE AABC MCLE

VaR 518.6 516.7 828.8 824.4
ES 49.9 48.6 28.1 27.34

CTE 1017.1 1002.7 1390.4 1371.3
CVaR 498.5 485.9 561.7 546.9

for all four risk measures were higher when the AABC method was used instead of the

MCLE. This is a direct consequence of incorporating parameter into predictions.

6.2 Frost Risk for the Texas Cotton Industry

We further illustrate the methodology of the approximate Bayesian computing tripletwise

extremal coefficient approach on US temperature data in northern Texas, with the aim of

modeling the acreage of cotton at risk of an October freeze. Data on crop losses taken

from the United States Department of Agriculture Risk Management Agency shows that

between 1989 and 2008, Texas cotton losses caused by freezing totaled $108,478,787. Of

these losses, fully 67.8% ($73,642,461) occurred in the month of October.

The data are daily minimum temperature data taken from 30 gauged sites centered

around northern Texas in the United States, freely obtained from the Global Historical

Climatology Network. All sites are between 104 and 98 degrees west longitude and 31 to

37 degrees north latitude. We required stations have at least 90% of daily October values

for at least 90% of the years between 1935 and 2009. This region is shown in Figure 6.5.

Also shown are the 58 counties which jointly comprise the four Texas agricultural districts

responsible for 82.3% of all Texas upland cotton acreage (in 2009). For each year and

location, we took the minimum daily temperature in the month of October. The aim of
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Figure 6.5: Locations of the 30 gauged sites and 58 counties in the primary cotton growing region
of Texas.

the analysis was to estimate the spatial dependence of the process through ρ(), and use

this information to estimate the number of acres of cotton at risk of an early freeze through

simulations.

First we transformed data at each location to unit-Fréchet by fitting the marginal uni-

variate data to the Generalized Extreme Value distribution and obtained maximum likeli-

hood estimates of the location-specific Generalized Extreme Value parameters µ(x), σ(x), ξ(x)

for x1, ..., x30 ∈ X. These estimates are shown in Figure 6.6. The location parameter and

scale parameter were both influenced heavily by spatial location, whereas the shape param-

eter showed no discernible relationship to spatial placement. We viewed this transformed

data as a realization from a max-stable process with unit-Fréchet margins, and proceeded

with the ABC approach to fitting max-stable processes.

Next we estimated the tripletwise extremal coefficients for the 4060 unique triplets

using equation (2.16). We clustered these into K = 100 groups using Ward’s method.

Our summary statistic for the data was the average within K groups, s = (θ̄1, ..., θ̄100)

for K = 100 groups. We considered the Powered Exponential correlation function, with

uniform priors for the range c2 as U[0, 10] and for the smooth ν as U[0, 2] (since this is the
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Heavy lines are US state borders.
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full permissible range). For this model, this prior allows for a full range of spatial processes

on the scale of the observed data in X. We drew 1,000,000 draws from the prior, and ran

the approximate Bayesian computing algorithm.

The threshold ε was set as the 0.02% percentile of di. This ensured exactly 200 particles

were accepted for the approximate posterior. The pointwise mean of these 200 accepted

functions ρ(h;φ′) was taken as the estimate of the correlation function. Approximate

pointwise 95% credible intervals were estimated as the pointwise 2.5% and 97.5% quantiles,

taken at each h. This is shown in Figure 6.8.

The primary aim of this application was to estimate the number of acres of cotton at

risk of an October freeze. To extrapolate the max-stable process to the 58 ungauged county

centroids, we obtained the county centroids from the US Census Bureau, and extrapolated

location-specific Generalized Extreme Value parameters for each of these by using the

standard spatial Kriging in the R package fields. We found estimates of the location µ(x)

scale σ(x) parameters varied with location, whereas the shape parameter ξ(x) showed no

discernible relationship to spatial location (Figure 6.6). Thus, for an ungauged location x′

we used Kriged values of µ(x′) and σ(x′), but took ξ(x′) = 1
30

∑30
i=1 ξ̂(xi), the average of

the 30 estimates ξ̂(x) from the gauged locations. Kriged values for the location and scale

are shown in Figure 6.7.

We generated simulations from the fitted model not with the intent of matching them

to observed data, but rather to calculate a distribution of cotton losses in hypothetical

future years under the same climate. We sampled φ (with replacement) from the approxi-

mate posterior and simulated a max-stable process with unit-Fréchet margins and Powered

Exponential correlation at the 58 ungauged county centroids. We used the Kriged location-

specific Generalized Extreme Value parameters to transform this back to a temperature

scale at each of the 58 county centroids. If the minimum October temperature of the

county centroid fell below the chosen threshold, we assumed all acres within the county
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were exposed to the temperature event. Figure 6.9 shows the log-density of exposed coun-

ties for 10,000 simulations at various temperature thresholds. This method of simulation

based on the approximate posterior very naturally incorporates parameter uncertainty into

the quantity of interest.

Of particular interest to the insurance and agricultural communities are the number

of simulations resulting in intermediate exposure, say between 0.5 and 3.5 million acres

(contrasted with the all-or-nothing scenarios of 0 or the full 4.1 million acres exposed).

This provides evidence that these counties are not completely dependent with respect to

an October freeze, and lends additional support to the idea that it may be possible to offer

financial or insurance products to protect against crop losses caused by this freeze peril.

The method shown here allows for realistic estimation of a distribution of insurance losses,

going beyond the empirical distribution calculated from past data. This information could

be useful to an actuary interested in calculating the expected payout associated with an

insurance policy.
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7

Discussion

In this dissertation we have demonstrated an implementation of the approximate Bayesian

computing algorithm which can be used for fitting max-stable processes to spatial extremes

data. We have shown this approach can result in a lower mean square error than the

competing composite likelihood approach for certain classes of processes. We have shown

how the ABC approach can consider the spatial dependence through triplets and higher

order k-tuples, a methodological improvement over all other inferential methods for max-

stable processes. We have outlined the computational costs and challenges associated with

the ABC approach, and suggested several strategies for reducing the computational cost.

Finally, we have demonstrated how such fitted models can be used to estimate risk of

weather extremes and price weather derivatives to serve as insurance against such risks,

all in such a way that parameter uncertainty is incorporated into these estimates. These

are the advantages of the ABC approach.

Without the joint likelihood function, it is difficult to obtain theoretical results for

the ABC method outlined in this dissertation. Identifying optimal choices for tuning

parameters is, at present, impossible. This is true not only for this dissertation but all

ABC methods which rely on insufficient statistics and finite computing power. Our aim was

to demonstrate that particular choices of tuning parameters were acceptable through wide

simulation studies. The simulations in this dissertation in no way exhaust the full range of



ABC implementations possible. There are open questions as to how quartets, quintets, or

higher order k-tuples may be incorporated into an improved summary statistic, and also

there are open questions as to how more efficient ABC samplers could allow the threshold

ε to be reduced and thus improve the ABC posterior approximation. We are continuing

to work on these questions, but the implementation in this dissertation should serve as a

solid foundation on which improved ABC implementations can be built.

One area which we have not discussed is model selection. When fitting max-stable

processes, there are choices of both the structure of the max-stable model (Schlather vs.

alternatives) and of the spatial correlation function within the model. Ideally, we would

like a method of deciding amongst those models. Varin and Vidoni (2005) introduced

the composite likelihood information criteria (CLIC), which works well with a composite

likelihood framework, but this does not have a logical Bayesian interpretation. The typical

approach used in approximate Bayesian computing has been to obtain approximate Bayes

factors, which is the more logical choice within the Bayesian context. Both Pritchard et.

al. (1999) and Blum (2010) followed this approach. However, recent literature has cast

a shadow over the quality of approximating Bayes factors using ABC methods (Robert

et. al., 2011; Sisson and Fan, 2010). Robert et. al. (2011) in particular found that even

with sufficient statistics for two models under consideration, the Bayes factor obtained from

ABC cannot always be trusted. In the more realistic setting with in-sufficient statistics and

thus wider loss of information, there is even less reason to trust an ABC Bayes factor. We

are left without a clear ABC model selection procedure at this time, and in the applications

above, we used the standard CLIC as a first step to determine which model might be best,

and then proceeded with ABC.

A natural question to ask at this point is: do the results in this dissertation suggest any

improvements which could be made to the composite likelihood approach? While we have

treated the MCLE approach as a fixed benchmark, there are several avenues for improve-
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ment. It may be, for example, that the ABC approach outperformed MCLE for short-range

processes in part because it is better at down-weighting the influence of distant groupings

of points than the composite likelihood approach. If the distance between locations is much

greater than the range of correlation ρ(h;φ), then there is very little information about the

parameter φ to be found in such data. For a short-range process, most pairs (or triplets)

which can be formed by D locations would fall into this category. The clustering step of

the ABC algorithm may help minimize the influence of such non-informative groupings. If

this is true, then an obvious improvement to the composite likelihood approach would be

to transition to a weighted composite likelihood, or perhaps a subset of the full pairwise

likelihood in which not all pairs are considered (equivalent to a weighted composite like-

lihood with 0-1 weights). How such weights or subsets could be chosen is an interesting

but unanswered question. There is a danger of circular reasoning (the range of dependence

would be used to determine weights or subsets, but the dependence is the target of the in-

ferential method), but perhaps empirical or non-parametric measures of dependence could

first be used to guide the formation of a composite likelihood.

However, the same can then be said of the ABC approach. There are certainly other

ways of clustering of locations, or assigning weights to clusters. Potential improvements

to the MCLE approach suggest similar improvements to the ABC approach, and vice

versa. It is our hope that both methods will advance, and new ones will be identified. In

the meantime, the ABC approach is the only inferential method which can handle higher

order k-tuples of locations for k > 3. As for computational cost, over time this tends to fall

partly as a result of faster computers but also partly as a result of improved algorithms.

Since the full dataset Z is by definition a sufficient statistic for φ, if computational cost

weren’t an issue then one could always recover the exact posterior π(φ | d(Z,Z ′) 6 ε) for an

arbitrarily small ε → 0. As computational cost falls (and it surely will), the performance

of the ABC approach will correspondingly rise.
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