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1. Introduction 

ABSTRACT 

Bandable covariance matrices are often used to model the dependence structure of 
variables that follow a nature order. It has been shown that the tapering covariance 
estimator attains the optimal minimax rates of convergence for estimating large bandable 
covariance matrices. The estimation risk critically depends on the choice of the tapering 
parameter. We develop a Stein's Unbiased Risk Estimation (SURE) theory for estimating the 
Frobenius risk of the tapering estimator. SURE tuning selects the minimizer of SURE curve 
as the chosen tapering parameter. An extensive Monte Carlo study shows that SURE tuning 
is often comparable to the oracle tuning and outperforms cross-validation. We further 
illustrate SURE tuning using rock sonar spectrum data. The real data analysis results are 
consistent with simulation findings. 

© 2012 Elsevier B.V. All rights reserved. 

Suppose we observe independent and identically distributed p-dimensional random variables X 1, •••• Xn with covariance 
matrix Epxp· The usual sample covariance matrix is an excellent estimator for Epxp in the conventional setting where p is 
small and fixed and the sample size n diverges to infinity. Nowadays, massive high-dimensional data are more and more 
common in scientific investigations, such as imaging, web mining, microarrays, risk management, spatial and temporal 
data, and so on. In high-dimensional settings, the sample covariance matrix performs very poorly; see Johnstone (2001) and 
references therein. To overcome the difficulty imposed by high dimensions, many regularized estimates of large covariance 
matrices have been proposed in the recent literature. These regularization methods include Cholesky-based penalization 
(Huang et al., 2006; Lam and Fan, 2007; Rothman et al., 2010), thresholding (Bickel and Levina, 2008a; El Karoui, 2008; 
Rothman et al., 2009), banding (Bickel and Levina, 2008b; Wu and Pourahmadi, 2009) and tapering (Furrer and Bengtsson, 
2007; Cai et al., 2010). In particular, the tapering estimator is shown to be minimax rate optimal for estimating the bandable 
covariance matrices that are often used to model the dependence structure of variables that follow a nature order (Cai 
et al., 2010; Cai and Zhou, 2010). Much of the published theoretical work assumes the data follow a normal distribution, 
although some have relaxed the normality assumption to a tail probability condition such as sub-Gaussian distribution 
assumption. Nevertheless, the lower bound results in the minimax estimation theory were actually established for a family 
of multivariate normal distributions (Cai et al., 2010; Cai and Zhou, 2010). In this paper, we consider the tapering estimator 
under the normal distribution assumption. 

We begin with some notation and definitions. Let IIAIIF = /Ei E1 a~ denote the Frobenius norm of A. Let IIAllq denote 
thelq operator norm of A. When q = 1, thel1 norm is maxi E1 laul; whenq = 2, thel2 norm is equal to the largest singular 
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value of A. Consider the following parameter spaces: 

:Fa = { E : mr ~)uul : Ii - ii > k} :5 Mr' for all k, andAmax(E) :5 Mo} , 

J:~ = { E : m~x L { luul : Ii - ii > k} :5 Mk-a for all k, and m~x uu :5 Mo} , 
J j I 

where a, M, Mo are positive constants. The parameter a specifies the rate of decay of the off-diagonal elements of E as they 
move away from the diagonal. A larger a parameter indicates~ _higher degree of "sparsity". Thus we can also regard a as a 
sporsityindexofthe parameter space. Let E = ¼ L~t X;Xr -xxr be the MLEof E. The taperingestimator(Cai etal., 2010) 
is defined as 

~(k) ("(k)) ( (k)-) 
~ = uu 1~;j~p = wu uu t~ij~p, 

where, for a tapering parameter k. 

[ 

1, when Ii - ii :5 k/2 

w<~> = 2 - Ii - ii when k/2 < Ii -1·1 < k 
iJ k/2 ' 

o. otherwise. 

( 1.1) 

Tapering is a generalization of banding where a-;<k> = l(li - ii ~ k)uu. We assume p ~ n and log(p) = o(n) in the sequel. 
We cite the following results (Cai et al., 2010; Cai and Zhou, 2010): 

il)fsup p-tIEII i; - Ell~ x n-<2a+t)/(2a+2), 
J; j:"a 

0 
A log(p) 

mfsupEIIE - Ell~:=:: n-2a/(ia+t) + --, 
t ~ n 

• A log(p) 
mfsupEl]E- Ell~:=:: n-a/Ca+t> +--. 
t ~ n 

(1.2) 

( 1.3) 

( 1.4) 

where On x bn if there are positive constants c1 and c2 independent of n such that c1 ::: on/ bn ::: c2• Furthermore, define 
three tapering parameters as following 

kF = nt/(2a+2), ki = nt/(2a+t) (1.5) 
k1 = min{n1/<2a+2>, (n/log(p)) 11<2a+t>}. 

Then the tapering estimator with k = kF, k = k2 and k = k1 attains the minimax bound in ( 1.2)-( 1.4), respectively. 
The minimax rate optimal choices of k shed light on the importance of choosing the right tapering parameter. However, 

there are at least two difficulties in using the minimax theory to construct the tapering parameter. First, the minimax 
tapering estimators depend on a. If a is unknown, which is often the case in reality, then the minimax optimal tapering 
"estimators" are not real estimators. Second, the minimax rate optimal tapering estimators can be conservative for 
estimating some covariance matrices. For instance, assume that the data are generated from a normal distribution with 
a MA(l) covariance where uu = l(i = J) +0.5l(li-il = 1).Although this covariance matrix is in Fa for a > o. the optimal k 
should be 2 no matter which matrix norm is used. Therefore, it is desirable to have a reliable data-driven method to choose 
the tapering parameter. Tuning is usually done by first constructing an estimate of the risk for each k and then picking the 
minimizer of the estimated risk curve. Cross-validation and Bootstrap are the popular nonparametric techniques for that 
purpose. Bickel and Levina (2008a,b) discussed the use of two-fold cross-validation for selecting the banding parameter 
of the banding estimator. They claimed that although cross-validation estimates the risk very poorly, it can still select the 
banding parameter quite well. · 

In this paper, we suggest a different tuning method by borrowing the idea in Stein's unbiased risk estimation (SURE) 
theory (Stein, 1981; Efron, 1986, 2004). Compared with cross-validation, the SURE approach is computationally less 
expensive and provides a much better estimate of the Frobenius risk. The explicit form of SURE formula is derived in 
Section 2. Here we demonstrate the effectiveness of SURE tuning in Fig. 1 where we compare the true Frobenius risk curve 
(as a function of k) and the SURE curves. We generated the data from the simulation model used in Cai et al. (2010). Two a 
values were used: a = 0. 1 corresponds to a dense covariance model and a = 0.5 corresponds to a sparse covariance model. 
Fig. 1 clearly shows three important points. First. the average of 100 SURE curves is virtually identical to the Frobenius risk 
curve, which agrees with the SURE theory as shown in Section 2. Second, the minimizer of each SURE curve is very close to 
the minimizer of the true risk curve. Third, the minimizer of each cross-validation curve is also close to the minimizer of the 
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Fig. 1. Comparing the true risk curve. the SURE curve and the CV curve under the Frobenius norm. The data are generated from the simulation model 1 in 
Section 3 with n = 250, p = 500, a = 0.1 and 0.5. In the second row we plot 10 SURE curves (dashed lines) and the average of 100 SURE curves (the solid 
line). Similar plots are shown in the third row for cross-validation. 

true risk curve, but the cross-validation estimator of the Frobenius risk is way too large. The true risk is within [100, 500] 
while the cross-validation risk is within [5000, 5500]. In practice we not only want to select a good model but also want 
to understand how well the model performs. Efron (2004) did a careful comparison between SURE and cross-validation 
and concluded that with minimal modeling SURE can significantly outperform cross-validation. Fig. 1 suggests that Efron's 
conclusion continues to hold in the covariance matrix estimation problem. 

2. Stein's unbiased risk estimation in covariance matrix estimation 

In this section. we develop a SURE theory for estimating the Frobenius risk of a weighted MLE, denoted by E<k>. which has 
the expression Et>= w~>a11 where w~> only depends on i,j, k. The tapering and banding estimators are special examples 
of the weighted MLE. Tapering weights are defined in ( 1.1 ). The banding estimator (Bickel and Levina, 2008b) uses simpler 
weights w[j> = I (Ii - ii ~ k). 

The baste idea in SURE can be traced back to the James-Stein estimator of multivariate normal mean. Efron (1986, 
2004) studied the use of SURE in estimating prediction error and he named it covariance penalty method. Shen and Ye 
(2002) applied the covariance penalty idea to perform adaptive model selection. Donoho and Johnstone ( 1995) developed 
SureShrink for adaptive wavelet thresholding. Efron et al. (2004) ·and Zou et al. (2007) applied SURE to Lasso model selection. 

2.1. SURE identity 

For an arbitrary estimator E of the covariance matrix, the Frobenius risk (IEIIE - Ell:) is equivalent to the squared l 2 

risk for estimating the vector (u11 , ••• , u 1p, •••• up1, ••.• upp)7, As the first step of SURE, we derive a covariance penalty 
identity for the matrix Frobenius risk of an arbitrary estimator of L'. 
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Lemma 1. Let j;s = n~t t be the usual sample covariance matrix. Foran arbitrary estimator of E, denoted by E = (u11 ), its 
Frobenius risk can be written as 

p p p p 

IEIIE - Ell:= IEIIE - tsn:- I:I:var(uJ) +2 L I:cov(O'ij,ujj). (2.1) 
i::::1 j::::1 i::::1 j::::1 

The second term in the right hand of (2.1) is the same for all estimators of E. Thus, if we only care of comparing the 
Frobenius risk of different estimators, the second term can be dropped and we can write 

p p 

PR(E) = IEl]E - ts 11: + 2 LL COV(O'ij, uJ) 
i=l j=l 

= Apparent error+ Optimism, (2.2) 

where PR stands for prediction risk and we have borrowed Efron's terminology 'apparent error' and 'optimism' (Efron. 2004). 
The optimism is expressed by a covariance penalty term. Since II E - j;s I]~ is an automatic unbiased estimate of the apparent 
error. it suffices to construct a good estimate of the optimism in order to estimate PR. 

For the weighted MLE. we observe that cov(ut>, u;j) = wik> n;1 var(uJ). The next lemma provides a nice unbiased 
estimator of var(uij). 

Lemma 2. If {X;}~1 is a random sample from N(µ, E), then 

- s aff + a;,ajj 
var(au) = n _ 

1 
, (2.3) 

and an unbiased estimate of var(uij) is given by var(ufi) which equals 

n2(n2 - n - 4) _2 n3 __ 

(n - 1)2(n3 + n2 - 2n - 4) au + (n - 1)(n3 + n2 - 2n - 4) a;;ajj, 
(2.4) 

From (2.3) we see the MLE for var(ufi) is aff:~~aii, which is almost identical to the unbiased estimator in (2.4). We prefer 
to use an exact unbiased estimate of the optimism. In ~dition, the unbiased estimator in (2.4) is the UMVUE ofvar(uJ). 

Lemma 2 shows that an unbiased estimator for PR(E<k>) is given by 

PR(k) = 11f<k) - tsu: + L (2wtn - 1) var(uJ). (2.5) 
1!:iJ!:P n 

Similarly, an unbiased estimator for IEII E(k> - EI]~ is given by 

SURE(k) = 11 f<k) - ts 11: + L (2wt n - l - 1) var(uJ) 
1!:iJ!:P n 

__ ~ ( n <k>) 
2 

- 2 + ~ (2 <k> n ) ( - 2 + b - - ) ~ ---=- - Wij O'ij ~ Wij - ---=- OnO'iJ nO';;O'jj 
1!:iJ!:P n 1 

1!:iJ!:P n 1 
(2.6) 

. h - n(n2-n-4) db - n2 
Wit On - (n-l)(nl+n2-2n-4) an n - n3+n2-2n-4 • 

2.2. SURE tuning 

Once the tapering estimator is constructed. the SURE formula automatically provides a good estimate of its Frobenius 
risk. Naturally we use ksure as the tapering parameter under the Frobenius norm where 

k5ure = argminSURE(k). 
k 

(2.7) 

Unfortunately we do not have a direct SURE formula for the matrix lq norm, q = 1, 2. We suggest using ksure as the 
tapering parameter for both t 1 and l 2 norms as well. We list several good reasons for using this selection strategy. 
1. One can expect the optimal tapering parameter should be the same under different matrix norm if the underlying 

covariance matrix is an exactly banded matrix. i.e., there is a constant ko such that au = O whenever Ii - ii > ko. 
Hence. it is reasonable to expect that the optimal choices of the tapering parameter under the Frobenius norm and the 
matrix t 1, t 2 norms stay close if the underlying covariance model is very sparse. 



F. Yt H. Zou/ Computational Statistics and Data Analysis 58(2013) 339-351 343 

2. Cai and Zhou (2010) showed that as long as log(p) !:: n 1t<2a+2>, the minimax optimal tapering parameters under the l 1 
norm and the Frobenius norm are the same. This can be easily seen from ( 1.5 ). 

3. The l 2 norm is the most popular matrix operator norm. We argue that minimizing the Frobenius norm leads to a good 
estimator, although may not be the best, under the l 2 norm. From Cai et al. (2010) we know that 

supIEII.E<k> - Ell~!:: C [k-ia + k + log(p)] = C · R2(k). 
~ n 

Letting k = kF = n 1t<2a+2> yields 

R2(kF) = O(n-a/(a+t> + log(p)/n). 

Compare the rate to the minimax optimal rate n-2a/(la+1> + log(p)/n. 
4. As shown in simulation, SURE selection is very stable, although it is biased under the l 1, l 2 norms. Selection stability is 

a very important concern in model selection ( Brei man, 1996 ). In contrast, even the oracle tuning under the l 1, l 2 norms 
can show very high variability when the underlying covariance matrix is not very sparse. 

3. Monte carlo study 

In this section, we conduct extensive simulation to compare SURE tuning with cross-validation and oracle tuning. 

3.1. Models and tuning methods 

The data are generated from N (0, E). Six covariance models are considered. 

Model 1. This model is adopted from Cai et al. (2010). The covariance matrix has the form 

1
1, 1 ~i=i!::P 

O'ij = pli - il-(a+t) 1 ~ i :fij ~ p. 

We let p = 0.6, a = 0. 1, 0.5, n = 250 and p = 250, 500, 1000. 
Model 2. The covariance matrix has the form uu = pli-JI, 1 !:: i,j ~ p. We let p = 0.95, 0.5, n = 250 and 

p = 250,500, 1000. This is a commonly used autoregressive covariance matrix for modeling spatial-temporal 
dependence. 

Model 3. This simulation model is a truncated version of model 1. The covariance matrix has the form 

I 1, 
uu = Pli - il-<a+t>/(li - ii :::: 6) 

1::::i=i!::P 
1 :::: i =fi j :::: p. 

We let p = 0.6, a = 0.1, 0.5, n = 250 and p = 250, 500, 1000. Model 3 represents an exactly banded covariance 
matrix. It is the sparest among all three simulation models. 

Model 4. The covariance matrix has the form 

1!::i=j,::::p 
1 :::: i :fij ~ p. 

We let p = 0.6, a = 0. 1, 0.5, n = 250 and p = 250, 500, 1000. This model is similar to Model 1 but has negative 
correlations. 

Model 5. uii has the form of uu = p1H1(-1)1H 1• 1 ~ i,j ~ p. We let p = 0.6, a = 0.1, 0.5, n = 250 and 
p = 250, 500, 1000. This model is similar to Model 2 but has negative correlations. 

Model 6. The covariance matrix has the form 

1
1, 

O'jj = Pli-jl-(a+l)/(li-jl ~ 6)(-l)li-jl 
1!::i=j,::::p 
1 :::: i =fij:::: p. 

We let p = 0.6, a = 0.1, 0.5, n = 250 and p =. 250, 500, 1000. This model is similar to Model 3 but has negative 
correlations. 

For each covariance model, the theoretical optimal tapering parameters are defined as k~pt = arg mink Ell J;<k> - E II~. 
where a = F. 1, 2. In our simulation study the risk curves can be computed numerically, and thus we can find the numerical 
values of k~pt for a = F, 1, 2. 

We considered three tuning techniques in the simulation study: SURE, cross-validation and oracle tuning. The oracle 
tuning is defined as 

k:racle = arg min II J;<k> - Ell! 
k 
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Tablet 
Simulation model 1: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 1: Tapering parameter selection 

p a kopt k°raclt ksure i<cv 
F e, l2 F e, l2 F, l1, l2 F e, l2 

250 0.1 11 9 30 10.70 10.46 36.29 10.63 9.66 18.34 48.97 
(0.56) (3.03) (8.52) (1.18) (1.02) (9.50) (27.15) 

250 0.5 6 5 9 5.99 5.88 10.56 6.15 5.46 10.28 20.41 
(0.41) (1.60) (2.21) (0.73) (0.67) (6.24) (11.8) 

500 0.1 11 9 39 10.83 9.96 44.57 10.52 9.35 19.75 50.56 
(0.43) (2.60) {8.37) (0.88) (0.73) (10.40) (23.76) 

500 0.5 6 5 10 6.04 5.52 10.64 6.11 5.29 12.08 21.08 
(0.28) {1.72) (2.02) (0.60) (0.46) (5.48) (11.30) 

1000 0.1 11 9 51 10.92 9.60 55.91 10.65 9.22 18.67 70.68 
(0.31) (237) (8.02) (0.64) (0.54) (10.09) (29.88) 

1000 0.5 6 5 10 6.00 5.24 11.03 6.14 5.17 10.74 28.25 
(0.14) (1.45) (1.83) (0.47) (0.38) (5.67) (14.88) 

where a = F, 1, 2. The idea of oracle tuning is intuitive. Suppose that we could use an independent validation data set of 
size m (m ~ n) for tuning. The chosen k is then found by comparing E <k> and Em under a given matrix norm. where Em 
is the MLE of E using the independent validation set. Now imagine m could be as large as we wish. The oracle tuning is 
basically the independent-validation-set tuning with infinitely many data. The oracle tuning is not realistic but serves as a 
golden benchmark to check the performance of practical tuning methods. 

Cross-validation is a commonly-used practical tuning method. Randomly split the training data into V parts. For v = 
1, ...• V, we leave observations in the vth part as validation data and compute a MLE of E. denoted by Ev, Let i;~~ denote 
the tapering estimator computed on the rest V - 1 parts. Then the cross-validation choices of k under the Frobenius norm 
and the matrix l 1 , l 2 norm are defined as ~v = arg mink i L~=l II E~~ - Ev II! where a = F, 1. 2, denoting the Frobenius, 
l 1• l 2 norms. Five-fold cross-validation was used in our simulation. 

We also considered an unconventional cross-validation called cv-F that always uses Frobenius-norm for tuning even 
when the e 1 or l 2 norm is used to evaluate the risk of the tapering estimator. Note that cv-F is a direct analogue of SURE 
tuning. Since CV is good at capturing the shape of Frobenius risk although the magnitude is too large. cv-F is expected to 
perform similarly to SURE. But cv-F is still computationally more expensive than SURE. 

3.2. Results and conclusions 

For each model we compared the chosen tapering parameters by oracle. SURE and cross-validation to the optimal tapering 
parameter and compared the estimation risk of the three tuned tapering covariance estimators. Tables 1-12 summarize the 
simulation results. We have the following remarks. 

1. Under the Frobenius norm, SURE works as well as the oracle tuning. Cross-validation is slightly worse than SURE. SURE 
and cv-F have very similar performance as expected. 

2. Cross-validation completely fails under the l1, l 2 norms. We can understand the failure of cross-validation under the 
l 1, l 2 norms by looking at its selection variability. Even the oracle tuning exhibits high variability when the covariance 
matrix is dense. Under the l 1 , l 2 norms, SURE and cv-F still perform quite well comparable to the oracle tuning. Note 
that SURE and cv-F are very stable. 

3. The performance of tuning depends on the degree of sparsity of the underlying covariance model. When the covariance 
matrix is sparse (models 1,4 with a = 0.5, models 2,5 with p = 0.5 and models 3,6), SURE and cv-F are closer to the 
oracle tuning. This is not surprising because it is relatively easier to estimate a sparse covariance matrix than a dense 
one. 

4. Rock sonar spectrum data 

In this section. we use the sonar data to illustrate the efficacy of SURE tuning and to further demonstrate the conclusions 
made in the simulation study. The sonar data is publicly available from the UCI repository of machine learning databases 
(Frank and Asuncion, 2010). We consider its subset consisting of97 sonar spectra bounced off from rocks. Each spectrum has 
60 frequency band energy measurements. Although the dimension is 60, this is still a relatively large dimension scenario, 
because the sample size is 97. We examined the entries of sample covariance matrix and found there is a quite obvious decay 
pattern as the entries move away from the diagonal. Hence we used tapering to regularize the sample covariance matrix. 
SURE and cross-validation were used to select the tapering parameter. Bootstrap was used to assess the variability of each 
tuning procedure. 
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Table2 
Simulation model 1: Frobenius. l 1 l 2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 1: Estimation risk 

p a Oracle SURE CV CV-F 

Frobenius norm 250 0.1 26.04 (0.11) 26.23 (0.11) 26.30 (0.10) 26.30 (0.10) 
250 0.5 13.63 (0.07) 13.77 (0.07) 13.83 (0.07) 13.83 (0.07) 
500 0.1 53.33 (0.14) 53.54 (0.14) 53.82 (0.14) 53.82 (0.14) 
500 0.5 27.48 (0.11) 27.65 (0.11) 27.87 (0.11) 27.87 (0.11) 

1000 0.1 108.11 (0.21) 108.29 (0.22) 109.15 (0.21) 109.15 (0.21) 
1000 0.5 55.03 (0.14) 55.25 (0.14) 55.04 (0.15) 55.04 (0.15) 

l1 norm 250 0.1 14.17 (0.12) 14.78 (0.15) 17.84 (0.50) 14.78 (0.15) 
250 0.5 3.67 (0.05) 3.87 (0.06) 5.22 (0.34) 3.86 (0.05) 
500 0.1 18.94 (0.14) 19.58 (0.17) 24.20 (0.71) 19.51 (0.15) 
500 0.5 4.22 (0.04) 4.43 (0.06) 5.62 (0.22) 4.40 (0.05) 

1000 0.1 24.08 (0.13) 24.88 (0.17) 29.85 (0.88) 24.73 (0.16) 
1000 0.5 4.64 (0.04) 4.87 (0.05) 6.49 (0.24) 4.78 (0.04) 

l2 norm 250 0.1 2.96 (0.05) 5.35 (0.07) 4.29 (0.16) 5.71 (0.07) 
250 0.5 0.88 (0.01) 1.09 (0.02) 1.48 (0.08} 1.19 (0.02} 
500 0.1 4.26 (0.05) 7.87 (0.07} 5.27 (0.16} 8.45 (0.06} 
500 0.5 0.99 (0.01} 1.23 (0.01} 1.59 (0.07) 1.37 (0.01} 

1000 0.1 5.82 (0.05} 10.56 (0.06) 736 (0.19) 11.40 (0.05) 
1000 0.5 1.08 (0.ol) 1.33 (0.01) 2.09 (0.10) 1.52 (0.01) 

Table] 
Simulation model 2: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 2: Tapering parameter selection 

p p l(OPI k°racle ~re ifv 
F e, l2 F e, f2 F, e,, e2 F e, l2 

250 0.95 71 71 76 70.79 72.84 77.36 71.23 68.64 80.07 88.24 
(4.53) (11.93) (17.32) (12.45) (12.92) (28.30} (33.14} 

250 0.50 5 5 5 5.00 4.84 5.13 5.03 5.00 7.87 13.18 
(0.00) (0.93) (1.02) (0.17) (0.00} (6.09) (11.93) 

500 0.95 70 68 69 70.10 69.50 72.51 70.76 68.04 88.77 107.52 
(3.08) (12.17) (17.00) (6.14) (6.41) (30.46} (33.82) 

500 0.50 5 5 5 5.00 4.89 5.17 5.00 5.00 8.60 16.68 
(0.00} (0.90) (1.00) (0.00} (0.00) (4.55) (15.84) 

1000 0.95 69 67 71 69.71 69.83 73.83 70.66 67.48 92.29 117.41 
(2.16) (11.95) (11.68) (3.86) (3.83} (30.56} (33.84) 

1000 0.50 5 5 5 5.00 4.73 5.00 5.00 5.00 8.85 21.08 
(0.00) (0.93} (0.94) (0.00) (0.00) (6.04} (20.90) 

Table4 
Simulation model 2: Frobenius. l 1• e2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 2: Estimation risk 

p a Oracle SURE CV CV-F 

Frobenius norm 250 0.95 118.09 (2.66) 125.00 (2.88) 126.19 (2.86) 126.19 (2.86) 
250 0.50 9.88 (0.06) 9.91 (0.07) 9.88 (0.06) 9.88 (0.06) 
500 0.95 250.53 (3.54) 256.94 (3.62) 258.10 (3.59) 258.10 (3.59) 
500 0.50 19.10 (0.08) 19.81 (0.08} 19.81 (0.08) 19.81 (0.08) 

1000 0.95 512.13 (4.90) 517.94 (4.92) 519.26 (4.90) 519.26 (4.90) 
1000 0.50 39.72 (0.11) 39.72 (0.11) 39.72 (0.11) 39.72 (0.11) 

e, norm 250 0.95 142.91 (5.17) 158.36 (5.80) 176.09 (8.29) 159.29 (5.79) 
250 0.50 1.33 (0.03) 139 (0.03) 2.29 (0.27) 1.37 (0.03) 
500 0.95 183.55 (5.21) 198.28 (5.97) 233.56 (9.67) 197.97 (5.79) 
500 0.50 1.43 (0.02) 1.46 (0.03) 2.54 (0.17) 1.46 (0.03) 

1000 0.95 210.56 (3.98) 223.65 (4.76) 279.71 (12.01) 222.86 (4.58) 
1000 0.50 1.58 (0.03) 1.64 (0.03) 3.04 (0.33) 1.64 (0.03) 

l2 norm 250 0.95 36.90 (1.61) 42.98 (1.95) 44.87 (2.02) 43.77 (1.98) 
250 0.50 0.47 (0.01) 0.49 (0.01) 0.89 (0.07) 0.49 (0.01) 
500 0.95 47.09 (1.41) 54.45 (2.06) 66.64 (2.96) 54.82 (2.04) 
500 0.50 0.51 (0.01) 0.53 (O.Dl) 1.18 (0.10) 0.53 (0.01) 

1000 0.95 56.70 (1.40) 62.31 (1.79) 78.59 (2.85) 62.76 (1.80) 
1000 0.50 0.59 (0.01) 0.61 (0.01) 1.58 (0.14) 0.61 (0.01) 
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Tables 
Simulation model 3: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 3: Tapering parameter selection 

p a k°llt k"radr i<sulf ic<v 
F e, l2 F e, l2 F, £1, £2 F e, l2 

250 0.1 8 7 7 7.91 7.21 7.56 7.93 7.35 11.15 17.19 
(0.29) (0.77) (1.12) (0.26) (0.48) (5.81) (12.54) 

250 0.5 6 5 5 5.97 5.57 5.91 6.13 5.47 8.76 13.79 
(0.41) (1.30) (1.14) (0.68) (0.64) (4.64) (9.34) 

500 0.1 8 7 7 8.00 7.06 7.29 7.93 7.22 11.21 19.49 
(0.00) (0.81) (1.09) (0.26) (0.42) (5.87) (18.70) 

500 0.5 6 5 5 5.97 5.49 5.59 6.18 5.41 9.95 15.39 
(0.17) (1.10) (1.01) (0.59) (0.59) (8.39) (10.43) 

1000 0.1 8 7 7 8.00 6.77 6.99 8.00 7.12 11.26 21.79 
(0.00) (0.90) (1.12) (0.61) (033) (6.10) (17.94) 

1000 0.5 6 5 5 6.00 5.13 5.31 6.13 5.20 8.96 18.24 
(0.00) (1.28) (1.20) (0.37) (0.40) (5.72) (13.66) 

Table& 
Simulation model 3: Frobenius. £1 £2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 3: Estimation risk 

p a Oracle SURE CV CV-F 

Frobenius norm 250 0.1 13.89 (0.09) 13.93 (0.09) 14.09 (0.09) 14.09 (0.09) 
250 0.5 11.63 (0.07) 11.75 (0.07) 11.82 (0.07) 11.82 (0.07) 
500 0.1 27.68 (0.13) 27.73 (0.13) 28.08 (0.13) 28.08 (0.13) 
500 0.5 23.42 (0.10) 23.59 (0.11) 23.78 (0.10) 23.78 (0.10) 

1000 0.1 55.79 (0.22) 55.79 (0.22) 56.68 (0.22) 56.68 (0.22) 
1000 0.5 46.95 (0.16) 47.06 (0.16) 47.70 (0.14) 47.70 (0.14) 

e, norm 250 0.1 1.98 (0.04) 2.10 (0.04) 3.42 (0.30) 2.05 (0.04) 
250 0.5 1.47 (0.03) 1.60 (0.03) 2.38 (0.18) 1.59 (0.03) 
500 0.1 2.18 (0.04) 2.36 (0.05) 3.79 (034) 2.26 (0.04) 
500 0.5 1.65 (0.02) 1.78 (0.03) 3.62 (0.55) 1.75 (0.03) 

1000 0.1 2.49 (0.04) 2.72 (0.05) 4.34 (0.48) 2.55 (0.05) 
1000 0.5 1.88 (0.03) 2.07 (0.05) 3.34 (0.30) 1.98 (0.04) 

l2 norm 250 0.1 0.67 (0.01) 0.72 (0.02) 1.33 (0.09) 0.71 (0.02) 
250 0.5 0.53 (0.01) 0.58 (0.01) 0.94 (0.06) 0.57 (0.01} 
500 0.1 0.78 (0.02) 0.85 (0.02) 1.66 (0.16) 0.82 (0.02) 
500 0.5 0.59 (0.01) 0.63 (0.01) 1.18 (0.08) 0.62 (0.01) 

1000 0.1 0.88 (0.01) 0.98 (0.02) 2.02 (0.14) 0.93 (0.02) 
1000 0.5 0.69 (0.01) 0.76 (0.02) 1.54 (0.10) 0.73 (0.01) 

Table7 
Simulation model 4: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 4: Tapering parameter selection 

p a l(OPI k"radr kSUlf ic<v 
F e, l2 F e, l2 F, l1, l2 F l1 l2 

250 0.1 11 9 31 10.76 10.49 36.88 10.44 9.50 18.03 46.96 
(0.55) (2.94) (8.62) (1.21) (0.97) (9.28) (24.06) 

250 0.5 6 5 9 5.99 5.63 10.64 6.04 5.44 10.11 20.84 
(0.44) (1.40) (2.29) (0.76) (0.64) (5.86) (14.70) 

500 0.1 11 9 38 10.78 9.66 44.15 10.47 936 18.88 56.91 
(0.46) (2.29) (8.37) (0.85) (0.70) {10.07) {24.31) 

500 0.5 6 5 10 6.01 5.51 10.76 6.11 5.29 11.35 20.58 
(0.22) (1.58) (2.22) (0.63) (0.50) (6.81) (13.10) 

1000 0.1 11 9 51 10.92 9.10 56.00 10.79 9.26 19.12 63.46 
(0.27) (2.73) (7.28) (0.46) (0.57) (12.11) (31.95) 

1000 0.5 6 5 10 6.00 5.20 10.41 6.05 5.19 10.31 27.61 
(0.14) (1.44) (2.03) (0.46) (0.39) (6.04) (19.52) 
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Tables 
Simulation model 4: Frobenius, £1 £2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 4: Estimation risk 
p a Oracle SURE CV CV-F 

Frobenius norm 250 0.1 26.07 (0.09) 26.28 (0.09) 26.38 (0.10) 26.38 (0.10) 
250 0.5 13.59 (0.07) 13.75 (0.07) 13.80 (0.07) 13.80 (0.07) 
500 0.1 53.36 (0.14) 53.54 (0.15) 53.81 (0.14) 53.81 (0.14) 
500 0.5 27.57 (0.11) 27.76 (0.11) 27.99 (0.11) 27.99 (0.11) 

1000 0.1 108.44 (0.21) 108.51 (0.21) 109.35 (0.20) 109.35 (0.20) 
1000 0.5 55.42 (0.18) 55.63 (0.18) 56.22 (0.17) 56.22 (0.17) 

l1 norm 250 0.1 14.14 (0.10) 14.64 (0.12) 17.62 (0.47) 14.58 (0.11) 
250 0.5 3.59 (0.04) 3.80 (0.05) 4.95 (0.24) 3.76 (0.05) 
500 0.1 18.74 (0.11) 19.35 (0.14) 23.31 (0.63) 19.34 (0.12) 
500 0.5 4.24 (0.05) 4.47 (0.06) 6.38 (0.51) 4.41 (0.06) 

1000 0.1 24.15 (0.13) 24.97 (0.17) 30.44 {1.15) 24.80 (0.16) 
1000 0.5 4.60 (0.04) 4.87 (0.06) 6.31 (0.24) 4.74 (0.04) 

l2 norm 250 0.1 2.98 (0.05) 5.49 (0.07) 4.21 (0.15) 5.84 (0.07) 
250 0.5 0.88 (0.01) 1.11 (0.02) 1.44 (0.09) 1.20 (0.02) 
500 0.1 4.23 (0.05) 7.90 (0.06) 5.55 (0.18) 8.45 (0.06) 
500 0.5 1.01 (0.01) 1.26 (0.01) 1.57 (0.09) 1.39 (0.01) 

1000 0.1 5.66 (0.04) 10.44 (0.05) 7.07 (0.20) 11.34 (0.05) 
1000 0.5 1.10 (0.01) 1.36 (0.01) 2.18 (0.13) 1.52 (0.01) 

Table9 
Simulation model 5: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 5: Tapering parameter selection 
p p l(OJ)t ic>r•de ksure i<cv 

F l1 l2 F l1 l2 F, l1, l2 F l1 l2 

250 0.95 71 71 76 70.79 72.84 77.36 71.01 68.59 80.93 89.33 
(4.53) (11.93) (17.32) (12.38) (12.80) (28.25) (33.80) 

250 0.50 5 5 5 5.00 4.99 5.18 5.02 5.00 8.93 12.34 
(0.00) (0.92) (0.97) (0.14) {0.00) (6.76) (10.86) 

500 0.95 70 70 71 70.39 71.40 74.86 70.32 67.13 87.43 110.37 
(3.17) (12.76) (18.99) (7.15) (7.23) (31.87) (39.78) 

500 0.50 5 5 5 5.00 4.80 5.11 5.00 5.00 8.97 15.95 
(0.00) (0.90) (1.05) (0.00) (0.00) (4.88) (13.79) 

1000 0.95 69 68 72 69.87 68.65 75.06 70.31 67.37 90.49 119.22 
(2.48) (11.11) (12.49) (4.23) (4.42) (28.50) (38.16) 

1000 0.50 5 5 5 5.00 4.65 4.86 5.00 5.00 8.03 19.02 
(0.00) (0.97) (0.92) (0.00) (0.00) (5.65) {17.53) 

TablelO 
Simulation model 5: Frobenius. l 1, £2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 5: Estimation risk 
p p Oracle SURE CV CV-F 

Frobenius norm 250 0.95 118.09 (2.66) 124.96 (2.88) 126.19 (2.87) 126.19 (2.87) 
250 0.50 9.92 (0.06) 9.93 (0.06) 9.92 (0.06) 9.92 (0.06) 
500 0.95 247.49 (3.90) 254.18 (4.22) 256.02 (4.17) 256.02 (4.17) 
500 0.50 19.81 (0.08) 19.81 (0.08) 19.81 (0.08) 19.81 (0.08) 

1000 0.95 511.21 (6.22) 519.52 (6.53) 520.79 (6.34) 520.79 (6.34) 
1000 0.50 39.80 (0.12) 39.80 (0.12) 39.80 (0.12) 39.80 (0.12} 

l1 norm 250 0.95 142.91 (5.17) 158.30 (5.80) 174.46 (7.75) 159.24 (5.82) 
250 0.50 1.31 (0.02) 1.36 (0.03) 2.66 (0.33) 1.36 (0.03) 
500 0.95 184.75 (5.36) 201.05 (6.86) 236.85 (10.41) 201.38 (6.72) 
500 0.50 1.62 (0.03) 1.68 (0.03) 2.74 (0.18) 1.50 (0.03) 

1000 0.95 209.75 (4.26) 225.51 (5.81) 275.02 (11.77) 223.53 (5.29) 
1000 0.50 1.62 (0.03) 1.68 (0.03) 2.80 (0.34) 1.68 (0.03) 

l2 norm 250 0.95 36.90 (1.61) 43.01 (1.95) 45.23 (2.05) 43.74 (1.99) 
250 0.50 0.45 (0.01) 0.48 (0.01) 0.83 (0.06) 0.47 (0.Dl) 
500 0.95 48.20 (1.72) 55.50 (2.33) 68.21 (3.84) 56.20 (2.31) 
500 0.50 0.51 (0.01) 0.54 (0.Dl) 1.15 (0.08) 0.54 (0.01) 

1000 0.95 57.00 (1.56) 63.66 (2.00) 82.40 (3.70) 63.86 (1.90) 
1000 0.50 0.59 (0.01) 0.62 (0.01) 1.48 (0.11) 0.62 (0.Dl) 
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Table11 
Simulation model 6: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in 
parentheses. 

Model 6: Tapering parameter selection 

p a k°pt k"racle ~u~ i(cv 

F e, l2 F e, l2 F, li, l2 F e, l2 

250 0.1 8 7 7 7.91 7.01 7.57 7.89 7.28 10.78 16.28 
(0.29) (0.77) (1.08) (0.31) (0.45) (7.22) (11.39) 

250 0.5 6 5 5 5.99 5.59 5.96 5.99 5.34 8.93 14.78 
(0.41) (1.22) (1.37) (0.70) (0.57) (4.90) (10.48) 

500 0.1 8 7 7 7.97 7.15 7.18 7.92 7.19 10.59 19.79 
(0.17) (0.86) (0.98) (0.27) (0.39) (3.94) (16.91) 

500 05 6 5 5 6.00 5.53 5.64 6.07 5.36 9.50 16.49 
(0.25) (1.34) (1.38) (0.62) (0.56) (7.25) (14.40) 

1000 0.1 8 7 7 7.99 6.93 6.98 7.99 7.11 11.43 24.50 
(0.10) (0.88) (1.06) (0.10) (0.31) (6.87) (20.40) 

1000 05 6 5 5 5.99 5.13 5.52 6.07 5.22 9.86 20.23 
(0.10) (1.21) (1.19) (0.46) (0.42) (6.15) (15.90) 

Tablet2 
Simulation model 6: Frobenius. t 1 l 2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses. 

Model 6: Estimation risk 

p a Oracle SURE CV CV-F 

Frobenius norm 250 0.1 13.89 (0.09) 13.95 (0.09) 14.09 (0.09) 14.09 (0.09) 
250 0.5 11.61 (0.07) 11.76 (0.07) 11.82 (0.07) 11.82 (0.07) 
500 0.1 27.82 (0.14) 27.90 (0.14) 28.25 (0.14) 28.25 (0.14) 
500 0.5 2335 (0.10) 23.54 (0.10) 23.77 (0.10) 23.77 (0.10) 

1000 0.1 56.08 (0.21) 56.10 (0.21) 56.95 (0.21) 56.95 (0.21) 
1000 0.5 46.96 (0.16) 47.13 (0.17) 47.74 (0.15) 47.74 (0.15) 

l1 norm 250 0.1 1.99 (0.04) 2.13 (0.05} 3.51 (0.43) 2.05 (0.05) 
250 0.5 1.46 (0.03) 1.58 (0.03) 2.46 (0.20) 1.56 (0.03) 
500 0.1 2.18 (0.04) 2.35 (0.05) 3.42 (0.20) 2.26 (0.04) 
500 0.5 1.66 (0.03) 1.79 (0.04) 3.23 (0.45) 1.77 (0.04) 

1000 0.1 2.41 (0.04) 2.64 (0.05) 4.53 (0.48) 2.49 (0.04) 
1000 0.5 1.85 (0.03) 2.03 (0.04) 3.64 (0.35) 1.96 (0.03) 

l2 norm 250 0.1 0.70 (0.02) 0.74 (0.02) 1.25 (0.08) 0.73 {0.02) 
250 0.5 0.53 (0.01) 0.57 (0.01) 0.98 (0.06) 0.56 {0.01) 
500 0.1 0.78 (0.02) 0.84 (0.02) 1.66 {0.14) 0.82 (0.02) 
500 0.5 0.62 {0.01) 0.67 (0.02) 1.24 (0.10) 0.67 (0.01) 

1000 0.1 0.86 {0.01) 0.97 (0.02) 2.17 (0.16) 0.91 (0.02) 
1000 0.5 0.68 {0.01) 0.73 (0.02) 1.61 {0.10) 0.71 (0.01) 

In Fig. 2 we plot SURE and cross-validated estimates of the Frobenius risk and also show the bootstrap histogram of the 
selected tapering parameter by SURE and cross-validation. Some interesting phenomena are evident in the figure. First, the 
two bootstrap histograms clearly show that SURE tuning is less variable than cross-validation. Second, SURE tuning selected 
the high peak of the SURE bootstrap histogram but cross-validation selected a left tail value of its bootstrap histogram. Third, 
the cross-validation estimate of the Frobenius risk is much larger than the SURE estimate. 

Fig. 3 shows the cross-validation tuning results under the .f. 1, l 2 norms. The selected tapering parameters under the t 1, t 2 
norms are not very different from those under the Frobenius norm. The significant difference is that cross-validation tuning 
under the l 1 , t 2 norms has much flatter bootstrap histograms, indicating much larger variability in selection. 

We also repeated the above analysis on the other subset consisting of 111 sonar spectra bounced off from metal cylinders 
and the conclusions are basically the same. For the sake of space consideration, we opt to present the analysis results and 
figures in a technical report version of this paper. 

In conclusion, what we have observed in this real data example is consistent with the simulation results. 

5. Discussion 

There are two important issues in any regularized estimation procedure: ( 1) how to select the regularization parameter? 
and (2) how to estimate the accuracy of a regularized estimator? In traditional vector-estimation problems such as 
nonparametric regression or classification, cross-validation is a routinely used method for answering both questions and 
perform well in general. Efron (2004) has shown that SURE can be more accurate than cross-validation for estimating the 
risk of a vector estimator. In this paper, we have found that cross-validation does not perform satisfactorily for tuning the 
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Fig. 2. Rock sonar spectrum data: SURE and cross-validation tuning under the Frobenius norm. The right panels display the bootstrap histograms of the 
selected tapering parameter by SURE and cross-validation. 
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Fig. 3. Rock sonar spectrum data: cross-validation tuning underthe l,, l2 norms. The right panels display the bootstrap histograms of the selected tapering 
parameter by cross-validation. 

tapering covariance estimator when the objective loss function is the matrix t 1 or t 2 norm. Cross-validation can capture 
the shape of the Frobenius risk, but the cross-validated estimate of the Frobenius risk tends to be too large to be a good 
estimate. Our empirical study suggests that the Frobenius norm is better for tuning a covariance matrix estimator even 
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when the objective loss is the l 1 or l 2 norm. To that end, the proposed SURE formula is very useful: it is computationally 
economic, stable and provides a reliable estimate of the Frobenius risk. 
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Appendix 

Proof of Lemma 1. We start with Stein's identity (Efron, 2004) 

(CTij - Uij)2 = (CTij - aJ)2 
- (O'U - O'ij)2 + 2(CTij - Uij){Ulj - Uij), 

Taking expectation at both side of (A.1) and summing over i,j = 1 yield 
p p p p 

!Ell E - E 11: = !El] E - j;s 11: - LL var(aii> + 2 LL cov(uu, uii>-
i=l j=l i=l j=l 

Note that IE[(cru - uu)(uu - uu)] = cov(cru, au) because !Eu;j = uu, D 

(A.1) 

Proof of Lemma 2. The estimators under consideration are translational invariant. Without loss of generality, we can let 
µ = IE(x) = O. By straightforward calculation based on bivariate normal distribution, we have 

IE(,if xj) = U11Ujj + 2uJ, 

which holds for both i = j and i =I= j. 

E((i7U)2
) = IE (en - n-2 (t,x,.,x,J -nx,x1) 

2

) 

= (n - 1)-2 
{ IE ( (t,x,.,xk.i) ')- 2n-1 t,IE(IIX111X1x,.,x,J) + n21E(xfxJ>}. 

We also have 

1 2 2 2 = -(u;;un + 2uu - uu) + uu 
n 

1 1 + n 2 = nO';;Ujj + -n-UU. 

Note thatX - N(O, E/n). Using(A.2) we have 

2TC"(-2-2) 2 2 n JJ!. X;Xj = Uij + U;;Ujj, 

IE(nx;nxjxk.iXkJ> = L {1c1 =,,=I= k)JE(x,.;x,Jxk.ixkJ> + 1(1 =I'= k)JE<~AJ>} 
1:Sl,Y:Sn 

= (n - t)uf2 + (u;;Ujj + 2uJ). 

Substituting (A.4)-(A.6) into (A.3) gives 

no:.~ + urm1 IE((u.~>2> = ,1 ' » 
IJ n - 1 

-s -s 2 2 a;f+a11a9 Thus, var(cru) = IE((uu) ) - cru = n-t • 

We now show (2.4) by deriving an expression for IE(u;1u;). 

(n - 1)2IE(u,iu;> = L IE(~.i4J> - L IE(~4J> - L IE(xJ~.;) + n2
IE(x~xf). 

1 :Sk, k' :Sn 1 :Sk' :Sn 1 :Sk:Sn 

(A2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 



F. Yi, H. Zou/ Computational Statistics and Data Analysis SB ( 2013) 339-35 l 

Repeatedly using (A.2) we have 

L IE(~.i~J) = n2
aiiO'Ji + 2naJ, 

1:Sk,k' :sn 

n
21E(~~) = L {/(I = I' =/- k')IE(xf.,~ j) + f (I = f = k')IE{~ ,ixi j)} 

1:Sl,f :sn 
= naiiO"Ji + 2aJ, 

n
21E(xf ~) = nauaii + 2aJ. 

Substituting (A.5) and (A.9)-(A.11) into (A.8) gives 

-s-s n + 1 2(n + 2) 2 IE(u .. u .. ) = --aua» .. + ---u ... 11 11 n - 1 n(n - 1) 11 

Combining (A.7) and (A.12) gives (2.4). o 
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