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Abstract. The generalized persistence (GP) model, developed in the context

of estimating “value added” by individual teachers to their students’ current
and future test scores, is one of the most flexible value-added models in the

literature. Although developed in the educational setting, the GP model can
potentially be applied to any structure where each sequential response of a

lower-level unit may be associated with a different higher-level unit, and the

effects of the higher-level units may persist over time. The flexibility of the GP
model, however, and its multiple membership random effects structure lead to

computational challenges that have limited the model’s availability. We de-

velop an EM algorithm to compute maximum likelihood estimates efficiently
for the GP model, making use of the sparse structure of the random effects

and error covariance matrices. The algorithm is implemented in the pack-

age GPvam in R statistical software. We give examples of the computations
and illustrate the gains in computational efficiency achieved by our estimation

procedure.

NOTICE

This is the author’s version of a work that was accepted for publication in Compu-
tational Statistics & Data Analysis. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version
was subsequently published in Computational Statistics & Data Analysis, [VOL59,
March, (2013)] DOI:10.1016/j.csda.2012.10.004

1. Introduction

Multilevel mixed models are popular for describing data with complex depen-
dence structure. The units on which primary measurements are taken (usually
those at the lowest level) each belong to one or more units at higher levels. In
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2 KARL, YANG, AND LOHR

a nested (hierarchical) two-level model, each unit at the lowest level belongs to
exactly one higher-level unit. In a multiple membership structure (Browne et al.,
2001), a lower-level unit may be associated with multiple higher-level units. This
structure is common with non-static populations, and we study multiple member-
ship models in which a lower-level unit is sequentially associated with different
higher-level units. Thus, a child in foster care may live with multiple families; a
patient may see multiple doctors; a deer may visit multiple salt licks; a worker may
have multiple employers; a person may attend multiple therapy groups; a student
may have multiple teachers. Fielding and Goldstein (2006) describe multiple mem-
bership models and give examples of their use. The multiple membership structure
induces a complex dependence structure in the data. Lower-level units are corre-
lated whenever they share any higher-level unit, so the covariance matrix will not
have a block diagonal structure as in the nested model.

The complex covariance structure of multiple membership mixed models makes
computations challenging, particularly with large data sets. Computational meth-
ods that have been developed for nested hierarchical models and other special cases
of linear mixed models often will not work. In this paper we develop an EM algo-
rithm to compute maximum likelihood estimates for a class of longitudinal multiple
membership models that are applicable in many settings. In the class of models
considered, lower-level units are associated with multiple higher-level units in se-
quence, and a response is recorded on a lower-level unit after the association with
each higher-level unit. If the population contains a large number of higher-level
units, and the number of lower-level units associated with each higher-level unit is
bounded, the covariance matrix will be sparse. The algorithm exploits sparseness of
the covariance matrix to speed computations. This sparseness is achieved in many
multiple membership settings since, for example, there are upper bounds on the
number of patients a doctor can see or the number of students in a teacher’s class.

The application motivating this research comes from value-added models (VAMs)
in in educational evaluation. A VAM score for a teacher is intended to estimate the
“value added” by that teacher to students’ knowledge—how much more (or less)
students’ scores changed under that teacher than they would be expected to change
under an “average” teacher—by apportioning students’ progress on standardized
tests to the teachers or schools that have taught those students. Braun et al. (2010)
describe some of the potential uses of VAMs and discuss issues associated with using
them to evaluate teachers and schools.

While a variety of different models are used (see Lohr (2012) for a review of
common VAMs), in this paper we primarily consider the generalized persistence
(GP) model developed by Mariano et al. (2010), one of the most flexible models
in the literature. In the GP model, each student is followed over T grades with a
different teacher in each grade, and receives a score on a standardized test at the
end of each grade. Each student therefore “belongs” to up to T different teachers,
resulting in a multiple membership structure. The GP model, like other mixed
models used in the value-added context (Sanders et al., 1997; Rowan et al., 2002;
McCaffrey et al., 2003, 2004, 2005; Lockwood et al., 2007), uses a longitudinal
database of student scores and models the scores with random teacher intercepts.
Under this scenario, the empirical best linear unbiased predictors (EBLUPs) for
random teacher intercepts are the teacher VAM scores. In this paper we use the
term “teacher effect” to represent the VAM score of a teacher but note that, as
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observed by Lockwood et al. (2007), these teacher effects measure “unexplained
heterogeneity at the classroom level,” and not necessarily the causal effect of the
teacher.

The GP model is distinguished from others in the VAM literature by how it
attributes a student’s performance to current and prior teachers. If the effects of
good teaching persist, one would expect that students of a good teacher in year 1
would do well on the test in year 1 and would continue to do well on the tests in
future years. The Educational Value-Added Assessment System (EVAAS) model
(Sanders et al., 1997), a complete persistence model, assumes that the effect of
a teacher persists undiminished over all subsequent years of his or her students’
achievement. This complete persistence assumption, also proposed by Raudenbush
and Bryk (2002), implies that each teacher has one VAM score: the effect of a
teacher in year g on his or her students’ test scores is the same for their tests in each
of years g, . . . , T . The complete persistence assumption simplifies the covariance
structure, and the EVAAS model is implemented in SAS software (Wright et al.,
2010). A model proposed by McCaffrey et al. (2004) allows the effect of a teacher on
students’ scores to decay in future years, though the effects are otherwise perfectly
correlated. Lockwood et al. (2007) refer to this structure as variable persistence
(VP). In the VP model, each teacher has one estimated effect, but the impact on
students’ future year scores is reduced by a multiplicative factor in each year. The
multipliers, called persistence parameters, are estimated from the data.

The GP model allows a much more general structure for the effects of a current
teacher on future test scores. In the GP model, a teacher in year g has a different
effect on his or her students’ scores in each year from t = g, . . . , T , and the (T−g+1)
effects of that teacher have an unstructured covariance matrix to allow the effects
to be correlated. The EVAAS model is a special case of the GP model in which
the current and future effects of a teacher are assumed to be identical. The general
correlation structure in the GP model allows much more detailed exploration of
the patterns of teacher effects, but greatly complicates the problem of computing
estimates.

Hill and Goldstein (1998) estimate a class of multiple membership models using
an iterative generalized least squares algorithm, and Browne et al. (2001) employ
Monte Carlo Markov chain techniques. Likewise, Mariano et al. (2010) use Bayesian
methods to estimate the parameters for the GP model using data from a large urban
school district. To obtain a proper posterior distribution, however, a Bayesian ap-
proach to computations requires that an informative prior distribution be adopted
for the covariance parameters. As investigated in their paper, different priors often
result in different estimates of model parameters and teacher effects. A maximum
likelihood (ML) approach avoids the need for priors, although ML estimation of
even the simpler VP model has been “practically infeasible for all but small data
sets” (Lockwood et al., 2007) up to this point. In this paper we use the sparseness
of the covariance and design matrices to develop an efficient EM algorithm for cal-
culating ML estimates of parameters in the GP and VP models. We implement
the method in the user-friendly GPvam package (Karl et al., 2012) in R statistical
software (R Core Team, 2013). This development makes the GP and VP models
more accessible for use in practice, and provides an alternative to the Bayesian
calculations implemented by Mariano et al. (2010).
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While the GP model was developed for educational applications, the model and
the computational methods in this paper apply in many other settings as well. For
example, Ash et al. (2012) note the similarity between the problems of evaluating
teacher performance on the basis of student outcomes, and evaluating hospital and
physician performance on the basis of patient outcomes. The multiple membership
structure also arises in social network data (Airoldi et al., 2008). In another exam-
ple, Browne et al. (2001) and Goldstein et al. (2000) describe a multiple membership
model used to study Belgian household migration with complete persistence, mea-
suring the propensity of individuals to change household membership. The GP
model is a good candidate for the Belgian household data since the similarity of
former roommates may decrease over time. Browne et al. (2001) also describe an
application in which a hospital patient is cared for by different nurses and the
contribution of each nurse to the patient’s progress is estimated.

The paper is organized as follows. Section 2 reviews the models studied and
lays out the foundation for ML estimation. Section 3 presents the EM algorithm
for the estimation of the model. The details of the implementation of the model
in R appear in Section 4. The computational methods are applied to a data set
from a large urban school district in Section 5 to demonstrate the capabilities of
the estimation procedure and software.

2. Model Specification

The GP model (Mariano et al., 2010) and other structures considered in this
paper model responses of the lower-level units as follows:

(1) yig = x′igβ + s′igη + εig

where yig is a response for unit i at time g for i = 1, . . . , n, and g ∈ Ai; Ai, a subset
of {1, . . . , T}, is the set of times for which unit i is observed. The vector of all
responses is y = (y′1, . . . ,y

′
n)′, where yi = (yig, g ∈ Ai) is the vector of responses

for unit i. The matrix X, with rows x′ig for g ∈ Ai and i = 1, . . . , n, is the design
matrix of covariates for the fixed effects parameter vector β.

The random effects vector η ∼ N(0,G) contains random intercepts for the
higher-level units (and also for the lower-level units if desired). Each measure-
ment on a lower-level unit is associated with multiple higher-level units as specified
by the design matrix S which has rows s′ig for g ∈ Ai and i = 1, . . . , n. The multiple
membership structure arises because rows of the S matrix may contain multiple
nonzero values. The vector of error terms for lower-level unit i, εi = {εig, g ∈ Ai},
is assumed to be normally distributed with mean 0 and covariance matrix Ri. The
lower-level units are assumed to be independent conditionally on the random inter-
cepts contained in η, so ε = (ε′1, . . . , ε

′
n)′ ∼ N(0,R) and R is block diagonal with

blocks R1, . . . ,Rn. The error terms ε are also assumed to be independent of the
effects in η.

The observations taken together thus have the general form of a linear mixed
model:

(2) y = Xβ + Sη + ε,

with Cov(y) = V = SGS′ +R. The log-likelihood based on the observed data y
from model (2) is

(3) l(Ψ;y) ∝ −1

2
log |V | − 1

2
(y −Xβ)

′
V −1 (y −Xβ)
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where Ψ is a vector of the unique model parameters from β, G, and R. We assume
throughout that the sufficient conditions for consistency and asymptotic normality
of the ML estimates given by Broatch and Lohr (2012) are met. In addition to usual
regularity conditions, Broatch and Lohr (2012) assume that T is bounded and that
the number of lower-level units associated with each higher-level unit is bounded,
i.e., that the sum of each column of S is bounded. The model is also assumed to
be identifiable. Let ψ1, . . . , ψq be the parameters in Ψ that are components of G,
and R and write V =

∑q
j=1 ψjΣj . Then the model will be identifiable when the

matrices Σj are linearly independent for j = 1, . . . , q. In practical terms, the GP
model will be identifiable as long as there is sufficient mixing in the population so
that students in a class progress to a variety of different teachers as they continue
through school. Briggs and Weeks (2011), fitting a VP VAM with schools as higher-
level units instead of teachers, find that not all parameters are identifiable because
most students in their data set move from one grade to the next as a cohort within
the same school with insufficient mixing.

Note that the model formulation allows lower-level units to be missing obser-
vations for some times. In this paper we assume that observations are missing at
random and that the parameters governing the outcome process are distinct from
those characterizing the missingness process, yielding a valid likelihood-based anal-
ysis under the specified model (Little and Rubin, 2002). McCaffrey and Lockwood
(2011) and Karl et al. (2011) propose joint models for test score data and missing-
ness indicators to accommodate data with informative missingness, but we do not
consider such models here.

We handle the missing teacher links resulting from missing student observations
by assuming that the student was taught by an average teacher in that year. For
example, when modeling scores from grades 1, 2, and 3, if a student enters the
school at grade 2, we do not link that student’s second and third grade scores to
any of the first grade teachers. This approach was also used by Lockwood et al.
(2007).

To make these ideas concrete, in the remainder of this section we present specific
models considered in the educational setting, in which the lower-level units are
students, the higher-level units are teachers, and the measurement yig is a test
score of student i in year g. Rather than introducing new notation for each model,
we recast the model terms to match the notation of Equations (1) and (2) so that
the definitions of η,G,R and S depend on the chosen model. This streamlines the
discussion of the estimation of the parameters.

2.1. Generalized Persistence Model. The GP VAM (Mariano et al., 2010)
models student scores using information about the history of observations on each
student and each student’s teacher-history. It estimates the effect of teachers on
students in the year that they teach them, their lasting effect on the next year’s
score, and so on. Following the notation of Mariano et al. (2010), let θg[jt] represent
the effect for the j-th grade-g teacher on a student’s grade t score, for t ≥ g. A
grade g teacher has Kg = T −g+1 effects, one each for grades g, . . . , T . Thus θg[j·]
gives the vector of current and future year effects of the j-th grade g teacher. The
vector η concatenates the θg[j·] effects for all grades and teachers. The model is
able to distinguish between the persistence effect of former teachers and the current
effect of the present teacher because the students are not nested in teachers.
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We structure η so that G will be block diagonal: if

(4) η = (θ′1[1·], . . . ,θ
′
1[m1·],θ

′
2[1·], . . . ,θ

′
2[m2·], . . . , θT [1·], . . . , θT [mT ·])

′

then η ∼ N(0,G), where

(5) G = blockdiag (Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) .

With mg teachers in year g, there are mg copies each of Γg and each Γg is unstruc-
tured. The matrix Γg is square with Kg rows and gives the covariance of current
and future year effects for teachers of grade g. The vector sig contains 1’s in entries
corresponding to teachers who could affect response g of student i. Thus, for a
measurement yi2, where student i had teacher 5 at time 1 and teacher 12 at time 2,
si2 contains a 1 corresponding to the position of θ1[5,2] to include the lagged-year
effect of teacher 5, and it contains a 1 corresponding to the position of θ2[12,2] to
include the current-year effect of teacher 12. If, on average, teachers have more
effect on current-year student scores than on subsequent scores of their students,
we expect the first diagonal element of Γg to be larger than the other diagonal
elements, reflecting the larger variability of current-year teacher effects.

The intra-student correlation is modeled in unstructured blocks of the conditional
covariance matrixR. After ordering the data by student and then by year, the error
terms ε = (ε′1, . . . , ε

′
n)′ are distributed as ε ∼ N(0,R) where R is a block diagonal

matrix with blocks

Ri =

σ11 · · · σT1

...
. . .

...
σT1 · · · σTT

 .(6)

If student i is missing an observation, then Ri omits the corresponding row and
column corresponding to the year in which the observation is missing. Ri depends
on i only through the dimension. We refer to this model as GP.R, indicating that
the intra-student correlation is modeled in the R matrix.

An advantage of this model is that the responses in different years can use
different scales—the scaling is picked up in the covariance matrices G and R.
The model has great flexibility for the relation between current- and future-year
teacher effects, and for the within-student correlation. Note that this formulation
assumes that the sets of teachers in different grades are distinct (or that if someone
teaches in both grades 3 and 4, their effects on the grade-3 and grade-4 students
are independent). The model can be modified to allow additional dependence for
persons who teach multiple grades, but for simplicity here we consider the case with
distinct teachers.

2.2. GP Model with a Single Future Year Effect. Some processes, including
the educational data analyzed by Mariano et al. (2010), produce strongly correlated
future year effects. Mariano et al. (2010) note in their application that, within each
grade, the future year effects are strongly correlated with each other, but only mod-
erately correlated to the current year effect. Following their idea of averaging the
future year effects of each teacher after fitting the full model, we fit a reduced model
that allocates a single future year effect to each teacher. This combines aspects of
the GP model and the complete persistence model. This reduction requires that
the scale of measurement be the same for each year of the study. We refer to the
reduced model as rGP.R. We use θt[j1] and θt[j2] to represent the current and future
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year effects, respectively, of the j-th grade-t teacher in rGP.R. Then sig contains a
1 in the entry corresponding to the teacher in year g, θg[j1], and also contains a 1
in each entry corresponding to the future effects of the student’s teachers in years
1, . . . , g − 1. An alternative model would be to impose an autoregressive structure
on the Γi as in Paddock et al. (2011).

2.3. GP Model with Random Student Effects. When scores from each year
are measured on the same scale, an alternative model specification is available. Us-
ing a variable persistence structure for teacher effects, McCaffrey and Lockwood
(2011) modeled the intra-student correlation by using a random intercept for each
student. We implement this alternative structure here, except we use the general-
ized persistence structure for teacher effects. We refer to this model as GP.G:

(7) yig = x′igβ + s′igη∗ + δi + εig

The terms in Equation (7) are defined the same as they were in Equation (1), with
the exception of εig and the new term δi. For this subsection, we use η∗ to denote
the vector of teacher effects. Instead of modeling εi with an unstructured covariance
matrix, GP.G includes a separate error variance in each year εig ∼ N(0, σ2

g). As a

result, R is diagonal with entries from the set
{
σ2
1 , . . . , σ

2
T

}
, corresponding to the

year of the observation. We likewise offer new definitions for G,S and η for GP.G.
The δi are random student intercepts, distributed as δi ∼ N1(0,Γstu), with

cov(εig, δi) = 0. We may express GP.G in the form of Equation (1) by including
the δi in the random effects vector η,

(8) η = (δ1, . . . , δn,η
′
∗)
′.

The vector η is then distributed as η ∼ N(0,G) where

(9) G = blockdiag (ΓstuIn,Γ1, . . . ,Γ1, . . . ,ΓT , . . . ,ΓT ) ,

with mg copies each of Γg, where each Γg is unstructured. To accommodate the
new η, the design matrix S is composed of the blocks [S1|S2], where S1 is the
design matrix for the student effects and S2 is the design matrix for the teacher
effects.

The same model could be fit without student random intercepts by modeling R
in Equation (6) as a compound-symmetric, block-diagonal matrix. However, the
student-intercept formulation is useful when exploring sensitivity to the presence of
potentially nonignorable missing data (McCaffrey and Lockwood, 2011; Karl et al.,
2011) or when the random student intercepts are of interest. The GP.G formulation
is also more easily extended to allow a random growth model where each student
has his or her own slope and intercept.

2.4. Complete and Variable Persistence Models. Instead of modeling a sep-
arate effect in years g, . . . , T for each grade-g teacher, the variable persistence (VP)
VAM models a single effect for each teacher. Let θt[j] denote the effect of the j-th
grade-t teacher. The persistent effect of the j-th grade-t teacher on grade-g scores
is modeled as a multiple of that teacher’s effect, αgtθt[j]. Lockwood et al. (2007)
refer to the αgt for g = 1, . . . , T and t = 1, . . . , g as persistence parameters. The
persistence parameters for the current year are fixed at one, αgt = 1 for t = g, while
the others are estimated. The complete and zero persistence VAMs are two special
cases of the VP model, with fixed persistence parameters αgt = 1 and αgt = 0
(for t 6= g), respectively. The R matrix of VP is the same as the one defined for
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GP.R. SAS does not provide the ability to estimate the VP model: Lockwood et al.
(2007) note that there are no available scalable implementations of the VP model.
However, we will show that the EM algorithm can provide a scalable routine for
the VP model.

The random teacher effects for the VP model are are concatenated

η =
(
θ1[1], . . . , θ1[m1], θ2[1], . . . , θ2[m2], . . . , θT [1], . . . , θT [mT ]

)
.

and distributed as N(0,G). Since there is only one effect modeled for each teacher,
G is diagonal with mg copies of Γg for g = 1, . . . , T ,

G = diag (Γ1, . . . ,Γ1,Γ2, . . .Γ2, . . . ,ΓT , . . . ,ΓT ) ,

In the VP and CP models, the αtg’s modify the covariance structure, since
the effect of teacher j in year g, θg[j], appears in the model for that teacher’s
students in all subsequent years. To match the structure of the VP model to
that of the GP model, let η∗ = Aη where A has

∑
gmg columns, one for each

teacher. A = blockdiag(A1, . . . ,AT ), where Ag = Img
⊗ (α1g = 1, . . . , αTg)′, for

g = 1, . . . , T , with ⊗ representing the Kronecker product. Using the same definition
of S as in Section 2.1, the VP model may be expressed as

(10) y = Xβ + Sη∗ + ε,

where η∗ ∼ N(0,G∗), with G∗ = AGA′. The error terms are distributed as
ε ∼ N(0,R), cov(η, ε) = 0, where R is defined in Section 2.1. Briggs and Weeks
(2011) discuss alternative formulations of the VP model that can be used if there
are concerns about identifiability.

3. Computing Maximum Likelihood Estimates

The degree of computational difficulty associated with estimated the parameters
of Model (2) depends largely on the structure of the random effects, manifested
through the pattern of nonzero entries in S. In applications where the random
effects are nested within subjects, the resulting V matrix is block diagonal, and
the log-likelihood in (3) may be factored over the subjects. However, for non-
nested models, V has no patterned structure, and its dimension is equal to the
number of observations in the data set. As a result, a direct maximization of the
likelihood function is highly inefficient or infeasible for large data sets. Wolfinger
et al. (1994) develop a dimensionality-reduction technique—used with a Newton-
Raphson (NR) routine in SASr software (SAS Institute Inc., 2013)—that requires
the manipulation of a square matrix with dimension depending on the number of
levels of fixed and random effects, rather than the number of observations. Either
the method of Wolfinger et al. (1994) or some other form of dimensionality reduction
is necessary for scalable estimation of Model (2) when the random effects are not
nested.

Even after a dimensionality reduction for V , the matrices R and S grow with
the size of the data set. For example, SAS PROC GLIMMIX allows users to
specify a custom S matrix via the multimember option of its EFFECT statement.
However, the procedure does not currently take into account the sparse structure of
the design and covariance matrices, and does not scale well to large data sets. SAS
PROC HPMIXED does take sparseness into account and can be used to estimate
a variation of the complete persistence model. However, HPMIXED is tailored to
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a specific model and has limited choice of covariance structures. Broatch and Lohr
(2012) show how to use SAS software to estimate parameters in a multiresponse
VAM by specifying a user-defined covariance matrix, but this method also does not
work well with large data sets.

Model (2) requires a positive definite G matrix. A third major difficulty asso-
ciated with the estimation of linear mixed models arises when random effects are
highly correlated, producing a nearly singular G matrix. The Newton-Raphson
routines are prone to failure in these settings, frequently producing non-positive
definite estimates for G (Demidenko, 2004). One possible solution to this issue
is by parameterizing the model according to the Cholesky root of G. SAS offers
functionality for such a parametrization, but it is only compatible with banded-
unstructured covariance matrices (SAS Institute Inc., 2013).

The EM algorithm presented below overcomes these challenges by using a matrix
of reduced dimension from that of V , utilizing the sparseness of S,G, and R, and
achieving stability when the random effects covariance matrix is nearly singular.

3.1. The EM Algorithm. The EM algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008) provides a broad framework for maximum likelihood estima-
tion in the presence of missing data. It was one of the first methods used to estimate
linear mixed models by treating latent random effects as missing data (Laird and
Ware, 1982). Its use for estimation of mixed models has lagged behind the pop-
ularity of the often-faster NR algorithms. The EM algorithm has a linear rate of
convergence (which depends on the number and structure of the random effects)
near a local maximum (Dempster et al., 1977), whereas the NR algorithms provide
a quadratic rate of convergence.

Nevertheless, an advantage of the EM algorithm is that no restrictions need to
be placed on the G matrix to ensure that it is positive definite, as shown in the
Appendix. For some models, the usual advantages of NR over EM (Lindstrom and
Bates, 1988) are negated by the presence of highly correlated random effects. Fur-
thermore, the EM algorithm naturally depends on the manipulation of matrices of
dimension equal to the number of random effects rather than the number of obser-
vations so that additional dimensionality reduction techniques are not necessary.
When taking advantage of sparse matrix computations, the EM algorithm can pro-
vide a viable method for estimating non-nested mixed models, especially those with
highly correlated random effects.

We will refer to f(y; Ψ) as the observed data density function and
f(y,η; Ψ) = f(y|η; Ψ)f(η; Ψ) as the complete data density function, where

f(y|η;Ψ) ∝ |R|−1/2 exp

{
−1

2
(y −Xβ − Sη)′R−1 (y −Xβ − Sη)

}
f(η;Ψ) ∝ |G|−1/2 exp

{
−1

2
η′G−1η

}
Given initial values for the parameters and the random effects, the EM algorithm
alternates between an expectation (E) step and a maximization (M) step. At
iteration (k + 1), the E step calculates the conditional expectation of the complete
data log-likelihood, given the observed data, y, and parameter estimates obtained

in the k-th step, Ψ(k). That is, the E step computes

Q(Ψ; Ψ(k)) =

∫
{log f (y|η; Ψ) + log f (η; Ψ)} f(η|y; Ψ(k))dη.
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The M step then maximizes Q(Ψ; Ψ(k)) with respect to Ψ, resulting in the updated

parameter vector Ψ(k+1) satisfying

(11)

∫
∂

∂Ψ
{log f(y|η; Ψ) + log(f(η; Ψ)} f(η|y; Ψ(k))dη

∣∣∣
Ψ=Ψ(k+1)

= 0,

provided that differentiation and integration are interchangeable, which is valid be-
cause the complete data likelihood f(y,η; Ψ) is a member of the exponential family
(Lehmann and Romano, 2010). Note that the expression on the left side of Equa-
tion (11) is equivalent to the observed data score vector S(Ψ;y) = (∂/∂Ψ) l(Ψ;y)
(Louis, 1982).

In Sections 3.2 to 3.4 we derive the M step for each of the models developed in
Section 2. The E step described in Section 3.5 is the same for all of the models
discussed, using the appropriate definitions of η, G, S, and R.

3.2. M-Step for GP.R and rGP.R. The M-step updates appearing in this sec-
tion apply to both the generalized persistence model GP.R and its reduced version
rGP.R. The only differences that must be kept in mind are the definitions of η and
Γg. Using the definition of G in Equation (5), which applies to both GP.R and
rGP.R, we may write the density of η as

f(η; Ψ) ∝ det(G)−1/2 exp

(
−η
′G−1η

2

)

=

[
T∏

g=1

det(Γg)−mg/2

]
exp

− T∑
g=1

mg∑
j=1

θ′g[j·]Γ
−1
g θg[j·]

2


We use Petersen and Pedersen (2008) and Harville (2008) for matrix differentiation,
and note that each Γg is symmetric. Referring to Equation (11), the score vector
with respect to Γg is

S(Γg) =

∫
∂

∂Γg
log

[
det(G)−1/2 exp

(
−η
′G−1η

2

)]
f(η|y; Ψ)dη

= −1

2

∫
∂

∂Γg

mg log [det(Γg)] +

mg∑
j=1

θ′g[j·]Γ
−1
g θg[j·]

 f(η|y; Ψ)dη

= matrix with components

{
dij if i = j
2dij if i 6= j

where dij is the ij-th component of the matrix

D = −1

2

mgΓg
−1 − Γg

−1

mg∑
j=1

E
[
θg[j·]θ

′
g[j·]|y; Ψ

]Γg
−1


Let

η̃ = E[η|y; Ψ](12)

ṽ = var[η|y; Ψ](13)

represent the conditional expectation and variance, respectively, of η. These quan-
tities are calculated in the E-step and remain fixed during the M-step. Likewise, let

the sub-vector of η̃ corresponding to E[θg[j·]|y; Ψ] be denoted θ̃g[j·], and the block
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of the matrix ṽ corresponding to E[θg[j·]θ
′
g[j·]|y; Ψ] be denoted ṽg[j·]. Now, since

ṽ = E[ηη′|y; Ψ]− η̃η̃′, setting S(Γg) = 0 implies

mgΓg
−1 = Γg

−1
mg∑
j=1

(
ṽg[j·] + θ̃g[j·]θ̃

′
g[j·]

)
Γg
−1

Thus the M-step update for Γg is

(14) Γ̂g =
1

mg

mg∑
j=1

(
ṽg[j·] + θ̃g[j·]θ̃

′
g[j·]

)
Equation (14) calculates an average of the blocks of ṽ + η̃η̃′ that correspond to
teachers who taught in year g.

The M-step update for β is the value that solves S(β) = 0, where

S (β) =

∫
∂

∂β

[
−1

2
(y −Xβ − Sη)

′
R−1 (y −Xβ − Sη)

]
f(η|y; Ψ)dη

= X ′R−1 (y −Xβ − Sη̃) ,

namely,

β̂ =
(
X ′R−1X

)−1
X ′R−1 (y − Sη̃)(15)

The calculation of the M-step update for R from Equation (6) is complicated
by the fact that the structure of R changes in the presence of unbalanced data.
The M-step update for the component σkl of R is the value that solves S(σkl) = 0,
where

S (σkl) =

∫
∂

∂σkl

[
log
(
|R|−1/2

)
−1

2
(y −Xβ − Sη)

′
R−1 (y −Xβ − Sη)

]
f(η|y; Ψ)dη.

If the observations are sorted by students and then by year, R is block-diagonal
with block sizes depending on the number of observations on each student. For T
years, there are 2T − 1 possible combinations of years in which a student may be
observed, although not all of these patterns may appear in a given data set. To
parameterize these combinations, we treat the ordered, binary observed-test-score
(OTS) indicators for each student as a number in base-2. So in a study over three
years, each student will have an OTS pattern from the first column of Table 1.

For example, a student with observations in each year has pattern 7, with the
corresponding block of R given byσ11 σ21 σ31

σ21 σ22 σ32
σ31 σ32 σ33

 .

The matrices corresponding to the other patterns are subsets of this matrix, using
the rows and columns suggested by the OTS indicator. A student who is missing
an observation in year 2 has pattern 5 and corresponding error covariance matrix(

σ11 σ31
σ31 σ33

)
.
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Table 1. Parameterizing the OTS patterns for example with 3 years

OTS
indicators Pattern

001 1
010 2
011 3
100 4
101 5
110 6
111 7

Let p denote the OTS pattern, np be the number of students with that pattern,
and R(p) represent the covariance matrix corresponding to the p-th pattern. In
addition, let Pkl denote the set of patterns p whose covariance matrix R(p) contains
σkl. Furthermore, let b(p) denote the b-th student with pattern p. We may write

|R| =
∏
p

∣∣R(p)

∣∣np
.

Thus the score function may be expressed as

S (σkl) =− 1

2

∫
∂

∂σkl

{∑
p

np log
∣∣R(p)

∣∣+
∑
p

∑
b

[
(
yb(p) −Xb(p)β − Sb(p)η

)′
R−1(p)

(
yb(p) −Xb(p)β − Sb(p)η

)]}
× f(η|y; Ψ)dη

where yb(p) is the vector of observations from student b(p), with corresponding
design matrices for fixed and random effects Xb(p) and Sb(p). The derivative will
be 0 for all terms that do not contain the parameter σkl. This includes observations
on students who do not have observations in both years k and l. Then, taking
the derivative and letting 1{C} be the indicator function that takes the value 1 if
condition C is true and 0 otherwise,

S (σkl) =−
(

1{i 6=j} +
1

2
× 1{i=j}

) ∑
p∈Pkl

{
np

(
R−1(p)

)
{kl}
−∫ ∑

b

[
R−1(p)

(
yb(p) −Xb(p)β − Sb(p)η

)
×
(
yb(p) −Xb(p)β − Sb(p)η

)′
R−1(p)

]
{kl}

f(η|y; Ψ)dη

}
.
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The notation {kl} indicates the matrix component corresponding to the position
of the parameter σkl in R(p). Again using the relationship ṽ = E[ηη′|y; Ψ]− η̃η̃′,

S (σkl) =−
(

1{k 6=l} +
1

2
× 1{k=l}

) ∑
p∈Pkl

{
npR

−1
(p)

−R−1(p)

∑
b

[(
yb(p) −Xb(p)β

)(
yb(p) −Xb(p)β

)′
−
(
yb(p) −Xb(p)β

) (
Sb(p)η̃

)′ − Sb(p)η̃
(
yb(p) −Xb(p)β

)′
+ Sb(p)

(
ṽ + η̃η̃′

)
S′b(p)

]
R−1(p)

}
{kl}

.(16)

If there were no missing observations then there would only be one OTS pattern
and the calculation of the M-step update for R would have a solution that followed
the same pattern as the M-step update for G. However, the presence of unbalanced
student profiles disrupts the structure of R, and score functions must be calculated
for each of the unique model parameters inR. The closed form solution for S(σkl) =
0 depends on the number of years and on the OTS patterns that are present in
the data set. One option is to use a Newton-Raphson routine to solve the score
equations. We suggest such a method in Section 4.

3.3. M-step for GP.G. The M-step update for β in GP.G is the same as the
update for GP.R appearing in Equation (15), given the appropriate definition of R.
Likewise, the M-step updates for the Γg appearing in Equation (14) are unchanged.

The new work required for GP.G in Equation (7) is the calculation of the M-step
update for the student variance component Γstu and the yearly error variances σ2

g ,
for g = 1, . . . , T . The M-step update for Γstu is derived in the same way way as the
update for Γg, and is equal to the mean of the first n diagonal elements of ṽ+ η̃η̃′.
For the purpose of calculating σ̂2

g , let Bg be the set of students that are observed
in year g.

S(σ2
g) =

∫
∂

∂σ2
g

log
 T∏

j=1

∏
i∈Bj

σ−1
j exp

[
−
(
yij − x′ijβ − s′ijη

)2
2σ2

j

] f(η|y;Ψ)dη

Setting the score function equal to 0 and then using the fact that

E
[
η′sigs

′
igη|y; Ψ

]
= tr

(
sigs

′
igṽ
)

+ η̃′sigs
′
igη̃

yields

σ̂2
g =

1

ng

∑
i∈Bg

{(
yig − x′igβ

) (
yig − x′igβ − 2s′igη̃

)
+ s′ig

(
ṽ + η̃η̃′

)
sig
}

(17)

3.4. M-step for VP and CP Models. Although the covariance structure of
the VP model in Equation (10) is different, the parameters may be estimated in
much the same way as for the GP model. The EM algorithm requires a positive
definite covariance matrix for the random effects. Since G∗ in Equation (10) is
singular, we work instead with the diagonal G matrix defined in Section 2.4 and
the associated vector η of current year teacher effects. This is done operationally
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by forming S∗ = SA, so that the “design” matrix S∗ includes the parameters
αgt, and then iteratively updating S∗ as the parameter estimates are updated
during the estimation procedure. This is merely an algebraic distinction, since
SAη = Sη∗ = S∗η, where η∗ is the vector defined in Section 2.4.

The M-step updates for β and R in the VP and CP models appear in Equations
(15) and (16), given the appropriate definitions of η and S. The estimates for Γg

appearing in Equation (14) apply as well, except in this case the Γg are all scalars.
The VP model estimates the persistence parameters αuv, whereas the CP model

fixes them at 1. Let ∂S∗/∂αgt = ∆gt. For example, when each student is linked to

only one teacher in each year, ∆gt will be a sparse matrix with 1’s in rows corre-
sponding to year-g observations, under columns corresponding to year-t teachers.
The score function for αgt in the VP model is

S(αgt) = (y′ − β′X ′)R−1∆gtη̃ − tr
[
S′∗R

−1∆gt
(
ṽ + η̃η̃′

)]
The score function is linear in α = {αuv}g,t, meaning that a single Newton step
provides an exact solution for S(α) = 0.

3.5. E-step. The E-step updates for all of the discussed models are identical, using
the appropriate definitions of S,G,η, and R. Calculation of the components of
observed data score vector requires the first two moments, η̃ and ṽ, of f (η|y; Ψ).
Using the method of Henderson (1950, 1975), the moments are obtained from the
gradient and Hessian of f(y,η) with respect to η. The resulting estimates are

ṽ =
(
S′R−1S +G−1

)−1
(18)

η̃ = ṽS′R−1(y −Xβ)(19)

The expression for the EBLUP in Equation (19) is equivalent, via a matrix identity,
to the perhaps more familiar expression

(20) η̃ = GS′V −1(y −Xβ)

However, from a computational standpoint, (19) is much more efficient than (20)
since it does not require calculation of the full marginal covariance matrix V . The
calculation of (19) is relatively fast despite the large dimension of R because both
S′ and R−1 are sparse.

3.6. EM Standard Errors. One criticism of the EM algorithm is that it does not

produce the Hessian of the MLE Ψ̂ as a byproduct. The work we have already done,
however, makes it possible for us to compute the observed data information matrix
directly without working through a correction to the complete-data information
matrix, as done by Louis (1982). Equation (11) expresses the observed data score
vector S(Ψ) as the conditional expectation of the complete data likelihood. We
derived the components of the observed data score vector in order to calculate the
M-step equations. Together with the values η̃ and ṽ from the E-step, our expression
for the score vector allows us to calculate the observed information matrix,

− ∂S(Ψ)/∂Ψ|Ψ=Ψ̂ .(21)

with a central difference approximation at the MLE Ψ̂. This method is suggested
by Jamshidian and Jennrich (2000), who propose using either a forward or cen-
tral difference approximation, or a Richardson extrapolation (Lindfield and Penny,
1988).
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It is also useful to calculate standard errors for the predicted random effects.
The matrix ṽ provides the covariance matrix for η; however, since η is random, ṽ
underestimates the prediction variance of η̃ − η (Littell et al., 2006). As demon-
strated by McLean et al. (1991), the prediction variance matrix of the random
effects appears in block C22 of

C =

(
C11 C12

C21 C22

)
=

(
X ′R−1X X ′R−1Z

Z ′R−1X S′R−1S +G−1

)−1
This procedure also yields the standard errors for β̂. The standard errors obtained

by this method for β̂ are the same as those obtained by the central difference
approximation: the central difference approximation is needed only for the standard
errors of the covariance parameters.

3.7. Convergence and Initial Values of the EM Algorithm. The EM algo-
rithm converges to a stationary value of the observed data likelihood as long as
Q(Ψ; Ψ′) is continuous in both Ψ and Ψ′, and the parameter space is compact
(Wu, 1983). Although the parameter space for Ψ is not compact for Model (2),
this regularity condition can be satisfied by a truncation of the parameter space
(McCulloch, 1994; Demidenko, 2004).

One possible convergence criterion is to stop the algorithm when the relative

change in the log-likelihood at iteration k, l(Ψ(k)), is less than a fixed tolerance,

l(Ψ(k))− l(Ψ(k−1))

l(Ψ(k))
< w.

In general, we use w = 10−7. Verification that the EM algorithm has converged to a
local maximum of the likelihood function is possible by checking that the Hessian of
the observed data likelihood is negative definite. As with any iterative maximization
routine, there is no way to guarantee that the EM algorithm will converge to the
global maximum of the likelihood, given a single set of initial values Ψ0. It is
advisable to compare the results of the algorithm after starting from different sets
of initial values. For the VAMs in Section 2, we did not find any sensitivity to the
choice of Ψ0.

4. Implementation of the EM Algorithm

We have implemented estimation of the GP, VP and CP models in the R (R
Core Team, 2013) package GPvam (Karl et al., 2012) for educational value-added
assessments as an example of applying the proposed EM algorithm. Our program
takes advantage of the sparseness of the design and certain covariance matrices, and
handles large data sets relatively well. Because the program was custom-designed
for these VAMs, it requires minimal input. The user must supply a data frame with
columns for test scores, year of observation, student ID, and teacher ID. Optionally,
other columns may be included for additional covariates in the X matrix; these are
declared to the program through an R formula statement. Sparse matrices are
constructed and handled via the R package Matrix (Bates and Maechler, 2012).

The GP model requires specification of a complex random effects structure. Do-
ran and Lockwood (2006) provide a tutorial to the implementation of VAMs in
R using the functions lme and lmer. However, Lockwood et al. (2003) explain
that, for a less complicated multi-membership model, data sets with more than
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Table 2. Run times in minutes

Model GPvam SAS

CP 4.2 55
VP 5.5 N.A.
GP.G 12 Failed
rGP.R 80 Failed
GP.R 114 Failed

200 teachers require several tricks to program with lme, and often fail to converge.
GPvam automatically builds the sparse design matrix for the random effects, and
performs well in the application in Section 5 which contains 4781 teacher effects for
GP.R.

Although GPvam has been tailored to the estimation of VAMs, the R code may
be generalized to other applications involving linear mixed models. New code would
need to be written to build the application-specific S and G matrices but iterative
parts of the program would not need to be adjusted. The EM algorithm may also
be extended for efficient estimation of non-nested, nonlinear mixed models. The use
of a nonlinear link function will require an integral approximation in the E step. It
would also be possible to impose structure on the R matrix, such as autoregressive,
compound symmetric, or Toeplitz. The procedures for obtaining the score functions
of the parameters of an unstructured R may serve as a template for these other
situations.

As mentioned in Section 3.2, the M-step update for R in GP.R, rGP.R, and VP
requires extra computational work due to the lack of a readily-available closed form
solution. We use a Newton-Raphson algorithm to calculate the M-step update. The
standard NR algorithm for solving S(R) = 0 often diverges when the initial R0 is
too far from the maximum. To improve the stability of the routine, we modify the
appropriate Hessian by adding a scaled diagonal matrix during the first few M-step
updates for R. This results in a hybrid of a Newton and a gradient descent method
that produces more reliable convergence when the initial value is far away from the
critical point (Nocedal and Wright, 1999).

To compare the performance of GPvam and SAS (with the EFFECT statement of
PROC GLIMMIX) in implementing the models presented in Section 2, we consider
a data set with 6236 observations on 2834 students over 3 years, with 102, 104, and
98 teachers in each year, respectively. Table 2 gives the results. GP.R and rGP.R
each failed in SAS after encountering a negative-definite covariance matrix, while
GP.G ran out of memory in SAS after a few minutes. The application in Section 5
involves a much larger data set than the one used in this example.

5. Application

We apply the models to the data set analyzed by Mariano et al. (2010), which
is available in the supplementary material of McCaffrey and Lockwood (2011).
According to McCaffrey and Lockwood (2011), the data come from vertically linked
mathematics standardized test scores from grades 1–5 for a cohort of students from
a large urban US school district.
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Figure 1. Estimated G and R matrices from GP.R. The covari-
ance matrix is on the left, and the correlation matrix is on the
right.

R:
0.741 0.478 0.463 0.456 0.392
0.478 0.705 0.523 0.516 0.449
0.463 0.523 0.736 0.563 0.484
0.456 0.516 0.563 0.688 0.509
0.392 0.449 0.484 0.509 0.565




1.000 0.661 0.626 0.639 0.606
0.661 1.000 0.726 0.740 0.711
0.626 0.726 1.000 0.791 0.750
0.639 0.740 0.791 1.000 0.817
0.606 0.711 0.750 0.817 1.000


Γ1:

0.443 0.121 0.120 0.107 0.095
0.121 0.100 0.088 0.084 0.077
0.120 0.088 0.087 0.083 0.076
0.107 0.084 0.083 0.080 0.074
0.095 0.077 0.076 0.074 0.069




1.000 0.575 0.610 0.568 0.541
0.575 1.000 0.941 0.941 0.920
0.610 0.941 1.000 0.994 0.986
0.568 0.941 0.994 1.000 0.995
0.541 0.920 0.986 0.995 1.000


Γ2:

0.281 0.059 0.039 0.042
0.059 0.025 0.023 0.020
0.039 0.023 0.024 0.020
0.042 0.020 0.020 0.017




1.000 0.703 0.478 0.593
0.703 1.000 0.951 0.967
0.478 0.951 1.000 0.979
0.593 0.967 0.979 1.000


Γ3:0.248 0.032 0.024

0.032 0.015 0.015
0.024 0.015 0.015

1.000 0.516 0.394
0.516 1.000 0.979
0.394 0.979 1.000


Γ4:(

0.130 0.038
0.038 0.030

)(
1.000 0.612
0.612 1.000

)
Γ5 : 0.146

The data have been pre-processed by McCaffrey and Lockwood (2011), and we
further process the data by removing observations with no student link, as well as
observations missing both the test score and the teacher link. The resulting data set
consists of 26019 observations on 9295 students over 5 years. For grades 1 through
5, there are 338, 318, 306, 321, and 259 teachers, respectively. This results in a
total of 4781 teacher effects for GP.R. The data set does not contain any additional
covariates, so the fixed effects modeled include a mean for each year.

We fit each of the models GP.R, rGP.R, GP.G, VP, and CP to this data set using
the program GPvam. Table 3 lists the estimated yearly means from GP.R: the
results from the other models are similar. Figure 1 gives the maximum likelihood
estimates of the covariance parameters from GP.R. Models rGP.R and GP.G are
valid for this data set because the scores from each year are on the same scale of
measurement. The estimates of current-year teacher effects are nearly identical for
the three variations of the GP model, with correlations of 0.998 or higher among
the estimated effects. The agreement between GP.R and rGP.R is not surprising
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Figure 2. Standard errors for current year teacher ratings for
year-3 teachers.

GP.R
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Table 3. Estimates for yearly means from GP.R

Estimate Std. Error

Year 1 3.395 0.030
Year 2 3.996 0.029
Year 3 4.726 0.023
Year 4 5.309 0.022
Year 5 5.984 0.025

Table 4. Persistence Parameters from VP

Estimate S.E.

α21 0.18 0.02
α31 0.19 0.02
α41 0.17 0.02
α51 0.15 0.02
α32 0.22 0.02
α42 0.14 0.02
α52 0.16 0.02
α43 0.13 0.02
α53 0.09 0.02
α54 0.29 0.03
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given the extremely high correlations between future year effects seen in the Γg

matrices of Figure 1. With a simplified covariance structure, rGP.R converges after
48 iterations in 7% of the time it takes the 431 iterations needed for GP.R to
converge. For this data set, the reduced model rGP.R appears to provide a good
alternative. Slow convergence in the neighborhood of a maximum that lies near
the boundary of the parameter space is a well-known property of the EM algorithm
(Demidenko, 2004). However, the time used by the EM algorithm is worthwhile,
because the faster NR algorithms are prone to failure in these settings.

Fitting the CP and VP models with the EM algorithm results in approximately
the same correlations among the GP.R, VP, and CP estimates as found by Lockwood
et al. (2007) and Mariano et al. (2010). The persistence parameters for the VP
model in Table 4 are similar to those provided by McCaffrey and Lockwood (2011),
who modeled students with random effects. The persistence parameters are all
significantly different from 1, indicating that the assumption of complete persistence
is not compatible with this data set.

Using the EM algorithm, we obtain correlation patterns for GP.R that are similar
to those in Figures 2 and 3 of Mariano et al. (2010). However, we note that Mariano
et al. (2010) obtained these results after careful choice of an informative prior that
allowed for strong correlations between future year effects. In simulation studies,
they found that a minimally informative Wishart prior for covariance parameters
could result in posterior credible intervals for the correlations that did not include
the true values. The EM algorithm gives maximum likelihood estimates that do
not need any specifications of prior distributions.

Figure 2 compares the standard errors associated with the predicted teacher
effects for GP.R, VP, and CP. As stated in Section 3.6, the standard errors are
calculated as a by-product of the EM algorithm. The values for the larger standard
errors, which likely correspond to teachers with relatively fewer observations, are
inflated when moving from the CP to the VP or GP models. This is interesting
because the prediction intervals are used by some researchers to classify teachers
as below-average, average, or above average (Draper, 1995; Lockwood et al., 2007).
Despite the inflation of some of the standard errors seen when moving from the
CP to the VP model, most of the prediction errors are smaller in the VP model.
An advantage of maximum likelihood estimation is that the standard errors for
the teacher effects, derived in Section 3.6, are free from the influence of potentially
informative prior distributions.

The models fit to this data set have a number of assumptions that were stated in
Section 2. All models assume that the teacher effects in η and the residual student
effects in ε are independent. If data are collected in a designed experiment, with
students randomly assigned to teachers, this assumption is reasonable. Most data
used in VAMs are observational, though, so this assumption is violated if, say, some
teachers are regularly assigned the best students. In that case, the effects ascribed
to teachers may actually be more properly attributed to the students who take those
teachers. The models are also assumed to be “correct” in that they are assumed
to include all factors relevant to the response. The data set analyzed here did
not contain information on student-level covariates such as socioeconomic status,
for example, and it is possible that including such covariates in the model would
change the estimated teacher effects. These models further assume that missing test
scores are missing at random. This amounts to assuming that the probability a test
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score is missing does not depend on the student’s latent ability, teacher history, or
what the student’s test score would have been if observed. Finally, although the
multiresponse models considered here relate later test scores to earlier test scores
through the within-student correlations, the models imply that, conditionally on
yi,g−1, the relationship between yig and yi,g−1 is linear.

The usefulness of VAM scores for measuring teacher effectiveness depends on the
quality of the tests as measures of student achievement (Koretz, 2008), and many
aspects of teacher contributions may be unrelated by standardized tests (Braun
et al., 2010). A relevant discussion of the utility and limitations of multilevel
models is given by Draper (1995), who urges a careful examination of the nature of
the sampling in the study. Thus, caution is needed when interpreting a teacher’s
VAM score.

With these limitations in mind, VAMs can provide valuable information for
improving the educational system (Harris and McCaffrey, 2010). In this example,
the GP model indicates that the current-year teacher has the highest effect on
student scores, and that the current-year effects are, on average, stronger in earlier
grades than in later grades. The estimates of relative sources of variability also
provide valuable information: in grade 1, current-year teachers (or other classroom
effects that are associated with teachers) account for approximately 36% of the
variability in student scores but that percentage drops to 16–20% in grades 4 and
5. Ballou et al. (2004) and Lockwood et al. (2007) note that teacher effects from the
first year are most susceptible to bias resulting from nonrandom student assignment
to classrooms.

6. Conclusions

In this article, we have developed a method for computing maximum likelihood
estimates for a class of multiple membership models in which lower-level units
progress through sequential higher-level units (Mariano et al., 2010). The EM
algorithm offers an efficient method of computation, taking advantage of matrix
sparsity and requiring inversion of a matrix whose dimension depends on the num-
ber of random effects, rather than on the total number of observations as in other
implementations. The algorithm produces stable behavior even when the covariance
matrix for the random effects is nearly singular. We have implemented the pro-
posed methods in the R package GPvam. The availability of maximum-likelihood
estimates should be useful for those preferring Bayesian estimation as well, provid-
ing a sensitivity analysis to their choice of priors. We hope that this user-friendly
implementation of the model will facilitate further empirical study of the model’s
properties.

In the educational context, the GP and other models fit provide a great deal
of flexibility for studying relative effects of teachers on their students’ current and
future achievement. In some cases the full flexibility of the GP model may be needed
to summarize the data structure; in others, being able to examine the estimates from
the GP model may show that a simpler structure adequately describes the data.
Our algorithm readily calculates standard errors for the predicted teacher effects
(VAM scores). In many applications, the standard errors of the teacher effects are
quite large (Braun et al., 2010, p. 45), so that including the standard errors along
with the point estimates can help distinguish “real” effects from random variation.
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Although the computational methods and software were developed in the educa-
tional setting, they can be used in many other applications as well, substituting the
lower-level units for “students” and the higher-level units for “teachers”. Similar
models have been considered for studying the relative contributions of health care
professionals or clinics to patient outcomes (Zaslavsky et al., 2004), and the models
can be applied in any setting where different higher-level units sequentially affect
the outcomes of lower-level units.

The algorithm presented here and the code in package GPvam may be extended
to other multiple membership models. One extension would be to allow an ex-
panded covariance structure in which the same higher-level unit may be associated
with multiple responses. This would allow the model to better fit situations in
which a student had the same teacher for more than one year, or in which a patient
returned to a previous doctor. This extension would require careful bookkeeping to
track which doctors are repeats, but the basic M-step and E-step of the algorithm
would remain the same. Our models and applications used only intercepts for the
random effects, but the implementation may be extended to include random slopes
as well, and other more general multiple membership models described in Browne
et al. (2001).

Appendix

We show that the EM algorithm produces positive definite (PD) G matrix after
each iteration. This assumes that the R matrix is PD after each iteration, which is
true for the GP.G model specification in Section 2.3, and can be demonstrated for
GP.R from Section 2.1 in the absence of incomplete data where the M-step update
for R has an easily-obtainable solution. However, even in the presence of missing
data, R will usually not be near the boundary of the parameter space, since the
error variances on the diagonal of R will be positive as long as the model does not
fit the data perfectly, and the intra-student effects are not likely to be perfectly
correlated.

A much more common problem in estimating mixed models occurs when the
estimated G matrix is not PD (Verbeke and Molenberghs, 2000, Section 5.6.1).
This may happen when 0 variance components are estimated, or when random
effects are perfectly correlated, the later being a significant concern for the future
teacher effects of the GP VAM. Notice thatG is a block-diagonal portion of ṽ+η̃η̃′.
The matrix ṽ is defined by Equation (18). Thus, ṽ is PD as long as the initial G is
PD, because S′R−1S is positive semi-definite. Furthermore, η̃η̃′ is positive semi-
definite, and the sum of a PD and a positive semi-definite matrix is PD.
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