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Abstract

Presence-only data occur in classification, which consist of a sample of observations
from presence class and a large number of background observations with unknown
presence/absence. Since absence data are generally unavailable, conventional semi-
supervised learning approaches are no longer appropriate as they tend to degenerate
and assign all observations to presence class. In this article, we propose a general-
ized class balance constraint, which can be equipped with semi-supervised learning ap-
proaches to prevent them from degeneration. Furthermore, to circumvent the difficulty
of model tuning with presence-only data, a selection criterion based on classification
stability is developed, which measures the robustness of any given classification algo-
rithm against the sampling randomness. The effectiveness of the proposed approach
is demonstrated through a variety of simulated examples, along with an application to
gene function prediction.
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1 Introduction

Presence-only data, also known as positive and unlabeled data, consist of a sample of obser-

vations from presence (or positive) class and a large number of background (or unlabeled)

observations with unknown class labels. It has been commonly encountered in many real

applications, ranging from information technology and computer engineering (Liu et al.,

2003), ecological modeling (Ward et al., 2009), to biomedical sciences (Zhao et al., 2008). In

biomedical sciences, gene function prediction is one of the primary goals in understanding

genomics. Thanks to the rapid advance in high-throughput biotechnologies, a large amount

of gene expression profiles have been obtained. However, based on the available expression

profiles, annotating genes with biological function classes is still labor intensive and time

consuming. In general, it is relatively easy to identify genes annotated with certain function

of interest, while it is much harder to find which genes do not have the function (Zhao et al.,

2008). In such situations, the primary goal is to leverage the background data to enhance

predictive performance of classification.

To incorporate the background data into analysis, many methods have been proposed in

the literature of statistics and machine learning. Among others, the naive method (Keating

and Cherry, 2004) constructs a supervised classification by treating all background data

as observations from the absence class; the iterative method (Liu et al., 2003) iteratively

expands the absence sample by adding background data that are most likely from the absence

class; and an expectation-maximization (EM) algorithm (Ward et al., 2009) treats the class

labels of the background data as missing and fits an underlying presence-absence logistic

regression model by assuming some prior knowledge on the presence frequency.

Note that presence-only data can naturally fit into the framework of Semi-Supervised

Learning (SSL), which is a special type of classification problem with only a small labeled

sample and a large unlabeled background sample. However, analysis of presence-only data via
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SSL approaches seems rare in the literature, probably due to the following two reasons. First,

most existing SSL approaches, such as the Transductive Support Vector Machine (TSVM;

Vapnik, 1998; Chapelle and Zien, 2005; Wang, Shen and Pan, 2007) and the efficient SSL

(Wang, Shen and Pan, 2009), require that the labeled sample should consist of observations

from both the presence and the absence classes. Clearly, this requirement is violated in

presence-only data as the labeled sample contains only observations from the presence class,

and hence that directly applying the existing SSL approaches to presence-only data yields

degenerate classification function assigning all observations to the presence class. Second,

most existing SSL approaches rely on tuning parameters to balance the tradeoff between the

labeled and the unlabeled data. Cross validation (CV) is popularly employed to select the

optimal tuning parameters in terms of the classification accuracy. However, the conventional

CV procedure is no longer appropriate for presence-only data, where no observation from

the absence class is available and the estimated classification accuracy based on CV may

become unreliable.

The main contribution of this article is to overcome two encountered issues when analyz-

ing presence-only data with SSL approaches. First, it extends the existing SSL approaches by

enforcing a generalized class balance constraint, which restricts the candidate classification

function space to more informative regions as opposed to those degenerate ones assigning

all observations to one single class. The proposed class balance constraint can be adapted

to most margin-based SSL approaches including the TSVM and the efficient SSL. Second,

to overcome the difficulty of lacking absence data in model tuning, a novel tuning criterion

is developed based on classification stability, which measures the robustness of any given

classification algorithm against the sampling randomness. The classification stability does

not require the class label of the absence data, and thus can be accurately estimated by

using both presence and absence data. The effectiveness of the proposed approach is demon-

strated in numerical experiments with both simulated examples and a real application in
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gene function prediction, which has been central to biomedical research in recent years.

The rest of this article is organized as follows. Section 2 introduces the presence-only data

analysis and SSL. Section 3 proposes the generalized class balance constraint and extends

the TSVM and the efficient SSL to presence-only data analysis. Section 4 develops the model

tuning criterion, as well as its estimation scheme and local asymptotic consistency. Section 5

presents some numerical examples, together with an application to gene function prediction.

Section 6 contains a summary, and the Appendix is devoted to technical proofs.

2 Presence-only data analysis and SSL

A typical presence-only dataset consists of a presence sample {(xi, yi)}nl
i=1 with xi ∈ Rd and

yi ≡ 1 and a background sample {xj}nj=nl+1 with nu = n−nl. Let zi = 1 if the observation is

in the presence sample and zi = −1 if the observation is in the background sample. Clearly,

zi = 1 indicates that yi = 1 while zi = −1 provides no information on whether yi = −1

or 1. Naturally presence-only data analysis can be formulated as a special SSL problem by

treating the presence data as labeled and the background data as unlabeled.

SSL has attracted enormous attention from both statistics and machine learning commu-

nities; for example, a recent survey paper on SSL (Zhu, 2005) has cited over 100 references.

In principle, the unlabeled data can improve the classification performance given a strong

match of data structure with some model assumptions on the connection between the labeled

and the unlabeled data, while weak match of data structure with model assumptions offers

no help at all or even deteriorates the performance. Various assumptions have been proposed

in the literature, leading to different approaches. Here we just briefly review three popular

assumptions and refer to Zhu (2005) for a much more extensive literature review on SSL.

Smoothness assumption assumes that neighboring instances tend to share the same class la-

bel, which often requires additional assumptions on defining the neighborhood as well as the
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relationship between neighborhood and labeling, such as in the Gaussian random field (Zhu,

Ghahramani and Lafferty, 2003). Clustering assumption (Chapelle and Zien, 2005) assumes

that the classification decision boundary should be close to the clustering boundary, such as

in the margin-based SSL approaches, including the TSVM and the efficient SSL. Manifold

assumption (Belkin and Niyogi, 2004) is similar to clustering assumption, and assumes that

the data and classification decision boundary reside on a low-dimensional manifold estimated

based on the unlabeled data, which leads to a manifold regularized SSL formulation (Belkin

et al., 2006; Tian et al., 2012).

In this article, we focus on the margin-based SSL under the clustering assumption. In

specific, the margin-based SSL approaches estimate the classification function f(x) by solving

min
f∈F

C1

nl∑
i=1

L(yif(xi)) + C2

n∑
j=nl+1

U(f(xj)) + J(f),

where L(yf(x)) and U(f(x)) are loss functions for labeled and unlabeled data respectively,

J(f) is a penalty term on complexity of f , and ϕ̂(x) = sign(f̂(x)) is the classification decision

function. The L(yf(x)) loss can be any margin-based loss function, such as the hinge loss

(1− yf(x))+, and the U(f(x)) loss connects the classification function f and the clustering

structure of the unlabeled data. For instances, U(f(x)) = (1− |f(x)|)+ leads to the TSVM,

and U(f(x)) = p̂(x)L(f(x)) + (1 − p̂(x))L(−f(x)) leads to the efficient SSL, where p̂(x) is

an estimate of p(x) = P (Y = 1|X = x).

Furthermore, the minimization of the margin-based SSL formulation is often solved under

a class balance constraint (Joachims, 1999; Chapelle, Sindhwani and Keerthi, 2008) that

n∑
i=1

sign(f(xi)) = (2r − 1)n. (1)

This constraint enforces that a pre-specified proportion, r, of the training data should be
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assigned to the positive class, avoiding a degenerated classification function. Since (1) is

nonlinear and difficult for implementation, it is often relaxed to
∑n

i=1 f(xi) = 2r− 1, where

the pre-specified proportion r is estimated by the proportion of the presence and absence data

in the labeled sample. However, in presence-only data, estimation of r becomes infeasible due

to the lack of absence data (Ward et al., 2009). Without accurate knowledge of the proportion

of presence sample, (1) can be even harmful in that it may force the SSL approaches to

sacrifice their classification performance in order to achieve the restrictive constraint with

misspecified proportion.

3 SSL under a generalized class balance constraint

This section proposes a generalized class balance constraint to prevent the classification

function from degeneration, which relaxes the restrictive equality constraint in (1) to an

inequality constraint, ∣∣∣∣∣
n∑

i=1

sign(f(xi))

∣∣∣∣∣ ≤ D, (2)

where D is a pre-specified constant controlling the balance between positive and negative

predictions of f . Since (2) is a quantile-type constraint and infeasible for implementation, it

can be further relaxed to

−D ≤
n∑

i=1

f(xi) ≤ D, (3)

which is linear and easy to be implemented.

In (3), D ≥ n admits f(x) ≡ 1 and can not prevent degeneration, whereas a smaller value

of D can guarantee a nondegenerated solution. More importantly, the classification perfor-

mance of the SSL approaches is relatively insensitive to the value of D. Figure 1 displays

the classification performance of the TSVM with the equality constraint
∑n

i=1 f(xi) = D

and the inequality constraints (3) as functions of the tuning parameter D.

6



Insert Figure 1 about here

As showed in Figure 1, the testing error of the TSVM with the equality constraint

appears to much more variable as D changes, while the testing error of the TSVM with

the inequality constraint stays the same for a long range of D and then shoot up to the

degenerate case when D is too large. Consequently, to achieve the optimal classification

performance, the TSVM with the equality constraint has to search for the appropriate tuning

parameters (D,C1, C2), but the TSVM with the inequality constraint may only need to

tune two parameters (C1, C2) under a pre-specified D without sacrificing the classification

performance. In all the numerical experiments, D = nu − nl appears to work reasonably

well as it assures that the background sample are mixed with both presence and absence

observations. In practice, D may be set based on a rough estimate of the presence sample

size if prior knowledge is available.

In the sequel, we will focus on two margin-based presence-only SSL approaches, PO-

TSVM and PO-ESSL. The PO-TSVM equips the generalized class balance constraint to the

orignal TSVM formulation, which seeks the largest possible separation of both the labeled

and the unlabeled data. Specifically, the PO-TSVM classification function f̂(x) is obtained

by solving

minf∈F C1

nl∑
i=1

(1− yif(xi))+ + C2

n∑
j=nl+1

(1− |f(xj)|)+ + ∥f∥2F , (4)

subject to −D ≤
n∑

i=1

f(xi) ≤ D,

where ∥ · ∥2F is the reproducing kernel Hilbert space (RKHS) norm. The PO-ESSL is based

on a novel U(f(x)) for the unlabeled data as in Wang et al. (2009), which seeks efficient

extraction of information from the unlabeled data for estimating the optimal classification
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function. Specifically, the PO-ESSL estimates f(x) by solving

minf∈F C1

nl∑
i=1

(1− yif(xi))+ + C2

n∑
j=nl+1

Û(f(xj)) + ∥f∥2F , (5)

subject to −D ≤
n∑

i=1

f(xi) ≤ D,

where Û(f(x)) = p̂(x)L(f(x)) + (1 − p̂(x))L(−f(x)) is an estimate of the efficient margin

loss for the unlabeled data, U(f(x)) = p(x)L(f(x)) + (1− p(x))L(−f(x)).

To solve (4), a difference convex algorithm can be employed as in Wang et al. (2007). It

decomposes the non-convex cost function in (4) as a difference of two convex functions, ap-

proximates the second convex function by it gradient, and solves (4) by sequential quadratic

programming (QP). Note that the class balance constraint does not increase the computa-

tional cost at all, as it only adds two linear inequality constraints in the QP routine. The

computation cost can be further reduced when the QP routine is replaced by a more efficient

gradient descent method (Guan et al., 2012).

To solve (5), an iterative scheme can be implemented. First, an initial f̂(x) is constructed.

Second, given sign(f̂(x)), p̂(x) is obtained through the procedure in Wang et al. (2008).

Third, f̂(x) is updated by solving (5) with p̂(x) fixed through a QP routine. The last

two steps can be iterated until convergence. Note that the first step can be initialized by

any presence-only approach, including the naive method, the iterative method and the PO-

TSVM, and different initialization methods may yield different final estimated f̂(x). More

interestingly, through the iterative optimization scheme, the PO-ESSL can be thought of

as a reminiscent of the iterative method, but it updates the reliable absence sample more

appropriately, where all the background data are included in the reliable absence sample

but their contributions are determined by the magnitude of the corresponding p̂(x). Finally,

the above iterative optimization techniques can only guarantee achieving a local optimum,
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so a branch and bound algorithm is necessary to achieve the global optimum at the cost of

increasing computation burden (Liu, Shen and Wong, 2005).

4 Tuning via classification stability

The performance of the margin-based presence-only approaches may depend on the tuning

parameter(s), such as C1 and C2 in (4) and (5), and hence that their classification perfor-

mance needs to be optimized with appropriately selected tuning parameter(s). In the sequel,

we denote f̂ as f̂λ to indicate its dependence on the tuning parameter(s) λ = (C1, C2), and

ϕ̂λ(x) = sign(f̂λ(x)) as the corresponding classification decision function.

In classification, the performance of ϕ̂λ is often measured by its generalization error (GE),

GE(ϕ̂λ) = E(I(Y ̸= ϕ̂λ(X))), (6)

where expectation is taken over the unknown joint distribution of (X, Y ). In order to estimate

the GE, the conventional CV procedure is commonly used, which uses a subset of data for

training and the remaining for validation. However, its estimation accuracy can be severely

deteriorated in presence-only data, since only presence data is available and the conventional

CV may mistakenly prefer classification functions that are more inclined to predict presence.

In fact, due to the lack of absence data, it is difficult, if not impossible, to accurately estimate

GE(ϕ̂λ).

4.1 Tuning criterion

This subsection proposes a tuning criterion that assesses the classification accuracy of ϕλ

through its classification stability. The idea of stability has been previously used in Mein-

shausen and Bühlman (2010) and Xin and Zhu (2012) as variable selection stability for
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selecting the informative variables, and Wang (2010) as clustering stability for selecting the

number of clusters. In this section, we extend the stability idea to classification stability, and

develop a novel tuning criterion that is particularly suitable for presence-only data, since the

classification stability does not require the class label of the absence data and thus can be

estimated based on both presence and absence data for better tuning accuracy.

To slightly abuse notation, let ϕλ be a learning algorithm given λ, and ϕ̂λ be the estimated

classification function learned by applying the algorithm ϕλ to a dataset.

Definition 1 (Classification Stability) The stability of ϕλ is defined as

s(ϕλ;n) = E(corr(ϕ̂λ(X), ϕ̂∗
λ(X)))

= E

(
P (ϕ̂λ(X) = ϕ̂∗

λ(X) = 1)− P (ϕ̂λ(X) = 1)P (ϕ̂∗
λ(X) = 1)

sd(ϕ̂λ(X)) sd(ϕ̂∗
λ(X))

)
, (7)

where the expectation is taken over all possible samples of size n, the probability is taken with

respect to X, and ϕ̂λ(x) and ϕ̂
∗
λ(x) are obtained by applying ϕλ to two independent samples

of equal size n. We set corr(ϕ̂λ(X), ϕ̂∗
λ(X)) to be 0 if sd(ϕ̂λ(X)) = 0 or sd(ϕ̂∗

λ(X)) = 0.

The key idea of classification stability is that if we repeatedly draw samples from the

population and apply the given classification algorithm ϕλ, a good algorithm should produce

estimated classification decision functions that do not vary much from one sample to another.

Note that ϕλ(x) only takes value in {−1, 1}, so the agreement between ϕ̂λ(X) and ϕ̂∗
λ(X) can

be measured as P (ϕ̂λ(X) = ϕ̂∗
λ(X)). However, this agreement measure can be misleading

in assessing presence-only approaches as P (ϕ̂λ(X) = ϕ̂∗
λ(X)) ≡ 1 if ϕλ is degenerated and

always assign observations to the presence class. Here we propose to use correlation in (7)

as the agreement measure, since correlation standardizes the probability of classification

agreement between ϕ̂λ(X) and ϕ̂∗
λ(X) relative to their individual classifications, and is able

to discriminate the truly stable classification algorithm from the seemingly stable algorithms

that are stable only due to degenerated classification of all observations to the same class.

10



To estimate s(ϕλ;n) in practice, one can split the data into two training sets and one val-

idation set. The two training sets are used to construct two estimated classification decision

functions, and then their agreement on the left-out validation set estimates the classification

stability. The splitting can be repeated multiple times, and the averaged classification stabil-

ity then serves as the estimate of the classification accuracy of ϕλ. The proposed algorithm

is described as follows.

Algorithm 1:

Step 1. Permute background data (xnl+1, . . . ,xn) and obtain (x∗b
nl+1, . . . ,x

∗b
n ).

Step 2. Split the permuted background data (x∗b
nl+1, . . . ,x

∗b
n ) into three parts with m, m

and nu−2m observations respectively: x∗b
I = (x∗b

nl+1, . . . ,x
∗b
nl+m), x

∗b
II = (x∗b

nl+m+1, . . . ,x
∗b
nl+2m),

and x∗b
III = (x∗b

nl+2m+1, . . . ,x
∗b
n ).

Step 3. Train ϕ̂I
λ(x) and ϕ̂

II
λ (x) based on {(xi, yi)}nl

i=1 with x∗b
I and {(xi, yi)}nl

i=1 with x∗b
II ,

respectively. Letting ub(λ) = (ϕ̂I
λ(x

∗b
j ))

n
j=nl+2m+1 and vb(λ) = (ϕ̂II

λ (x∗b
j ))

n
j=nl+2m+1, define

ŝ∗b(ϕ̂λ;m) as the sample correlation between ub(λ) and vb(λ),

ŝ∗b(ϕλ;m) =

∑nu−2m
j=1 (ubj(λ)− ūb(λ))(vbj(λ)− v̄b(λ))

sbu(λ)s
b
v(λ)

,

where ūb(λ), v̄b(λ), sbu(λ) and s
b
v(λ) are the sample means and standard deviations of ub(λ)

and vb(λ). If sbu(λ) = 0 or sbv(λ) = 0, ŝ∗b(ϕλ;m) = 0.

Step 4. Repeat Steps 1-3 for b = 1, . . . , B, and define the estimated s(ϕλ;m) as

ŝ(ϕλ;m) = B−1

B∑
b=1

ŝ∗b(ϕλ;m).

Then the tuning parameter λ can be selected as λ̂m = argmaxλ ŝ(ϕλ;m). In practice, one

may implement a grid search scheme to approximate the global minimum λ̂m. Note that the

proposed estimation scheme differs from the conventional CV in that it tries to estimate the
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classification stability based on both presence and absence data as the classification stability

does not require the class label of the absence data. Furthermore, the CV scheme can be

replaced by other data re-sampling schemes, such as the boostrap as used in Meinshausen

and Bühlman (2010).

4.2 Local consistency

We now establish the local consistency of the proposed tuning criterion, which assures that

there exist a sequence of local maximizers of ŝ(ϕλ;m) such that they converge to the “opti-

mal” λ with overwhelming probability in m.

Definition 2 (Optimal λ) The optimal λ for ϕ is λm,o if for any ϵ > 0, there exists aϵ > 0

such that for any λm with λm

λm,o
→ a ̸= 1 as m→ ∞, when m is sufficiently large,

P

(
corr(ϕ̂λm(X), ϕ̂∗

λm
(X))

corr(ϕ̂λm,o(X), ϕ̂∗
λm,o

(X))
≤ 1− aϵ

)
≥ 1− ϵ. (8)

Definition 2 is analogous to Definition 3 in Wang (2010) for cluster analysis, which assures

that the stability of s(ϕλm,o ;m) is asymptotically greater than s(ϕλm ;m) for any λm with

λm

λm,o
→ a ̸= 1. The relative larger magnitude of s(ϕλm,o ;m) in (8) does not necessarily

require that it converges to 1 at a faster rate than other candidates. In fact, even when

s(ϕλm,o ;m) converges to 1 at the same rate as other candidates, a larger constant in its rate

of convergence is sufficient for (8).

We outline the main theorem and assumption here, and defer the technical details to the

Appendix.

Assumption 1. Assume that s(ϕλ;m) converges to 1 exactly at rate rm,λ in probability,

where rm,λ is a sequence of non-increasing positive numbers.

The “exact convergence” is defined in the sense of Definition 2 of Yang (2006), which

guarantees that s(ϕλ;m) does not converge to 1 faster than the given rate on a set with

12



positive probability. In the literature, the rates of convergence of many SSL approaches have

been established, such as Rigollet (2007) and Wang et al. (2009).

Theorem 1 Suppose λm,o exists and Assumption 1 holds. There exist a sequence of local

maximizers of ŝ(ϕλ;m), λ̂m, such that

λ̂m
λm,o

→ 1 in probability,

as long as m→ ∞ and (n− 2m)min λm
λm,o

→a ̸=1 r
2
m,λm

→ ∞.

Theorem 1 establishes the local consistency of the proposed tuning criterion when the

data is properly split. It also provides guideline for splitting the data in Algorithm 1 in order

to achieve the local consistency. In specific, if B is fixed as a constant, and s(ϕλ;m) converges

to 1 exactly at rate Op(m
−1/2) for all λm, then the requirement on the data splitting ratio

becomes (n − 2m)/m → ∞, which agrees with Shao (1993) for linear regression and Yang

(2006) for classification. If s(ϕλ;m) converges to 1 at a faster rate than Op(m
−1/2) for some

λm such as in Wang et al. (2009), (n−2m)/m needs to diverge at a faster rate as well, while

if s(ϕλ;m) converges to 1 at a slower rate than Op(m
−1/2) for all λm, (n − 2m)/m = O(1)

will suffice.

5 Numerical experiment

This section examines the numerical performance of the proposed PO-TSVM and the PO-

ESSL as well as other existing presence-only approaches, including the naive SVM (Naive),

the iterative SVM (Iter) and the EM algorithm (EM; Ward et al., 2009). Note that the

PO-ESSL can be initialized by any presence-only approach, and we denote the PO-ESSL

approach initialized by naive SVM, iterative SVM and the PO-TSVM, as PO-ENaive, PO-

EIter and PO-ETSVM respectively.

13



5.1 Simulation examples

Three simulated presence-only examples are considered: two-Gaussian, two-moon and bull’s

eye examples. The data distributions of all examples are displayed in Figure 2. The two-

Gaussian example has 10 dimensions, where only the first two dimensions are displayed and

the remaining 8 dimensions are noise variables generated from standard normal distribution.

The other two examples have 2 dimensions as it is often much more difficult to learn nonlinear

classification functions based on only a few presence data.

Insert Figure 2 about here

For each simulated example, 1000 sample points are randomly generated and divided into

halves, with 10 presence and 90 background data points for training and the remaining 900

data points for testing. A test error measured on the test set,

TE(ϕ̂) =
1

#{test set}
∑

test set

I(yi ̸= ϕ̂(xi)),

is used to measure the classification performance of all methods in comparison, where

#{test set} is the cardinality of the test set.

As Figure 2 suggests, the ideal classification function in the two-Gaussian example is

linear, whereas that in the two-moon and the bull’s eye examples are nonlinear. Therefore,

we construct the linear SVM for the two-Gaussian example, and the SVM with Gaussian

kernel for the two-moon and bull’s eye examples. When Gaussian kernel is used, the standard

deviation is set to be the median pairwise Euclidean distance among all training data to

reduce computational cost for tuning, c.f., Jaakkola et al. (1999). Furthermore, the EM

algorithm is implemented following Ward et al. (2009), which requires prior knowledge

about the proportion of the presence sample that is often unavailable in practice. In the

simulation examples, we set it to be the true proportion 1/2. The linear logistic regression
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and the kernel logistic regression (Zhu and Hastie, 2005) are used in the EM algorithm for

the two-Gaussian example and the other two nonlinear examples respectively.

To eliminate the dependence of the classifier on other tuning parameters, three tuning

criteria are examined. The first one is the estimated GE pretending that the labels of all

the background data are available, the second one is the estimated classification stability

as described in Algorithm 1, and the last one is 5-fold CV. Although the first criterion is

unrealistic in practice, it is compared to the other two criteria to examine their effectiveness

in tuning presence-only approaches. A grid search scheme is performed to optimize each

tuning criterion. Specifically, one tuning parameter for the naive SVM and the iterative SVM,

two tuning parameters for the PO-TSVM and the PO-ESSL are searched over grid points

10−2+k/3; k = 0, . . . , 12. Finally, the averaged test errors over 100 independent replications

are summarized in Table 1.

Insert Table 1 about here

Evidently, the PO-ESSL approaches, including PO-ENaive, PO-EIter and PO-ETSVM,

yield superior performance over their counterparts in all examples, and they improve the

classification performance of their initializers respectively. In particular, PO-ETSVM ap-

pears to be the most competitive performer as it yields the smallest or the second smallest

test errors in most scenarios. The EM algorithm appears to work well in the two-Gaussian

examples, but less satisfactory in the other two nonlinear examples.

In addition, the proposed tuning criterion via classification stability outperforms 5-fold

CV in almost all scenarios, and yields comparable test errors to those with tuning parameters

selected via the labels of the background data. Note that the EM algorithm does not require

tuning, so it yields the same test errors no matter what tuning criterion is employed. To

scrutinize the relationship between these two tuning criteria, we examine one randomly

chosen replication in Example 1 for PO-ETSVM. As displayed in Figure 3, it is clear that
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large value of estimated classification stability imply low estimated GE based on the labels

of background data, which confirms the satisfactory performance of estimated classification

stability in Table 1, and demonstrates the effectiveness of classification stability in selecting

tuning parameters for presence-only data. In Figure 3, we also plot the estimated GE via

5-fold CV, which is clearly not a desirable criterion for tuning PO-ETSVM due to the lack

of negative observations.

Insert Figure 3 about here

5.2 Gene function prediction

This section applies the proposed presence-only SSL approach to predict gene functions

based on the gene data in Hughes et al. (2000), consisting of expression profiles of a total

of 6316 genes for yeast S. cerevisiae from 300 microarray experiments. The gene functional

categories are defined by the MIPS, a multifunctional classification scheme Mewes et al.

(2002). The microarray gene expression profiles can be used to predict gene functions,

because genes sharing the same function tend to co-express, c.f., Zhou, Kao and Wong

(2000). Unfortunately, based on the available biological information, we know which genes

are annotated by the function of interest, but it is generally unclear which genes do not have

the function. Therefore, it is appropriate to predict the gene function class of unannotated

gene through presence-only approaches.

Note that assessing classification performance of presence-only approaches in real appli-

cation is difficult as no validation dataset with true presence and absence is available. To

alleviate this difficulty, we generate a presence-only data from the available dataset in Hughes

et al. (2000), and focus on two popular functional categories, namely “TRANSCRIPTION”

and “PROTEIN FATE”. These two gene functions annotate 578 and 533 genes respectively,

whose gene expression profiles based on 300 microarray experiments are also available. To

mimic the presence-only scenario, a small portion of genes annotated by “PROTEIN FATE”
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are treated as presence data, and all other genes are treated as background data with un-

known functions. In particular, we divide the 1111 genes into a training set and a test set,

where the training set involves a random sample of nl presence data and 400−nl background

data, while the remaining 711 genes are used for testing. To examine the sensitivity of the

presence-only approaches to the size of presence sample, nl = 20, 50, 100, 150 and 200 are

tried. The splitting is repeated 100 times, and the tuning parameters are estimated through

the same grid search scheme as in Section 5.1. The averaged test errors are summarized in

Table 2. Additionally, as a baseline for comparing classification performance, the test error

of a full model is reported in Table 2, which fits a SVM model with Gaussian kernel using

the complete labels of the background data.

Insert Table 2 about here

As showed in Table 2, PO-ENaive, PO-EIter and PO-ETSVM outperform their initial

counterparts respectively. The classification accuracies of PO-ENaive and PO-ETSVM im-

prove as nl increases, and when nl is reasonably large they yield comparable classification

performance to that of the full model using the complete labels of the background data. How-

ever, the performance of Iter gets worse as nl increases, which deteriorates the performance

of PO-EIter as well. Note that the EM algorithm based on logistic regression (Ward et al.,

2009) is not applied in this gene example as the logistic regression fails to converge when

fitting a high dimensional dataset (d = 300) with relatively small sample size (n = 400).

6 Summary

This article proposes to analyzes the presence-only data through SSL approaches. To over-

come the difficulty of unavailable absence data, a class balance constraint is enforced to guard

the estimated classification function from degeneration, and a novel model tuning criterion
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based on classification stability is proposed for optimizing the predictive performance of clas-

sification. The numerical results on a variety of simulation examples and a real example on

gene function prediction suggest that the proposed method delivers desirable classification

performance and compares favorably against top competitors.

Appendix: technical proofs

Proof of Theorem 1: For any η > 0, we first focus on the b-th replication, and compare

ŝ∗b(ϕλm,o ;m) to ŝ∗b(ϕλk
;m); k = 1, 2 with λ1 = λm,o − η and λ2 = λm,o + η. By Assumption

1, we have that for any arbitrary ϵ > 0, there exists aϵ > 0 such that P (Ac
k) ≤ ϵ with Ak =

{corr(ϕ̂λk
(X), ϕ̂∗

λk
(X)) ≤ (1− aϵ) corr(ϕ̂λm,o(X), ϕ̂∗

λm,o
(X))}; k = 1, 2. On Ak, conditional on

{(xi, yi)}nl
i=1, x

∗b
I and x∗b

II ,

P
(
ŝ∗b(ϕλm,o ;m) < ŝ∗b(ϕλk

;m)
∣∣∣{(xi, yi)}nl

i=1,x
∗b
I ,x

∗b
II

)
= P

(
nu−2m∑
j=1

Wkj > 0
∣∣∣{(xi, yi)}nl

i=1,x
∗b
I ,x

∗b
II

)

= P

(
nu−2m∑
j=1

(Wkj +∆k) > (nu − 2m)∆k

∣∣∣{(xi, yi)}nl
i=1,x

∗b
I ,x

∗b
II

)
,

whereWkj =
(uj(λk)−ū(λk))(vj(λk)−v̄(λk))

su(λk)sv(λk)
− (uj(λm,o)−ū(λm,o))(vj(λm,o)−v̄(λm,o))

su(λm,o)sv(λm,o)
as in Algorithm 1, and

∆k = −E(Wkj

∣∣∣{(xi, yi)}nl
i=1,x

∗b
I ,x

∗b
II)

= corr(ϕ̂λm,o(X), ϕ̂∗
λm,o

(X))− corr(ϕ̂λk
(X), ϕ̂∗

λk
(X)) +Op((nu − 2m)−1)

≥ aϵ corr(ϕ̂λm,o(X), ϕ̂∗
λm,o

(X)) +Op((nu − 2m)−1).
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Applying the Bernstein’s inequality (Pollard, 1984) yields that on Ak,

P
(
ŝ∗b(ϕλm,o ;m) < ŝ∗b(ϕλk

;m)
∣∣∣{(xi, yi)}nl

i=1,x
∗b
I ,x

∗b
II

)
≤ exp

(
−(nu − 2m)∆2

k

2Vk +
4
3
∆k

)
,

where Vk = var(wkl|{(xi, yi)}nl
i=1,x

∗b
I ,x

∗b
II) ≤ 42 and ∆k < 3. Therefore, for any given k,

P (ŝ∗b(ϕλm,o ;m) < ŝ∗b(ϕλk
;m)) ≤ ϵ+ exp

(
−(nu − 2m)∆2

k

36

)
,

which implies that

2∑
k=1

P

(
B∑
b=1

ŝ∗b(ϕλm,o ;m) <
B∑
b=1

ŝ∗b(ϕλk
;m)

)

≤
2∑

k=1

B∑
b=1

P
(
ŝ∗b(ϕλm,o ;m) < ŝ∗b(ϕλk

;m)
)
≤ 2Bϵ+

∑
k ̸=ko

B exp

(
−(nu − 2m)∆2

k

36

)
.

Let ϵ = 1/mB, then 2Bϵ converges to 0 as m→ ∞. Furthermore, Assumption 1 implies that

∆k converges to 0 exactly at rate rm,λk
, and hence that (nu−2m)∆2

k → ∞ if (n−2m)r2m,λk
→

∞. Therefore, when m→ ∞ and (n− 2m)r2m,λk
→ ∞,

P (ŝ∗b(ϕλm,o ;m) < ŝ∗b(ϕλk
;m)) → 0; for k = 1, 2. (9)

This implies that with probability approaching 1, there exists a local maximum of ŝ∗b(ϕλ;m)

in (λm,o − η, λm,o + η) for any η > 0. The desired results follows by setting η = 1/m.

References

[1] Belkin, M. and Niyogi, P. (2004). Semi-supervised Learning on Riemannian Manifolds.

Mach. Learn., 56, 209-239.

19



[2] Belkin, M., Niyogi, P. and Sindhwani, V. (2006).Manifold Regularization: a Geometric

Framework for Learning from Labeled and Unlabeled Examples. J. Mach. Learn. Res.,

7, 2399-2434.

[3] Chapelle, O., Sindhwani, V. and Keerthi, S. (2008). Optimization Techniques

for Semi-Supervised Support Vector Machines. J. Mach. Learn. Res., 9, 203-233.

[4] Chapelle, O. and Zien, A. (2005). Semi-supervised classification by low density

separation. In Proc. Int. Workshop on Artif. Intel. and Statist., 57-64.

[5] Cortes, C. and Vapnik, V. (1995). Support vector networks. Mach. Learn., 20,

273-297.

[6] Guan, N., Tao, D., Luo, Z. and Yuan, B. NeNMF: An Optimal Gradient Method

for Nonnegative Matrix Factorization. IEEE Trans. Sig. Processing, 60, 2882-2898.

[7] Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour,

C., Bennett, H., Coffey, E., Dai, H., He, Y., Kidd, M., King, A., Meyer,

M., Slade, D., Lum, P., Stepaniants, S., Shoemaker, D., Gachotte, D.,

Chakraburtty, K., Simon, J., Bard, M. and Friend, S. (2000). Functional

discovery via a compendium of expression profiles. Cell, 102, 109-126.

[8] Jaakkola, T., Diekhans, M. and Haussler, D. (1999). Using the Fisher kernel

method to detect remote protein homologies. In Proc. Int. Conf. on Intelligent Systems

for Molecular Biology, 149-158.

[9] Joachims, T. Transductive Inference for Text Classification using Support Vector Ma-

chines. In Proc. 16th Int. Conf. Machine Learning (ICML), pp. 200-209. Morgan Kauf-

mann, San Francisco.

20



[10] Keating, K. and Cherry, S. (2004). Use and interpretation of logistic regression in

habitat-selection studies. J. Wildl. Manage., 68, 774-789.

[11] Liu, B., Dai, Y., Li, X., Lee, W. and Yu, P. (2003). Building Text Classifiers

Using Positive and Unlabeled Examples. Inter. Conf. on Data Mining (ICDM).

[12] Liu, S., Shen, X. and Wong, W. (2005). Computational development of ψ-learning.

In Proc. SIAM 2005 Inter. Data Mining Conf., 1-12.

[13] Meinshausen, N. and Buhlman, P. Stability selection (with discussion). J. Royal

Statist. Soc. Ser. B, 72, 417-473.

[14] Mewes, H., Albermann, K., Heumann, K., Liebl S. and Pfeiffer, F. (2002).

MIPS: a database for protein sequences, homology data and yeast genome information.

Nucleic Acids Res., 25, 28-30.

[15] Pollard, D. (1984). Convergence of Stochastic Processes. Springer

[16] Rigollet, P. (2007). Generalization Error Bounds in Semi-supervised Classification

Under the Cluster Assumption. J. Mach. Learn. Res., 8, 1369-1392.

[17] Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc.,

88, 486-494.

[18] Tian, X., Tao, D. and Rui, Y. (2012). Sparse Transfer Learning for Interactive

Video Search Reranking. ACM Trans. Multimedia Computing, Communications and

Applications, to appear.

[19] Vapnik, V. (1998). Statistical Learning Theory, Wiley, New York.

[20] Wang, J. (2010). Consistent selection of the number of clusters via cross-validation.

Biometrika, 97, 893-904.

21



[21] Wang, J., Shen, X. and Liu, Y. (2008). Probability estimation for large margin

classifiers. Biometrika, 95, 149-167.

[22] Wang, J., Shen, X. and Pan, W. (2007). On transductive support vector machine.

Contemp. Math., 43, 7-19.

[23] Wang, J., Shen, X. and Pan, W. (2009). On efficient large margin semisupervised

learning: methodology and theory. J. Mach. Learn. Res., 10, 719-742.

[24] Ward, G., Hastie, T., Barry, S., Elith, J. and Leathwick, J. (2009). Presence-

Only Data and the EM Algorithm. Biometrics, 65, 554-563.

[25] Xin, L. and Zhu, M. (2012). Stochastic stepwise ensembles for variable selection. J.

Comput. Graph. Statist., 21, 275-294.

[26] Yang, Y. (2006). Comparing learning methods for classification. Statist. Sinica, 16,

635-657.

[27] Zhao, X., Wang, Y., Chen, L. and Aihara, K. (2008). Gene function prediction

using labeled and unlabeled data. BMC Bioinformatics, 9, 1471C2105.

[28] Zhou, X., Kao, M. and Wong, W. (2000). Transitive functional annotation by

shortest-pathanalysis of gene expression data. Proc. Nat. Acad. Sci., 99, 12783-12788.

[29] Zhu, J. and Hastie, T. (2005). Kernel logistic regression and the import vector

machine. J. Comput. Graph. Statist., 14, 185-205.

[30] Zhu, X. Semi-supervised learning literature survey. Technical Report 1530, University

of Wisconsin, Madison, 2005.

[31] Zhu, X., Ghahramani, Z. and Lafferty, J. (2003). Semi-supervised learning using

Gaussian fields and harmonic functions. Int. Conf. on Mach. Learn. (ICML).

22



Table 1: Simulated examples: the averaged test errors and the estimated standard errors in
parenthesis. The smallest test errors in each scenario are boldfaced.

Examples Naive Iter PO-TSVM PO-ENaive PO-EIter PO-ETSVM EM

Tuned with labels of background data

.460 .113 .127 .171 .095 .107 .109
Two-Gaussian

(.0032) (.0067) (.0095) (.0064) (.0055) (.0092) (.0048)
.415 .107 .082 .035 .035 .020 .098

Two-Moon
(.0042) (.0071) (.0028) (.0039) (.0049) (.0033) (.0043)
.442 .152 .126 .114 .098 .070 .125

Bull’s Eye
(.0045) (.0066) (.0039) (.0056) (.0061) (.0049) (.0073)

Tuned with classification stability (Algorithm 1)

.460 .180 .166 .194 .110 .123 .132
Two-Gaussian

(.0032) (.0128) (.0107) (.0076) (.0068) (.0100) (.0083)
.445 .140 .131 .056 .075 .069 .112

Two-Moon
(.0041) (.0058) (.0052) (.0091) (.0087) (.0079) (.0091)
.439 .229 .134 .169 .168 .096 .186

Bull’s Eye
(.0046) (.0086) (.0107) (.0068) (.0082) (.0091) (.0110)

Tuned with 5-fold cross validation

.460 .194 .199 .184 .150 .146 .141
Two-Gaussian

(.0032) (.0122) (.0108) (.0065) (.0091) (.0118) (.0098)
.445 .248 .129 .135 .140 .120 .137

Two-Moon
(.0041) (.0144) (.0097) (.0083) (.0109) (.0076) (.0105)
.439 .222 .170 .170 .144 .115 .210

Bull’s Eye
(.0046) (.0116) (.0144) (.0060) (.0103) (.0091) (.0138)
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Table 2: Gene function prediction: the averaged test errors and the estimated standard errors in
parenthesis. The smallest test errors in each scenario are boldfaced.

Gene Naive Iter PO-TSVM PO-ENaive PO-EIter PO-ETSVM Full

.483 .460 .426 .484 .451 .415
nl = 20

(.0013) (.0080) (.0047) (.0013) (.0034) (.0106)
.483 .456 .419 .471 .420 .392

nl = 50
(.0011) (.00104) (.0038) (.0014) (.0037) (.0054)
.481 .444 .406 .443 .396 .377 .301

nl = 100
(.0011) (.0051) (.0036) (.0033) (.0059) (.0039) (.0014)
.360 .475 .396 .332 .446 .379

nl = 150
(.0012) (.0037) (.0067) (.0016) (.0024) (.0050)
.317 .479 .336 .322 .481 .338

nl = 200
(.0018) (.0019) (.0016) (.0038) (.0015) (.0030)

Figure 1: The testing errors of TSVM with equality or inequality constraints, as functions of
the tuning parameter D. Here other tuning parameters are fixed as C1 = 100 and C2 = 1 for
illustration.
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Figure 2: The plots of the two-Gaussian, two-moon and bull’s eye data.
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Figure 3: Plots of the estimated classification stability of ETSVM, the estimated GE via labels of
background data, and the estimated GE via 5-fold cross validation as functions of tuning parame-
ters. In the left panel, C2 is fixed as 1; and in the right panel, C1 is fixed as 10.
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