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a b s t r a c t

A new class of robust estimators for VAR models is introduced. These estimators are an
extension to the multivariate case of the MM-estimators based on a bounded innovation
propagation ARmodel. They have a filtering mechanism that avoids the propagation of the
effect of one outlier to the residuals of the subsequent periods. Besides, they are consistent
and have the same asymptotic normal distribution as regular MM-estimators for VAR
models. A Monte Carlo study shows that these estimators compare favorable with respect
to other robust ones.
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1. Introduction

Two main approaches have been proposed to handle outliers when estimating a vector ARMA (VARMA) model. One
approach is to use diagnostics tools to detect different types of outliers (like additive, innovation, etc.) and then estimating
the ARMA coefficients and the size of the outliers bymaximum likelihood.We canmention thework of Galeano et al. (2006),
who use projection pursuit methods to develop a method for detecting outliers in vector ARMAmodels. However, this type
of procedure may fail when there are multiple outliers that mask each other.

A second approach is to use robust estimators. The advantage of robust estimators is that they are notmuch influenced by
outliers even in the presence ofmasking.We can cite thework of García Ben et al. (1999)which generalize to VARMAmodels
the RA-estimators for univariate ARMAmodels proposed by Bustos andYohai (1986).We can also cite García Ben et al. (2001)
who propose estimators based on a τ -scale for VARmodels, and Croux and Joossens (2008) who define estimators based on
a multivariate version of the least trimmed squares (LTS) criterion.

Most estimators for VAR models are based on residuals, and in the case of a regular VAR(p) model, the effect of one
additive outlier at time t may affect not only the residual corresponding to period t , but also the residuals of p subsequent
periods. This mechanism of propagation of the outlier effect is described for the case of univariate ARMAmodels in Chapter
8 of Maronna et al. (2006).

Two related approaches have been proposed to overcome this problem in the case of the univariate ARMA models. The
first approach is to use a robust filter to compute the residuals and the second is to embed the class of ARMA models in a
larger class that contains models where the propagation of the effect of the outliers is considerably reduced. For univariate
ARMA models, robust estimators based on a robust filter have been proposed among others by Martin et al. (1983) and by
Bianco et al. (1996). The second approach was introduced by Muler et al. (2009) for univariate ARMAmodels. A similar idea
was used by Muler and Yohai (2008) for univariate GARCH models.

Boudt and Croux (2010) extended the results of Muler and Yohai (2008) to vector GARCH models. Croux et al. (2010)
proposed a robust method for estimating the parameters of multivariate exponential smoothing models based on data
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cleaning. However, there is no proposal for VARMA models aimed at reducing the propagation of the effect of outliers. In
this paper we extend the procedure proposed by Muler et al. (2009) to VAR models. An extensive Monte Carlo study shows
that this procedure compares favorably with other robust procedures.

The paper is organized as follows. In Section 2we introduce the bounded influence propagation VARmodels. In Section 3
we define the proposed estimators based on thesemodels. In Section 4we study the asymptotic distribution of the proposed
estimators. In Section 5 we discuss some issues related to the computation of the proposed estimators. In Section 6 we
present the results of the Monte Carlo study, where we compare several estimators with the proposed robust estimators. In
Section 7 we discuss the performance of the different estimators in an example with real data. In Section 8 we make some
concluding remarks. The Appendix contains a proof.

2. Bounded innovation propagation models

Let yt = (y1t , . . . , ymt), t = 1, . . . , T be observations of a stationary order p vector autoregressive (VAR(p)) model. Then,
we may writeΦ(B)(yt − µ) = ut , whereΦ(z) is an operator given by

Φ(z) = Im −

p
r=1

φrzr

and φr , 1 ≤ r ≤ p are m × m matrices. We assume that ut is a multivariate white noise process of dimension m with
probability distribution density g(u′6−1u) where Σ is a m × m positive definite matrix. In order that the process yt be
stationary, the roots of det(Φ(z)) should lie outside the unit circle. Observe that when the first moment of ut exists we have
that E(yt) = µ.

Let us define

Λ(B) = Φ−1(B) = Im +

∞
r=1

λrBr , (1)

where λr arem × mmatrices. Then we have the following infinity order vector moving average (VMA(∞)) representation
of the VAR process

yt = µ+ ut +

∞
r=1

λrut−r .

To control the propagation of the effect of one outlier on the subsequent residuals, wewill use a class of models similar to
the one proposed in Muler et al. (2009) for the univariate case. So, we define the family of bounded innovation propagation
VAR (BIP–VAR) models by processes yt satisfying

yt = µ+ ut +

∞
r=1

w


M(ut−r ,Σ)

k


λrut−r ,

where ut is as in the VAR model, M(u,Σ) is the Mahalanobis distance M(u,Σ) = (u′6−1u)1/2, the λr ’s are defined as in
(1), k is a positive parameter and w : (0,∞) → (0,∞) is a non-increasing continuous weight function which penalizes
large ut ’s. In fact we will assume that there exists K > 0 such that for all x > 0, w(x) ≤ K/x. We will also assume that there
exists k0 such that

w(x) = 1 if 0 ≤ x ≤ k0, (2)

that is, the functionw gives constantweight to innovations that are not contaminated by outliers. An example of aw function
is given in Section 6. The parameter k controls the degree of influence of large innovations over the process yt . In this model
the lag effect of a large innovation in period t has a bounded effect on yt+j for any j ≥ 0 and this effect will almost disappear
in a few periods. When k increases, the influence of a large value of ut−i on yt will increase too. Note that when k → ∞ we
have thatw (M(ut−r ,Σ)/k) → 1 and therefore this model approaches the regular VAR(p)model.

It is immediate to show that the proposed model can also be written as

yt = µ+ ut − w


M(ut ,Σ)

k


ut + Φ−1(B)


w


M(ut ,Σ)

k


ut


and so

Φ(B)(yt − µ) = Φ(B)

ut − w


M(ut ,Σ)

k


ut


+ w


M(ut ,Σ)

k


ut .

Therefore,

yt −

p
r=1

φryt−r = µ−

p
r=1

φrµ+ ut −

p
r=1

φr


ut−r − w


M(ut−r ,Σ)

k


ut−r


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and then

yt = µ−

p
r=1

φrµ+

p
r=1

φr


yt−r − ut−r + w


M(ut−r ,Σ)

k


ut−r


+ ut . (3)

Hence we can write the innovations residuals of the BIP–VAR(p) model as

ut = yt − µ+

p
r=1

φrµ−

p
r=1

φr


yt−r − ut−r + w


M(ut−r ,Σ)

k


ut−r


. (4)

3. Bounded MM-estimators for VAR models

Huber (1981) defined the class of scale M-estimators. Given an univariate sample v = (v1, . . . , vn), an M-estimator of
scale S(v) is defined by the value s satisfying

1
n

n
i=1

ρ
vi
s


= κ, (5)

where κ is generally chosen so that κ = EH0 (ρ(v)), where H0 is the nominal distribution of the vi’s. This choice implies that
s(v1, . . . , vn) converges to 1 when v1, . . . , vn is a stationary and ergodic stochastic process with marginal distribution H0.
It will be assumed that the function ρ satisfies the following properties:

A The function ρ satisfies: (i) ρ is even, (ii) 0 ≤ v ≤ b∗ implies ρ(v) ≤ ρ(v∗), (iii) supv ρ(v) = 1 and (iv) ρ is twice
differentiable.

We can define two breakdown points: one is defined as the minimum fraction of inliers that takes this scale estimator
to 0 and the other as the minimum fraction of outliers required to take theM-scale to infinity. Huber (1981) proves that the
breakdown point to infinity of a scale M-estimator is ϵ∗

∞
= κ and the breakdown point to zero is ϵ∗

0 = 1 − κ . Then, the
breakdown point of this scale estimator is given by

ϵ∗
= min (κ, 1 − κ) . (6)

Therefore, choosing ρ such that κ = 0.5 we obtain ϵ∗
= 0.5, which is the highest breakdown point for an equivariant scale

estimator (see Huber (1981)).
Suppose that (y1,x1), . . . , (yn, xn), is a random sample satisfying the linear regression model yi = θ ′xi + εi, where yi ∈ R

is the response, xi ∈ Rm are the regressor vectors and θ ∈ Rm the vector of regression coefficients. Rousseeuw and Yohai
(1984) introduced the class of S-estimators which are defined asθ = argmin s(y1 − θ ′x1, . . . , yn − θ ′xn),
where s is anM-scale. Rousseeuw and Yohai (1984) proved that the breakdown point of regression S-estimators is also given
by (6). However, Hössjer (1992) showed that regression S-estimators cannot combine simultaneously a high breakdown
point with a high efficiency under Gaussian errors. Yohai (1987) introduced the class of MM-estimators which have
simultaneously these two properties. The MM-estimators are computed in two steps. In a first step an S-estimator θ1
with breakdown point 0.5 but with possibly low Gaussian efficiency is computed. In the second stage the MM-estimator
is obtained as an M-estimator that uses as scale s(y1 −θ ′

1x1, . . . , yn −θ ′

1xn). Yohai and Zamar (1988) introduced another
class of estimators that combine high breakdown point and high normal efficiency properties: the class of τ -estimators.

S-, τ -and MM-regression estimators were extended to multivariate regression models. Bilodeau and Duchesne (2000)
and Van Aelst and Willems (2005), extended S-estimators, García Ben et al. (2006) the τ -estimators and Kudraszow and
Maronna (2010) the MM-estimators. These three classes of estimators for multivariate regression can be adapted to fit
a VAR(p) model to a given a vector series yt . For this purpose is enough to take as regressors all the components of
yt−1, . . . , yt−p. However these estimators do not include any mechanism to avoid the propagation of the effect of outliers
when computing residuals.

The MM-estimators for VAR models are derived from the MM-estimators for multivariate regression. Let yt =

(y1t , . . . , ymt), t = 1, . . . , T be a set of observations which follow a VAR(p)model. Put 8 = (φ1, . . . , φp), and β = (µ,8).
Let ρ1 and ρ2 be two functions satisfying propertyA and ρ2 ≤ ρ1. For a given β , let ut(β), t = p+1, . . . , T be the innovation
residuals of the VAR(p)model defined by

ut(β) = yt − µ−

p
r=1

φr (yt−r − µ) . (7)

We will assume that

E(ρ1(z1/2)) = 0.5, (8)

where z has a chi-squareddistributionwithmdegrees of freedom. Then theMM-estimators for theVAR(p)model are defined
by the following two steps:
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Step 1. S-estimators
βS

T ,
ΣS

T


of (β,Σ) are computed byβS

T ,
ΣS

T


= argmin

β,Σ
det(Σ)

subject to

s(M(up+1(β),Σ), . . . ,M(uT (β),Σ)) = 1, (9)

where s is the M-scale estimator defined as in (5) with ρ = ρ1 and κ = 0.5.
Step 2. The MM-estimator of the regular VAR(p)model is defined by

βMM
T = argmin

β

T
t=p+1

ρ2

M(ut(β), ΣS

T )

. (10)

Since we are using κ = 0.5, Eqs. (5), (8) and (9) guarantee the Fisher consistency of ΣS
T when the innovations are

multivariate normal. Note that ut depends not only on yt but also on yt−1, . . . , yt−p. Therefore when yt is an outlier, its
effect is propagated to p+ 1 innovation residuals: ut(β),ut+1(β), . . . ,ut+p(β). Since the S, τ -and MM-estimators depends
on the ut(β)

′s, its degree of robustness is rather low, specially when p is large.
To overcome this problemwe introduce a class ofMM-estimators based on residuals computed using the BIP–VARmodel.

For a given β = (µ,8), a positive definite matrix Σ and k > 0, according to (4), the innovation residuals for the BIP–VAR
model are defined by

ut(β,Σ, k) = yt − µ+

p
r=1

φrµ−

p
r=1

φr (yt−r −ut−r(β,Σ, k))

−

p
r=1

φr


w


M(ut−r(β,Σ, k),Σ)

k

ut−r(β,Σ, k)

. (11)

Then, given ρ1, ρ2 and κ , we define the bounded MM-(BMM-) estimator by the following three steps:

Step 1. We compute an S-estimator
βS

T ,
ΣS

T


of (β,Σ) based on the residuals given in (11) byβS

T ,
ΣS

T ,
kST  = arg min

β,Σ,k
det(Σ) (12)

subject to

s(M(up+1(β,Σ, k),Σ), . . . ,M(uT (β,Σ, k),Σ)) = 1, (13)

where s is the M-scale estimator defined as in (5) with ρ = ρ1 and κ = 0.5.
Step 2. Define

β1,T = argmin
β

T
t=p+1

ρ2

M(ut(β), ΣS

T )


(14)

and

β2,T = argmin
β

T
t=p+1

ρ2

M(ut(β, ΣS

T , 1), ΣS
T )

, (15)

where ut are the residuals corresponding to a regular VARmodel which are calculated as in (7) andut are the filtered
residuals corresponding to a BIP–VAR model which are calculated as in (11).

Step 3. Put

a1,T =

T
t=p+1

ρ2

M(up+1(β1,T ), ΣS

T )

, a2,T =

T
t=p+1

ρ2

M(ut(β2,T , ΣS

T , 1), ΣS
T )

.

Then, the BMM-estimatorβBMM
T is defined by

βBMM
T =

β1,T if a1,T ≤ a2,Tβ2,T if a1,T > a2,T .
(16)

Remark 1. Note that in (15) we compute the residuals using a BIP–VAR model with k = 1 instead of the estimated valuekST . The reason for this choice is that using k = 1, it is possible to show thatβBMM
T has the same asymptotic distribution than
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βMM
T . Besides, we do not know the asymptotic distribution ofβBMM

T when we replace k bykST . We choose w so that when
k = 1 the corresponding estimator has a good behavior. For example, in our Monte Carlo study, we use the function given
in (27). For this function the probability of bounding the innovation under a correct VAR model when k = 1 is 0.025.

Remark 2. Note that when the sample follows a VAR model without outliers, the definition ofβ1,T is based on the correct
model. Then for large T we should have that a1,T < a2,T and thenβBMM

T = β1,T . Instead, if the sample contains large additive
outliers it is likely thatβBMM

T = β2,T due to the fact that, as explained in Section 2, the propagation of the effect of outliers
in the BIP–VAR model is less important than in the VAR model.

In the next proposition we give an equivalent way to compute
βS

T ,
ΣS

T ,
kST  solving an unconstrained optimization

problem.

Proposition 1. Let (ΣS
T , β

S
T ) be defined by

(Σ
S
T , β

S
T ) = argmin

Σ,β
D(Σ, β, 1), (17)

where

D(Σ, β, k) = s2m(M(up+1(β,Σ, k),Σ), . . . ,M(uT (β,Σ, k),Σ)) det(Σ).

Then we haveβS
T = β

S
T ,ΣS

T = s2

M(up+1(β

S
T ,Σ

S
T , 1),Σ

S
T ), . . . ,M(uT (β

S
T ,Σ

S
T , 1),Σ

S
T )

Σ

S
T (18)

and

kST =
1

s(M(up+1(β
S
T ,Σ

S
T , 1),Σ

S
T ), . . . ,M(uT (β

S
T ,Σ

S
T , 1),Σ

S
T ))
. (19)

This proposition is proved in the Appendix.
Note that in the case thatβBMM

T = β2,T , the one step forecast for yt according to (3) can be defined as

yt = µ−

p
r=1

φrµ+

p
r=1

φr

yt−i −ut−r(β2,T , ΣS

T , 1)


+

p
r=1

φrw

M(ut−r(β2,T , ΣS

T , 1), ΣS
T )
ut−r


(β2,T , ΣS

T , 1), ΣS
T


. (20)

This equation can also be written as

yt = µ+

p
r=1

φr(yct −µ),
where yct is the cleaned series defined by

yct = yt + w

M(ut(β2,T , ΣS

T , 1), ΣS
T )
ut(β2,T , ΣS

T , 1)

= yt −ut(β2,T , ΣS
T , 1)+ w


M(ut(β2,T , ΣS

T , 1), ΣS
T )
ut(β2,T , ΣS

T , 1)

= w

M(ut(β2,T , ΣS

T , 1), ΣS
T )

yt +


1 − w


M(ut(β2,T , ΣS

T , 1), ΣS
T )
yt . (21)

This shows that, yct is a weighted average of the observed value and the predicted value. Note the similarity with the
predicting equation for amultivariate exponential smoothingmodel (see for example Eq. (1) in Croux et al. (2010)). Observe
that ifM(ut(β2,T , ΣS

T , 1), ΣS
T ) ≤ k0, then according to (2),w


M(ut(β2,T , ΣS

T , 1), ΣS
T )


= 1 and so yct = yt .
The functions ρ1 and ρ2 can be chosen for example in Tukey’s bisquare family. This family of functions is defined as

ρc(x) =


3x2

c2


1 −

x2

c2
+

x4

3c4


if |x| ≤ c

1 if |x| > c
(22)

where c > 0 is any positive number. The choices of the constant c for determining ρ1 and ρ2 are discussed in Section 6.

Remark 3. The Mahalanobis distances M(ut(βBMM
T , ΣS

T , 1), ΣS
T ) can be used to detect outlying observations. Let χ2

m be
the chi-squared distribution function with m degrees of freedom. Since when the ut ’s are normal, the distribution
of M2(ut(βBMM

T , ΣS
T , 1), ΣS

T ) is approximated by χ2
m, outliers can be identified as those observations such that

M2(ut(βBMM
T , ΣS

T , 1), ΣS
T ) ≥ (χ2

m)
−1(1 − α)where α is small, for example α = 0.025.
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4. Asymptotics

Let us consider observations y1, y2, . . . , yT following a stationaryVAR(p)processwith parameter vectorβ and covariance
matrix Σ . In this section we give the asymptotic distribution of the MM-and BMM-estimators of β . We use heuristic
arguments to support our results rather than rigorous proofs.

Assume thatρ1 andρ2 are twice continuously differentiable. LetβMM
T be theMM-estimator defined in (10). Differentiating

the right hand side of (10) it can be shown thatβMM
T should satisfy the following equation

T
t=p+1

ψ2

M

u′

t(β),
Σ−1

S


M

u′

t(β),
Σ−1

S

 dtu′

t(
βMM

T ) = 0,

where ψ2 = ρ ′

2 and dt = (y′

t−1, . . . , y
′
t−p, 11×m)

′. Let s0 be defined by

E

ρ1


M(ut ,Σ)

s0


= κ.

According to (8), s0 = 1 when the ut ’s are multivariate normal. Then, proceeding as in García Ben et al. (2001), it is possible
to show that ΣS

T converges to s20Σ in probability and that T 1/2(βMM
T − β)→D N(0, V ), where →

D denotes convergence in
distribution and

V =
s20m

2E(ψ2
2 (v/s0))

E(v2)

E

ψ ′

2(v/s0)+ (m − 1)W (v/s0)
2 C, (23)

where ψ2 = ρ ′

2,W (v) = ψ2(v)/v, v = M(ut ,Σ) and C is the asymptotic covariance matrix of the maximum likelihood
(ML) estimator. This matrix C is given by

C =
E(v2)
m

G−1
⊗Σ 0mp×m

0m×mp


Im −

p
r=1

φr

2

 ,
where G is themp × mpmatrix defined as G = E(z′

tzt)where zt = (y′

t−1 − µ′, . . . , y′
t−p − µ′). Then, the relative efficiency

of the MM-estimator with respect to the maximum likelihood estimator is given by

EFF =
E(v2)


E

ψ ′

2(v/s0)+ (m − 1)W (v/s0)
2

s20m2E(ψ2
2 (v/s0))

. (24)

According to Remark 2, we can expect that there exists T0 such that βBMM
T = β1,T for T ≥ T0. Therefore the

asymptotic distribution of βBMM
T should be the same as that of β1,T A rigorous proof of this fact for the univariate case

can be found in Muler et al. (2009). Moreover, the only difference between β1,T and βMM
T is that the first estimator uses

as covariance matrix ΣS
T and the second ΣS

T . Since both ΣS
T and ΣS

T converge to s20Σ in probability, it can be proved thatβ1,T andβMM
T have the same asymptotic distribution. ThenβBMM

T has the same asymptotic distribution thatβMM
T , that is,

T 1/2(βBMM
T − β)→D N(0, V ), where V is as in (23).

5. Computational aspects

We now define an algorithm to obtain an initial value to compute Step 1 of the MM- and BMM-estimators. Let
yt = (y1t , . . . , ymt), t = 1, . . . , T , be observations following a VAR(p) series with parameters µ = (µ1, . . . , µm) and
φ = (φ1, . . . , φp). We can write the VAR(p) process as a multivariate linear model as follows

yt =

p
r=1

φrxrt + µ+ ut , t = p + 1, . . . , T , (25)

where xrt = yt−r −µ.We estimateµ by the coordinate-wisemedianµ, thenwe define a first estimator ofΦ =

φ1, . . . , φp


and Σ using the following subsampling procedure. Consider N random subsamples of size h = mp + m of the dataset
(y∗

t , x
∗

1t , . . . , x
∗
pt), t = p + 1, . . . , T where y∗

t = yt −µ and x∗

it = yt−i −µ, 1 ≤ i ≤ p. For each of these subsamples we
estimate Φ = (φ1, . . . , φp) by ordinary least squares and compute the sample covariance matrix of the residuals. In this
way we obtain N candidates (81, Σ1), . . . , (8N , ΣN). We now define another set of N candidates (8∗

1,Σ
∗

1 ), . . . , (8
∗

N ,Σ
∗

N)

using a concentration step similar to the one proposed by Rousseeuw and Van Driessen (1999). Let Φj = (φj
1, . . . ,

φj
p) and

compute ut(µ,8j), p + 1 ≤ t ≤ T . Consider the subsample whose elements are the [(T − p) /2] observations that have
smallestMahalanobis distancesM(ut(µ,8j), Σj).We defineΦ∗

j as the ordinary least squares estimator of these [(T − p) /2]
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observations and Σ∗

j as an standardizing scalar times the sample covariance matrix of the corresponding [(T − p) /2]
residuals ut(µ,8∗

j ). The standardizing scalar is chosen so that this estimator is consistent under a multivariate normal
model. It is easy to show that the scalar is equal to (χ2

m)
−1(0.5).

Based on Proposition 1, an initial estimator for the S-estimator of the step 1 of the MM-estimator is defined by
(µ,8∗

j∗ ,Σ
∗

j∗), where

j∗ = arg min
1≤j≤N

s2m

M

up+1(µ,8

∗

j ),Σ
∗

j


, . . . ,up+1(µ,8

∗

j )

det


Σ∗

j


.

Then, since the VAR model can be written as a multivariate regression model and the S-estimators form a subclass of the
τ -estimators, we can use the recursive algorithm proposed in García Ben et al. (2006) for τ -estimators of multivariate
regression. As it is the casewithmost subsampling procedures, this initial estimatorwould not be largely affected by outliers
if some of the subsamples do not contain outliers. This occurs with high probability when 1/ (m(p + 1)) is larger than the
fraction of contamination and the number of subsamples is large enough.

For the BMM-estimator the initial estimator for the S-estimator of step 1 is (µ,8∗

j∗ ,Σ
∗

j∗), where

j∗ = arg min
1≤j≤N

s2m

M
up+1

µ,8∗

j ,Σ
∗

j , 1

,Σ∗

j


, . . . ,M

uT
µ,8∗

j ,Σ
∗

j , 1

,Σ∗

j


det(Σ∗

j ).

Using these initial values, the final estimators were computed using the function fminsearch of the MATLAB software. As
it is usual when minimizing non-convex functions, the convergence of this algorithm to the global minimum depends on
how close the initial estimator is to this minimum. In our case the Monte Carlo results show that for the cases that were
considered, the solution obtained by the algorithm was satisfactory.

6. Monte Carlo results

We have performed a Monte Carlo study to compare the BMM-estimator with the ML- MM-, RA- and LTS-estimators.
We have simulated two Gaussian stationary bivariate VAR(1) models and one Gaussian stationary bivariate VAR(2) model.
We consider two cases: no outliers, and 10% of additive outliers. For each case the outliers are all equal and of additive type.
Then if yt , 1 ≤ t ≤ T , is a series that follows the VAR model, the series with additive outliers is obtained by replacing a
given percentage of observations yt equally spaced in the time by

yt + a, (26)

where a is a fixed value in R
m
. In the case of the VAR(1) model we take samples of size T = 100 and for the VAR(2) model

T = 200. The corresponding matricesΦ for the VAR(1) models (models 1 and 2) are

Φ =


0.9 0
0 0.9


, Φ =


0.9 0

−0.4 0.5


and the VAR(2) model (model 3) corresponds to

φ1 =


0.40 0.03
0.04 0.20


, φ2 =


0.100 0.005
0.010 0.080


.

Without loss of generality we took µ = (0, 0)′ and Σ = I2, where Ip the p × p identity matrix. For the three models The
number of simulated replications for all the cases was N = 500.

The MM- and BMM-estimators are based on functions ρ1 and ρ2 in the bisquare family given in (22) with c equal to
c1 = 2.66 and c2 = 3.94 respectively. The value of c1 was chosen so that (8) holds. This condition is required if we
want the scale S to have breakdown point 0.5 and ΣS

T to be consistent for multivariate normal innovations. The constant
c2 was calculated using (24) so that the MM-estimator has an efficiency of 85% when the ut ’s have a multivariate normal
distribution. Larger values of c2 increase the efficiency but decrease the robustness of the estimators, and the opposite
occurs when this constant decreases. We found that the chosen value for c2 provides a good trade-off between robustness
and efficiency.

To compare different estimators, we introduce a measure of the predictive power of an estimator β of the parameter
β = (µ,Φ) of a VAR(p)model. Let yt be a process following this model with covariance matrixΣ . We have yt = wt + ut ,
wherewt = µ+φ1(yt−1 −µ)+· · ·+φp(yt−p −µ). Since ut is not predictable, we only consider the error for predictingwt .
Suppose that we want to use β∗

= (µ∗,8∗), where 8∗
= (φ∗

1 , . . . , φ
∗
p ) to predictwt given yt−1, . . . , yt−p. The predictor of

wt is wt(β
∗) = µ∗

+ φ∗

1 (yt−1 − µ∗)+ · · · + φ∗

p (yt−p − µ∗)

and we can measure the goodness of this predictor by

g(β∗) = det E

(wt(β

∗)− wt)(wt(β
∗)− wt)

′

.
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Table 1
Relative MFE efficiencies.

Model Estimator
RA LTS MM BMM

1 0.85 0.84 0.83 0.84
2 0.89 0.83 0.80 0.80
3 0.86 0.82 0.79 0.78

Table 2
Computing time.

p T
100 200 500

1 0.3 0.5 1.1
2 0.7 1.5 3.5
3 1.5 2.5 6.9
4 2.5 5.2 13.2
5 3.0 5.8 14.9

It is easy to show that

g(β∗) =

p
l=1

p
r=1


φ∗

l − φl

Σ (r−l) φ∗

r − φr
′

+


µ∗

− µ−

p
r=1

φ∗

r


µ∗

− µ


µ− µ−

p
r=1

φ∗

r


µ∗

− µ
′

,

where Σ (k)
= E((yt − µ)(yt−k − µ)′). Therefore g(β∗) is minimized when β∗

= β and in that case g(β) = 0. Then we
define, as measure of forecasting efficiency, the mean forecasting error (MFE) of an estimatorβ as MFE(β) = E(g(β)).

Suppose that the series contains additive outliers of the form (26). Since in all the models considered in the Monte Carlo
simulationΣ = I2, for all the studied estimatorsβ,MFE(β) depend on a only through ∥a∥. Then, without loss of generality
we take a = (b, b). We take a grid of values of b : b = 0.5i, 0 ≤ i ≤ 20.

For each of the estimatorβ studied in the Monte Carlo study, we estimate MFE(β) by
MFE(β) =

1
N

N
i=1

g
β(i) ,

whereβ(i) is the value ofβ corresponding to the i-th sample. We took asw the function defined by

w(x) =


1 if x ≤ k0

1 −
x − k0
l0 − k0

if k0 < x ≤ l0

0 if x > l0.

(27)

We choose as k20 the quantile 0.975 of the chi-square distribution with two degrees of freedom and as l20 the quantile 0.995
of this distribution.

In Table 1 we show the relative efficiencies based on MFE of the different robust estimators with respect to the ML-
estimator for the three models when there are not outliers.

We note that for model 1 all the estimators have a similar efficiency, close to 0.85. For models 2 and 3 the RA estimator
is a little more efficient than the remaining robust estimators. In Fig. 1 we plot MFE as a function of the outlier size b, when
the sample contains 10% of additive outliers. To avoid scale distortions, in the case of theML estimator, we only plot the part
of the curve corresponding to small values of b. We note that for the three models the robust methods behave much better
than the ML-estimator and that the BMM-estimator performs better than the other robust estimators.

In Table 2 we show the approximate computing time (in minutes) of the BMM-estimator when fitting a bivariate VAR(p)
model with 100, 200 and 500 observations and 1 ≤ p ≤ 5. This times were obtained using a MATLAB code in a PC computer
with an Intel Core Duo Processor E7500, 2.93 GHz.

7. An example with real data

In this example we consider twomonthly series: the one year (GS1) and the three year (GS3) Treasury constant maturity
rates in the period July 1991 to January 2009. Both series were obtained from the Economic Database of the Federal Reserve
Bank of St Louis. The same series were used by Croux and Joossens (2008) at a different period. The series were transformed
into stationary ones using first differences of logarithms. We denote by yt = (y1t , y2t)′ t = 1, . . . , 211 the vector of the two
stationary series. We fit bivariate VAR(p) models using ML-, RA-, LTS-, MM- and BMM-estimators. In each case we choose



76 N. Muler, V́.J. Yohaid / Computational Statistics and Data Analysis 65 (2013) 68–79

Fig. 1. Mean forecasting errors under outlier contamination.

Table 3
Parameter estimates for the example.

Parameter Estimator
ML RA LTS MM BMM

φ11 0.057 0.230 −0.058 −0.039 0.493
φ12 0.584 0.235 0.532 0.474 0.0002
φ21 −0.284 −0.127 −0.365 −0.372 −0.028
φ22 0.685 0.532 0.774 0.758 0.429

the order of the model using the modified Akaike information criterion proposed by Croux and Joossens (2008). For all the
estimators this criterion selected a VAR(1) model. In Table 3 we show the value of the five estimators.

In Fig. 2 we show the observed and cleaned values of y1t and y2t . The cleaned series, which were computed using (21),
coincideswith the observed ones in almost all periods. In the periodswhere both series differ, the cleaned values aremarked
with a small circle.

In Fig. 3 we compare the quantiles (up to the 0.8-quantile) of the absolute values of the residuals of the BMM-estimator
of y1t (plotted as a solid line) with those corresponding to the other four estimators. We observe that the quantiles
corresponding to the BMM-estimator are smaller. As was expected, the ML-estimator is the one with the largest quantiles.
The reasonwhywe show up to the 0.8-quantile is to avoid that the large residuals to cause a scale distortion. A similar figure
for y2t does not showmuch differences among the estimators, and for this reason it is not included. The cause that explains
why the BMM-estimator gives a better fit only for y1t may be, as Fig. 2 show, that the series y1t contains larger outliers than
those in y2t .

We have also simulated the performance of all the estimators studied in this section for the fitted model corresponding
to the BMM-estimator. The estimated covariance matrix with this estimator is

Σ =


0.0031 0.0034
0.0034 0.0040


.

We have performed 500 simulations using samples of size 100 with 10% of additive outliers of different sizes as it is done
in Section 6. In Fig. 4 we plot MFE as a function of the outlier size b. We note that for this model the BMM-estimator has a
better overall behavior than the other estimators.

8. Concluding remarks

We have proposed a class of robust estimators for VAR models, the BMM-estimators, which include a mechanism
that avoids the propagation of the effect of the outliers on the residuals. This is achieved by embedding the VAR models
in the class of BIP–VAR models and computing an MM-estimator for this class. When the observations follow a VAR
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Fig. 2. Observed and cleaned values of∆ log GS1 and∆ log GS3.

Fig. 3. Quantiles of the absolute values of the residuals of GS1.

model without outliers, the BMM-estimators have the same asymptotic distribution as regular MM-estimators. A Monte
Carlo study shows that the BMM-estimators for VAR model compare favorably in efficiency and robustness with respect
to other robust estimators. Extension of the BMM-estimators to VARMA models is also possible and a matter of future
research.
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Fig. 4. Mean forecasting errors under outlier contamination for the fitted model.

Appendix

Proof of Proposition 1. It is immediate to show that for all λ > 0

D

β, λ2Σ,

k
λ


= D(β,Σ, k), (28)

and then

D(βS
T ,
ΣS

T ,
kST ) = D(β

S
T ,Σ

S
T , 1). (29)

We also have

s

M(up+1(βS

T ,
ΣS

T ,
kST ), ΣS

T ), . . . ,M(uT (βS
T ,
ΣS

T ,
kST ), ΣS

T )


= 1. (30)

Take any (β,Σ, k) such that

s2

M(up+1(β,Σ, k),Σ), . . . ,M(uT (β,Σ, k),Σ)


= 1. (31)

Then using (12) and (28)–(31) we have

det(Σ) = D(β,Σ, k) = D(β, k2Σ, 1)

≥ D(β
S
T ,Σ

S
T , 1) = D(βS

T ,
ΣS

T ,
kST ) = det(ΣS

T ),

and this proves Proposition 1. �
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