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Abstract. Among their competitors, projection depth and its induced esti-
mators are very favorable because they can enjoy very high breakdown point
robustness without having to pay the price of low efficiency, meanwhile provid-
ing a promising center-outward ordering of multi-dimensional data. However,
their further applications have been severely hindered due to their computa-
tional challenge in practice. In this paper, we derive a simple form of the pro-
jection depth function, when (µ, σ) = (Med, MAD). This simple form enables
us to extend the existing result of point-wise exact computation of projection
depth (PD) of Zuo and Lai (2011) to depth contours and median for bivariate
data.
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1 Introduction

To generalize order-related univariate statistical methods, depth functions have emerged as
powerful tools for nonparametric multivariate analysis with the ability to provide a center-
outward ordering of the multivariate observations. Points deep inside a data cloud get higher
depth and those on the outskirts receive lower depth. Such depth induced ordering enables one
to develop favorable new robust estimators of multivariate location and scatter matrix. Since
Tukey’s introduction (Tukey, 1975), depth functions have gained much attention in the last two
decades. Numerous depth notations have been introduced. To name a few, halfspace depth
(Tukey, 1975), simplicial depth (Liu, 1990), regression depth (Rousseeuw and Hubert, 1999),
projection depth (Liu, 1992; Zuo and Serfling, 2000; Zuo, 2003).

Zuo and Serfling (2000) and Zuo (2003) found that among all the examined depth notions,
projection depth is one of the favorite, enjoying very desirable properties. Furthermore, pro-
jection depth induced robust estimators, such as projection depth weighted means and median,
can possess a very high breakdown point as well as high relative efficiency with appropriate
choices of univariate location and scale estimators, serving as very favorable alternatives to the
regular mean (Zuo, 2003; Zuo et al., 2004). In fact, projection depth weighted means include
as a special case the famous Donoho-Stahel estimator (Stahel, 1981; Donoho, 1982; Tyler, 1994;
Maronna et al., 1995; Zuo et al., 2004), the latter is the first constructed location estimator in
high dimensions enjoying high breakdown point robustness and affine equivariance, while the
projection depth median has the highest breakdown point among all the existing affine equiv-
ariant multivariate location estimators (Zuo, 2003).

∗Corresponding author’s email: zuo@msu.edu, tel: 001-517-432-5413.
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However, the further prevalence of projection depth and its induced estimators is severely
hindered by their computational intensity and intimidation. The computation of projection
depth seems intractable since it involves supremum over infinitely many direction vectors. There
were only approximating algorithms in the last three decades until Zuo and Lai (2011), in which
they proved that there is no need to calculate the supremum over infinitely many direction
vectors in the bivariate data when the outlyingness function uses the very popular choice (Med,
MAD) as the univariate location and scale pair. An exact algorithm for projection depth and
its weighted mean, i.e. Donoho-Stahel estimator, was also constructed in that paper.

In the current paper, we further generalize their idea to the higher dimensional cases by
utilizing linear fractional functionals programming (Swarup, 1962). That is, we find that, with
the choice of (Med, MAD), we only need to calculate the supremum over a finite number of
direction vectors for p ≥ 2. Furthermore, these direction vectors are x-free and depend only
on the data cloud. Therefore, we derive a simple form of the projection depth function, and
are able to compute the bivariate projection depth contours and median very conveniently
through linear programming based on the procedure of Zuo and Lai (2011). It is found that
sample projection depth contours are polyhedral under some mild conditions. Furthermore,
it is noteworthy that the computational methods discussed in this paper have no limitation
on the dimension p, and therefore could possible be implemented to spaces with p > 2, as
well as to the modified projection depth (Šiman, 2011) in a more general multidimensional
regression context. The corresponding programs are available from the authors (zuo@msu.edu
or csuliuxh912@gmail.com).

The rest of the paper is organized as follows. Section 2 provides the definitions of the
projection depth contour and projection median. Section 3 presents the main idea of how to
get a simple form of the projection depth function. Section 4 discusses the exact computational
issue of the projection depth contour and projection median by linear programming. While some
numerical examples are given in Section 5.

2 Definition

For a given distribution F on R
1, let µ(F ) be translation equivariant and scale invariant,

and σ(F ) be translation invariant and scale equivariant. Define the outlyingness of a point
x ∈ Rp (p ≥ 1) with respect to the distribution F of the random variable X ∈ Rp as (see (Zuo,
2003) and references therein)

O(x, F ) = sup
‖u‖=1

|Q(u, x, F )| (1)

where Q(u, x, F ) = (uτx−µ(Fu))/σ(Fu), if u
τx−µ(Fu) = σ(Fu) = 0, then define Q(u, x, F ) = 0.

Fu is the distribution of uτX, which is the projection of X onto the unit vector u.

Throughout this paper, we select the very popular robust choice of µ and σ: the median (Med)
and the median absolute deviation (MAD). Based on definition (1), the projection depth of any
given point x with respective to F , PD(x, F ), can then be defined as (Liu, 1992; Zuo and Serfling,
2000; Zuo, 2003)

PD(x, F ) = 1/(1 +O(x, F ))

With the outlyingness function and projection depth function defined above, we then define
the projection depth median (PM) and contours (PC) as follows (Zuo, 2003)

PM(F ) = arg max
x∈Rp

PD(x, F ),

PC(α,F ) = {x ∈ Rp : PD(x, F ) = α} ,
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where 0 < α ≤ α∗ = supx∈Rp PD(x, F ).

For a given sample X n = {X1,X2, · · · ,Xn} from X, let Fn be the corresponding empirical
distribution. By simply replacing F by Fn in PM(F ) and PC(α,F ), we can obtain their sample
version: PM(Fn) and PC(α,Fn). Without confusion, we use X n and Fn interchangeably in what
follows. Furthermore, by noting the fact that for the choice of (Med, MAD), Q(u, x,X n) in (1)
is odd with respect to u, we drop the absolute value sign existing in definition (1), and consider

O(x,X n) = sup
‖u‖=1

Q(u, x,X n)

instead in what follows, where

Q(u, x,X n) =
uτx−Med(uτX n)

MAD(uτX n)
,

where uτx denotes the projection of x onto the unit vector u, and uτX n = {uτX1, u
τX2, · · · , u

τXn}.
Let Z(1) ≤ Z(2) ≤, · · · ,≤ Z(n) be the order statistics based on the univariate random variables
Zn = {Z1, Z2, · · · , Zn}, then

Med(Zn) =
Z(⌊(n+1)/2⌋) + Z(⌊(n+2)/2⌋)

2
,

MAD(Zn) = Med{|Zi −Med(Zn)|, i = 1, 2, · · · , n},

where ⌊·⌋ is the floor function.

3 The main idea

Note that, for any given sample X n, the tasks of computing both PM(X n) and PC(α,X n)
mainly involve O(x,X n), i.e.

PM(X n) = arg min
x∈Rp

O(x,X n),

PC(α,X n) = {x ∈ Rp : O(x,X n) = β} ,

where β = 1/α − 1. Thus, let’s first focus on the computation of O(x,X n). Without loss of
generality, in what follows, we assume X n to be in general position, which is commonly used in
most existing literature; see for example Donoho and Gasko (1992).

By the idea of a circular sequence (Edelsbrunner, 1987) (see also Dyckerhoff (2000); Cascos
(2007)), for any given unit vector v ∈ S = {u ∈ Rp : ‖u‖ = 1}, there must exist two permuta-
tions, say (i1, i2, · · · , in) and (j1, j2, · · · , jn), of (1, 2, · · · , n) such that

vτXi1 ≤ vτXi2 ≤ · · · ≤ vτXin ,

Yj1 ≤ Yj2 ≤ · · · ≤ Yjn ,

where Yjl = |vτXjl −Med(vτX n)|, (1 ≤ l ≤ n). There is a small non-empty set N (v) ⊂ S of v
such that these hold true for any v ∈ N (v). This implies that the whole unit sphere S can be
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covered completely by at most N (with order O
((n

p

)2)
) non-empty fragments Sk = {v ∈ S: v

satisfy constraint conditions Qk} with Qk being































































vτ (Xik,2 −Xik,1) ≥ 0,

vτ (Xik,3 −Xik,2) ≥ 0,
...

vτ (Xik,n −Xik,n−1
) ≥ 0,

Yjk,2 − Yjk,1 ≥ 0,

Yjk,3 − Yjk,2 ≥ 0,
...

Yjk,n − Yjk,n−1
≥ 0,

‖v‖ = 1,

for some fixed permutations (ik,1, ik,2, · · · , ik,n) and (jk,1, jk,2, · · · , jk,n) of (1, · · · , n), where 1 ≤
k ≤ N .

Note that different fragments Sk (k = 1, 2, · · · , N) are connected and overlapped with each
other only on the boundaries. Thus, to calculate O(x,X n), it is sufficient to calculate

O(x,X n) = max
1≤k≤N

Ok(x,X
n)

with
Ok(x,X

n) = sup
u∈Sk

Q(u, x,X n). (2)

Furthermore, from the definition and property of Sk, it is easy to see that, for any u ∈ Sk,
the outlyingness function Q(u, x,X n) can be simplified to

Q(u, x,X n) =
uτ (x−Xik,m)

|uτXjk,m − uτXik,m |
, (3)

if n is odd with m = (n+ 1)/2, otherwise

Q(u, x,X n) =
2uτ (x−Xk,a)

∣

∣uτ
(

Xjk,m −Xk,a

)∣

∣+
∣

∣

∣
uτ

(

Xjk,m∗
−Xk,a

)∣

∣

∣

, (4)

with m = n/2, m∗ = m+ 1 and Xk,a = (Xik,m +Xik,m∗
)/2.

Remark 1. Based on the assumption that X n are in general position, the denominators in
the above two formulas will not be 0 for all u ∈ Sk, since they are actually equal to MAD(uτX n),
and greater than 0 under such an assumption when n ≥ 2p; see the proof of Theorem 3.4 in Zuo
(2003).

By (3) and (4), we obtain the following proposition.

Proposition 1. Assume X n is in general position. Then for any given k (1 ≤ k ≤ N), the
optimization problem (2) is equivalent to

Ok(x,X
n) = sup

z

cτkz

dτkz
, (5)

subject to
Akz ≥ 0 (6)
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where ck, dk and Ak will be specified in the Appendix. Here b ≥ 0 means that b is component-
wise non-negative if b is a vector, i.e. for any component bi, we have bi ≥ 0.

(5) with constraint conditions (6) is typically a linear fractional functionals programming
problem. By theorem 1 of Swarup (1962) (see also Šiman (2011) (p. 950) for more general
discussion), it is easy to show that the maximum of cτkz/d

τ
kz will only occur at the basic feasible

solution of (6). Note that the number of fragments Sk is limited (at most N). Thus, we have

Theorem 1. Suppose that the choice of location and scale measures of projection depth
function is the pair (Med, MAD). Then the number of direction vectors needed to compute the
projection depth exactly is finite. Furthermore, these direction vectors only depend on the data
cloud X n.

Remark 2. The idea of dividing the unit sphere S into fragments Sk by applying Med and
MAD sequences was first used in Zuo and Lai (2011) for computing the bivariate projection
depth; see also Paindavein and Šiman (2011b,c) for other similar applications. Here we extend
the result of Zuo and Lai (2011) to Rp (p ≥ 2). That is, one could compute PD in Rp exactly
by only considering a finite number of direction vectors. Furthermore, the x-free property of
these direction vectors can bring convenience to the computation of PD(x,X n) for any x, since
we only need to search the direction vectors once.

4 Exact computation of PM(X n) and PC(α,X n)

From the discussion above, we can obtain the two following observations, namely, for any
given x,

• the way to divide sphere S into fragments Sk (k = 1, 2, · · · , N) is fixed, i.e. x-free, as long
as the data cloud X n is fixed.

• there is no need to calculate Q(u, x,X n) over an infinite number of direction vectors. It is
enough to calculate it for, say, u1, u2, · · · , uM .

Based on the discussion and two observations above, we therefore can re-express the outly-
ingness function O(x,X n) as follows

O(x,X n) = max

{

uτ1x−Med(uτ1X
n)

MAD(uτ1X
n)

,
uτ2x−Med(uτ2X

n)

MAD(uτ2X
n)

, · · · ,
uτMx−Med(uτMX n)

MAD(uτMX n)

}

,

where {ui}
M
i=1 are some p-dimensional vectors depending only on the data cloud X n. For the sake

of convenience, hereafter we write gi(x) = aτi x − bi (i = 1, 2, · · · ,M), where ai =
1

MAD(uτ
i X

n)ui

and bi =
Med(uτ

i X
n)

MAD(uτ
i X

n) .

Obviously, O(x,X n) = max1≤i≤M{gi(x)} is in fact a piece-wise linear convex function with
respect to x for the given data cloud X n. Therefore, its minimizers can be found by using
common linear programming methods by solving the problem

s = min
z

t

subject to
t ≥ gi(x), i = 1, 2, · · · ,M,

where z = (t, xτ )τ . This kind of problem can be solved by some common solver such as linprog.m
in Matlab. Let z0 = (t0, x

τ
0)

τ be a final solution of this problem. Then, it is easy to show that
x0 is one of the deepest points with depth value PD(x0,X

n) = 1/(1 + t0) = α∗.
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Given the nature of the maximum piece-wise linear convex function max1≤i≤M gi(x), there is
either a single minimizer or a convex polyhedral set of minimizers. Then there naturally comes
a question, namely, after obtaining the value α∗, how to get all of these vertexes? Note that the
projection median is a specific case of the projection depth contour. Therefore, let’s focus now
on the computation of projection depth contours. For any given 0 < α ≤ α∗, the projection
depth contour is the boundary of the projection depth region (Zuo, 2003),

PR(α,X n) = {x ∈ Rp : PD(x,X n) ≥ α}

= {x ∈ Rp : O(x,X n) ≤ β}

= {x ∈ Rp : gi(x) ≤ β, i = 1, 2, · · · ,M} .

Typically, the regions constrained by linear inequalities such as

gi(x) ≤ β, i = 1, 2, · · · ,M (7)

are polytopes. Therefore, the boundary of PR(α,X n), i.e. PC(α,X n), could be easily found by
employing procedures such as qhull (Barber et al., 1996) based on the dual relationship between
vertex and facet enumeration (Bremner et al., 1998); see also Paindavein and Šiman (2011a).
In Matlab, these kinds of tasks can be fulfilled by the function con2vert.m, which was developed
by Michael Kleder, and can be downloaded from Matlab Central File Exchange.

However, in many practical applications, the numberM (with order O
((n

p

)2)
) of the direction

vectors may be very large. WhenM is too large, it is difficult to obtain the boundary of the region
formed by (7) by using some of the aforementioned procedures such as con2vert.m, since they
involve solving some large generalized inverse matrices. Therefore, it is important to eliminate
some redundant constraints before computing PC(α,X n) for too large M .

Note that, for any given α (0 < α ≤ α∗), the number of the non-redundant constraints in
(7) is much small compared to M , which implies that numerous inequalities in (7) could be
eliminated during the computation of the α-contour. In fact, it is not difficult to show that

PR(α,X n) = C1 ∩ C2 ∩ · · · ∩ Cs,

where Ck = {x : gj(x) ≤ β, j = ik, ik + 1, · · · , ik+1} with 1 ≤ k ≤ s − 1 and 1 = i1 < i2 <
· · · < is = M , and that Ck is non-empty if min1≤l≤s−1{il+1 − il} ≫ p. Then, when M is large,
a procedure for exactly computing PC(α,X n) is: (1), to find the non-redundant constraints
in each Ci at first, then (2), to use all of these non-redundant constrains together to compute
PC(α,X n).

With the vertexes in hand, some common graphical packages could be employed to visualize
these contours very easily in spaces of p = 2, 3. It is noteworthy that, although all the methods
discussed above could possible be implemented to spaces with p ≥ 2 theoretically, feasible exact
algorithm for computing the projection depth exists now only in the bivariate data (Zuo and Lai,
2011). Therefore, we can only provide some exactly results about the bivariate projection depth
contours and projection median in the current paper. All the direction vectors {u1, · · · , uM} are
found by using the procedure of Zuo and Lai (2011). The x-free property of these vectors can
be proved similarly by using the linear fractional functionals programming as Proposition 1.

5 Numerical analysis

In order to gain more insight into the sample version of projection depth contours and pro-
jection median, we construct some numerical examples in this section.
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5.1 Simulation results

To illustrate the robustness and the shape of the bivariate projection depth contours and
median, we present two examples as follows. The data are mainly generated from the normal
distribution, but contain a few outliers.

Example 1. We first generate 60 samples X = (X1,X2)
τ from the normal distribution

N(0, I2), and then disturb these samples randomly by replacing their first components by 6
with probability 0.05.

Example 2. We first generate 400 samples X = (X1,X2)
τ from the normal distribution

N(0,Σ0), and then disturb these samples randomly by replacing their first components by 6
with probability 0.10, where

Σ0 =

(

1 0.5
0.5 1

)

.

For the sake of comparison, the population versions of PC(α,X) corresponding to these two
examples are also provided here, and plotted according to the formula

(x1, x2)× Σ−1 ×

(

x1
x2

)

=
C2
N (1− α)2

α2
,

which was developed in Zuo (2003). Here CN = Φ−1(34) ≈ 0.6744898, Σ denotes the covariance
matrix of normally distributionX, namely, I2 in example 1 and Σ0 in example 2. The population
versions PC(α,X) of example 1 and 2 are given in Figure 1 and 3, respectively, while the sample
versions PC(α,X n) are plotted in Figure 2 and 4, respectively.

Comparing the figures of sample versions with those of population, it is ready to see that

• The sample versions PC(α,X n) are roughly elliptical, similar to the shapes of the pop-
ulation versions PC(α,X). Furthermore, it is remarkable that they are resistant to the
notorious vertical outliers in Figure 2 and 4. These results confirm that PC(α,X n) are
very robust, and could capture the feature of PC(α,X) (Zuo, 2003), even when there are
a few outliers.

• It is very interesting to note that the shapes of the projection depth contours are also poly-
lateral due to the properties of the function max1≤i≤M gi(x), similar to that of halfspace
depth contours (Ruts and Rousseeuw, 1996). On the other hand, unlike halfspace depth
contours, PC(α,X n) does not need to pass through the observations.
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Figure 1: Population version PC(α,X) for Example 1 with α = 0.1, 0.2, · · · , 0.9 (from out to
center).

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

X

Y

Figure 2: Sample version PC(α,X n) for α = 0.1, 0.2, · · · , 0.7 (from out to center). Here the
most inner big point denotes the projection median.
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Figure 3: Population version PC(α,X) for Example 2 with α = 0.1, 0.2, · · · , 0.9 (from out to
center)
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Figure 4: Sample version PC(α,X n) for α = 0.1, 0.2, · · · , 0.8 (from out to center). Similar to
Figure 2, the most inner big point is also the computed projection median.

Furthermore, to gain more information about the shape of the projection depth contours, we
also provide some other examples in the following. The sample size we used is 2500. Here Figure 5
reports the projection depth contours PC(α,X n) corresponding to the uniform distribution over
the triangle with its vertexes being (0, 0), (0, 1) and (1, 1). Figure 6 corresponds to the uniform
distribution over region [0, 1] × [0, 1]. Figure 7 gives the contours of the normal distribution
N(0, I2). While Figure 8 provides the contours of δX + (1 − δ)Y , where X ∼ N(µ1, I2), Y ∼
N(µ2, I2), µ1 = (−2,−2), µ2 = (2, 2), and δ is a discrete random variable with probability 0.5
taking value 1 and 0.5 taking value 0. Here X, Y and δ are all independently disturbed. From
these figures, we can see that the projection contours are also polylateral and convex.
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Figure 5: Projection depth contours of the uniform distribution over the triangle formed by
vertexes: (0, 0), (0, 1) and (1, 1), where α = 0.1, 0.2, · · · , 0.7 (from out to center).
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Figure 6: Projection depth contours of the uniform distribution over [0, 1] × [0, 1], where α =
0.1, 0.2, · · · , 0.9 (from out to center).
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Figure 7: Projection depth contours of the bivariate standard normal distribution N(0, I2),
where α = 0.1, 0.2, · · · , 0.9 (from out to center).
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Figure 8: Projection depth contours of the random vector δX + (1 − δ)Y , where α =
0.2, 0.3, · · · , 0.9 (from out to center).

5.2 Real data example

Here a real data example is presented to illustrate the performance of projection depth con-
tours.

Table 1 here is taken from Table 7 of Rousseeuw and Leroy (1987) (p.57). Total 28 animals’
brain weight (in grams) and body weight (in kilograms) are presented in this table. Before the
analysis, logarithmic transformation was taken for the sake of convenience. According to the re-
sults of Rousseeuw and Leroy (1987), there are five cases considered as outlying, i.e. diplodocus,
human, triceratops, rhesus monkey and brachiosaurus. Among them, the most severe cases are
diplodocus, triceratops and brachiosaurus. In fact, these three cases are referred to as dinosaurs
because they possess a small brain as compared with a heavy body (see Table 1) and their highly
negative residuals can lead to a low slope for the least squares fit. For the remaining two cases,
although their actual brain weights are higher than those predicted by the linear model, they
are not worse than the three previous cases since they do not obey the same trend as that one
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Table 1: Body and Brain Weight for 28 Animals (Rousseeuw and Leroy, 1987).

Index Body Weight Brain Weight

i Species Xi Yi

1 Mountain beaver 1.350 8.100

2 Cow 465.000 423.000

3 Gray wolf 36.330 119.500

4 Goat 27.660 115.000

5 Guinea pig 1.040 5.500

6 Diplodocus 11700.000 50.000

7 Asian elephant 2547.000 4603.000

8 Donkey 187.100 419.000

9 Horse 521.000 655.000

10 Potar monkey 10.000 115.000

11 Cat 3.300 25.600

12 Giraffe 529.000 680.000

13 Gorilla 207.000 406.000

14 Human 62.000 1320.000

15 African elephant 6654.000 5712.000

16 Triceratops 9400.000 70.000

17 Rhesus monkey 6.800 179.000

18 Kangaroo 35.000 56.000

19 Hamster 0.120 1.000

20 Mouse 0.023 0.400

21 Rabbit 2.500 12.100

22 Sheep 55.500 175.000

23 Jaguar 100.000 157.000

24 Chimpanzee 52.160 440.000

25 Brachiosaurus 87000.000 154.500

26 Rat 0.280 1.900

27 Mole 0.122 3.000

28 Pig 192.000 180.000

followed by the majority of the data.

We plot the projection depth contours in Figure 9, where the green point is the projection
median with depth value 0.73257, five labeled points denote the outliers mentioned above with
the points 1-3 corresponding to the case of diplodocus, triceratops and brachiosaurus and 4-5
corresponding to those of human and rhesus monkey. 8 contours are plotted there. From Figure
9, we can see that all of these three dinosaurs lie outside the contour 0.1, while points 4-5 lie be-
tween the contours 0.1 and 0.15. These results are consistent with those of Rousseeuw and Leroy
(1987), implying that projection depth contours can capture the structures of the objective data
and identify outliers.

Furthermore, it is worth mentioning that the shape of these plotted contours is not af-
fected by a few atypical points at the outskirts of the cloud, namely, both the inner and outer
depth contours are roughly elliptical, unlike those of halfspace depth contours (see Figure 10)
(Ruts and Rousseeuw, 1996). This is the most outstanding difference between projection and
halfspace depth contours, confirming the more robustness property of projection depth and its
contours (see Zuo (2004)).
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Figure 9: Projection depth contours with α = 0.7, 0.6, · · · , 0.2, 0.15, 0.1 (from center to out).
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Figure 10: Halfspace depth contours (Ruts and Rousseeuw, 1996).
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Appendix Proofs of main results

Proof of Proposition 1. Here, without loss of generality, we prove only the odd n case.
Note that, for any u ∈ Qk, we have

uTXi1 ≤ uTXi2 ≤ · · · ≤ uTXim ≤ · · · ≤ uTXin

according to the definition of Qk. This implies that

|uT (Xi −Xik,m)| =

{

−uT (Xi −Xik,m), if i ∈ {ik,1, ik,2, · · · , ik,m−1},
uT (Xi −Xik,m), if i ∈ {ik,m, ik,m+1, · · · , ik,n}.

That is, we can remove the absolute value signs of Yjl based on the order information existing
in the permutation (ik,1, ik,2, · · · , ik,n). Therefore, for any u ∈ Qk, (3) can be further simplified
to

Q(u, x,X n) =
cTk u

dTk u

where ck = x−Xik ,m and dk = sk(jk,m) · (Xjk,m −Xik ,m) (1 ≤ k ≤ N), with

sk(i) =

{

−1, if i ∈ {ik,1, ik,2, · · · , ik,m−1},
1, if i ∈ {ik,m, ik,m+1, · · · , ik,n}.

Next, note that, for any positive λ and z = λu, it holds that cτkz/d
τ
kz = cτku/d

τ
ku and bτkz ≥ 0

if bτku ≥ 0. Then, (3) and constrain condition Qk lead to

Ok(x,X
n) = sup

z

cτkz

dτkw
(8)

subject to
Akz ≥ 0

1 ≤ k ≤ N , with Ak =
(

Ak1

Ak2

)

, where

Ak1 = (Xτ
ik,2

−Xτ
ik,1

,Xτ
ik,3

−Xτ
ik,2

, · · · ,Xτ
ik,n

−Xτ
ik,n−1

)τ

and

Ak2 =













sk(jk,2) · (X
τ
jk,2

−Xτ
ik,m

)− sk(jk,1) · (X
τ
jk,1

−Xτ
ik,m

)

sk(jk,3) · (X
τ
jk,3

−Xτ
ik,m

)− sk(jk,2) · (X
τ
jk,2

−Xτ
ik,m

)
...

sk(jk,n) · (X
τ
jk,n

−Xτ
ik,m

)− sk(jk,n−1) · (X
τ
jk,n−1

−Xτ
ik,m

)













.

This completes the proof of Proposition 1.
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Paindaveine, D., Šiman, M. (2011a). Computing multiple-output regression quantile regions. Comput. Statist.

Data Anal., In press.
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Paindaveine, D., Šiman, M. (2011c). Computing multiple-output regression quantile regions from projection
quantiles. Comput. Statist., In press.

Rousseeuw, P.J. and A. Leroy. (1987). Robust regression and outlier detection. Wiley New York, 1987.

Rousseeuw, P.J. and Hubert, M. (1999). Regression depth (with discussion). J. Amer. Statist. Assoc., 94: 388-433.

Ruts, I and Rousseeuw, P.J. (1996). Computing depth contours of bivariate point clouds. Comput. Statist. Data

Anal., 23: 153-168.
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