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Abstract
The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-
norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness
in the presence of outliers and is indicated for models where standard Gaussian assumptions about
the noise may not apply. Of all the previously-proposed PCA schemes that recast PCA as an
optimization problem involving the L1 norm, none provide globally optimal solutions in
polynomial time. This paper proposes an L1-norm PCA procedure based on the efficient
calculation of the optimal solution of the L1-norm best-fit hyperplane problem. We present a
procedure called L1-PCA* based on the application of this idea that fits data to subspaces of
successively smaller dimension. The procedure is implemented and tested on a diverse problem
suite. Our tests show that L1-PCA* is the indicated procedure in the presence of unbalanced
outlier contamination.
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3 Introduction
Principal component analysis (PCA) is a data analysis technique with various uses including
dimensionality reduction, quality control, extraction of interpretable derived variables, and
outlier detection [15]. Traditional PCA, hereafter referred to as L2-PCA, is based on the L2
norm. Principal component analysis using L2-PCA possesses several important properties
such as: the loadings vectors are the eigenvectors of the covariance matrix, the loadings
vectors are the successive orthogonal directions of maximum (or minimum) variation in
data, and the principal components define the L2-norm best-fit linear subspaces to the data
[15]. The simultaneous occurrence of these properties is unique to L2-PCA, and is a reason
why it is widely-used. The term “pure” in this paper is used to reflect the fact that the
proposed L1-norm PCA shares an analogous property to L2-PCA in that the principal
components are defined by successive L1-norm best-fit subspaces.
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L2-PCA is sensitive to outlier observations. This sensitivity is the principal reason for
exploring alternative norms. Procedures for PCA that involve the L1 norm have been
developed to increase robustness [12, 4, 17, 1, 7, 10, 13, 19]. Galpin and Hawkins [12]
develop a robust L1 covariance estimation procedure. Others have considered robust
measures of dispersion for finding directions of maximum variation [8, 7, 19]. The
approaches in [8] and [7] are based on the projection pursuit method introduced in [20].

Several previous works involve the L1 norm in subspace estimation with PCA. Baccini et al.
[4] and Ke and Kanade [17] consider the problem of finding a subspace such that the sum of
L1 distances of points to the subspace is minimized, and propose heuristic schemes that
approximate the subspace. In light of the camera resectioning problem from computer
vision, Agarwal et al. [1] formulate the problem of L1 projection as a fractional program and
give a branch-and-bound algorithm for finding solutions. Gao [13] proposes a probabilistic
Bayesian approach to estimating the best L1 subspace under the assumption that the noise
follows a Laplacian distribution.

Measuring error for PCA using the L1 norm can impart desirable properties besides
providing robustness to outlier observations. For example, the L1 norm is the indicated
measure in a noise model where the error follows a Laplace distribution [1, 13]. In special
applications such as cellular automata models, where translations can only occur along unit
directions, the fit of a subspace can be measured using the L1 norm [5, 18].

In this paper, we propose a new approach for robust PCA, L1-PCA*, based on a “pure”
application of the L1 norm in the sense that it uses globally optimal subspaces that minimize
the sum of L1 distances of points to their projections. L1-PCA* generates a sequence of
subspaces, projecting data down one dimension at a time, in a manner analogous to L2-PCA.
The procedure makes use of a polynomial-time algorithm for projecting m-dimensional data
into an L1-norm best-fit (m − 1)-dimensional subspace. The algorithm is based on results
concerning properties of L1 projection and best-fit hyperplanes [25, 22, 21, 5]. The provable
optimality of the projected subspace ensures that interesting properties are inherited. The
polynomiality of the algorithm makes it practical. We establish experimentally conditions
under which the proposed procedure is preferred over L2-PCA and other previously-
investigated schemes for robust PCA.

4 L1 regression, geometry of the L1 norm, and best-fit subspaces
Linear regression models seek to find a hyperplane of the form

for a dependent variable y and independent variables x. In L2 regression, the hyperplane of
best fit is determined for a given data set (yi, xi), i = 1, … , n by minimizing the residual sum
of squared errors given by

In L2 regression, the distance of points to the fitted hyperplane is given by the L2 norm. L1
linear regression is analogous to L2 regression in that they both find a hyperplane that
minimizes the sum of distances of points to their projections along the unit direction defined
by the dependent variable. In the case of L1 regression, the distances are measured using the
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L1 norm. The sum of absolute errors is minimized. A standard result about L1 regression is
that the hyperplane can be found by solving a linear program (LP) [6, 26]. The L1 regression
LP is as follows.

(R)

subject to

The input data are , i = 1, …, n which are rows of the data matrix , and the
dependent variable values yi, i = 1, …, n. The vector β in (R) are the regression coefficients
and the variable β0 is the level value that are to be determined by the optimal solution to the

LP. The variables  and  are the errors measured as the distance from either side of the

hyperplane to observation i. Note that at most one of each pair ,  is positive at

optimality, and the sum of absolute errors is .

Given an m × q matrix A, the internal (linear combination of points) representation of a
subspace defined by A is the column space of A, given by

. The external (intersection of hyperplanes)

representation is .

The projection of a point  on a set S is the set of points P ⊆ S such that the distance
between x and points in S is minimized. Distance for PCA is usually measured using the L2
norm. The L2 norm of a vector x is

When S is an affine set, the L2 projection of x is a unique point and the direction from P to x
orthogonal to S.

The L1 norm of a vector x is

Using the L1 norm for measuring distance results in different projections. Figure 1 illustrates
this difference for the case when  and S is a line. The figure represents the level sets
using the L1 and L2 norms. The L2 norm level sets in two dimensions are circles; the L1
norm level sets are diamonds. Notice that the L1 projection occurs along a horizontal
direction. The property that projections occur along a single unit direction generalizes to
multiple dimensions [21, 5]. Further, the direction of a projection depends only on the
orientation of the hyperplane and not on the location of the point [21]. These two properties
lead to the following result about L1-norm best-fit hyperplanes; that is, hyperplanes for
which the sum of L1 distances of points to their projections is minimized.
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Lemma 1. Given a set of points , i = 1, …, n, the projections into an L1-norm best-fit
(m − 1)-dimensional hyperplane occur along the same unit direction for all of the points.

Proof. See [21].

Lemma 1 implies that an L1-norm best-fit hyperplane is found by computing the m
hyperplanes that minimize the sum of absolute errors along each of the m dimensions and
selecting the hyperplane with the smallest sum of absolute errors. Identifying the hyperplane
that minimizes the sum of absolute errors along a given dimension is the L1 linear regression
problem presented above where the dependent variable corresponds to the dimension along
which measurements are made. This discussion is the proof of the following Proposition 1.

Proposition 1. A best-fit hyperplane in  is found by computing m L1 linear regressions,
where each variable takes a turn as the dependent variable, and selecting the regression
hyperplane with the smallest sum of absolute errors.

Recall that a hyperplane containing the origin is an (m − 1)-dimensional subspace. PCA
assumes that data are centered around the mean and fits subspaces accordingly. The analogy
for the L1 measure is that the data are centered around the median and that the fitted
hyperplanes contain the origin. This assumption will be applied later in numerical
experiments.

The L1-norm best-fit (m−1)-dimensional subspace  can be found by the following
procedure.

Algorithm for finding a L1-norm best-fit subspace of dimension m − 1.

Given a data matrix X ∈ Rn×m
 with full column rank.

1: Set j* = 0, R0(X)=∞. /* Initialization. */

2: for (j = 1; j ≤ m; j = j + 1) do

3: Solve Rj(X ) = β, e +, e −
min

Σi=1
n ei

+ + ei
−

,

 subject to

β T xi + ei
+ − ei

− = 0, i = 1, …, n,

βj = − 1,

ei
+, ei

− ≥ 0, i = 1, …, n.

/*Find the L1 regression with variable j
as the dependent variable.*/

4: if if Rj(X) < Rj* (X),
 then

/* if the fitted subspace for variable j is
better than that for j**/

5: j* = j, β* = β. /* Update the coefficients defining the
best fit subspace */

6: end if

7: end for

The procedure finds the L1-norm regression subspace (β0 = 0) where each variable in turn
serves as the response, as enforced by the constraint βj = −1. In [5], results concerning L1
projection on hyperplanes using the L1 norm are proved and an LP-based algorithm for
finding the L1-norm best-fit hyperplane is presented. This paper adapts the algorithm in [5]
as a subroutine in the design of L1-PCA*, explains correspondences between L1-PCA* and
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traditional PCA, and demonstrates the effectiveness of the procedure on simulated and real-
world datasets.

The fitted subspace inherits the following well-known properties [3, 4, 1]:

1. At least (m − 1) of the points lie in the fitted subspace;

2. The subspace corresponds to a maximum likelihood estimate for a fixed e ect
model with noise following a joint distribution of m independent, identically
distributed Laplace random variables.

In the development below, the normal vector of a best-fit (m − 1)-dimensional subspace for
points in an m-dimensional space is given by βm. We will employ the notation (Ij*)m to
denote the m × m identity matrix modified such that row j* has entries

In the next section, we apply these results to develop the new PCA procedure based on the
optimality of the fitted subspaces.

5 The L1-PCA* Algorithm
Proposition 1 and the procedure for finding the L1-norm best-fit subspace motivate
Algorithm L1-PCA* where points are iteratively projected down from the initial space  of
the data, to an (m − 1)-dimensional subspace, then to an (m − 2)-dimensional subspace, and
so on.

The algorithm takes as input a data matrix  and generates a sequence of subspaces,
each one dimension less than the previous one, defined by their orthogonal vectors ,
k = m, m − 1, …, 1. The projection into the best (k − 1)-dimensional subspace is determined
by applying the algorithm for finding the L1-norm best-fit subspace by finding the best of k
L1 regressions. The (k − 1)-dimensional subspace has an external representation given by

. The vector  is the optimal value of β returned by the algorithm above. The
corresponding vector αk is the normalized representation of βk in the original m-
dimensional space and is the kth principal component loadings vector.

Each subspace is determined by its normal vector βk. Applying βk to the current data matrix
 produces the projections in the (k − 1)-dimensional subspace. An internal

representation of the subspace, needed for the next iteration, requires a set of spanning
vectors of the space containing the projections. The spanning vectors form the columns of
the projection matrix . Obtaining an internal representation can be done in any
number of ways. Algorithm L1-PCA* uses the singular value decomposition (SVD) of the
projected points . The product of the (m − 1) projection matrices is the vector of
loadings for the first principal component α1.

The pseudocode for the L1-PCA* algorithm is given next.

Algorithm L1-PCA*

Given a data matrix X ∈ Rn×m
 with full column rank.
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Algorithm L1-PCA*

1: Set Xm = X; set Vm+1 = I; set (Ij*)m+1 = I. /* Initialization. */

2: for (k = m; k > 1; k = k − 1) do

3: Set j ∗ = j
argmin

Rj
(X k ) and βk = β* using the Algorithm for finding a

L1-norm best-fit
 subspace of dimension m − 1.

/* Find the best-fitting L1
subspace among subspaces derived
with each variable j as the dependent
variable. */

4: Set Zk = (Xk)((Ij*)k)T. /* Project points into a (k − 1)-
dimensional subspace. */

5: Calculate the SVD of Zk, Zk = UΛVT , and set Vk to be equal to the (k − 1)
columns of V corresponding to the largest values in the diagonal matrix Λ.

/* Find a basis for the (k − 1)-
dimensional subspace. */

6: Set α k = (∏ℓ=m+1
k+1 V ℓ)β k ∕ ∣ ∣ β k ∣ ∣ 2

/* Calculate the kth principal
component. */

7: Set X(k−1) = ZkVk. /* Calculate the projected points in
terms of the new basis. */

8: end for

9: Set α 1 = ∏ℓ=m+1
2 V ℓ

.
/* Calculate the first principal
component. */

Notes on L1-PCA*

1. The algorithm generates a sequence of matrices Xm, …, X1. Each of these matrices
contains n rows, each row corresponding to a point. All of the points in Xk are in a
k-dimensional space. The normal vectors of the successive subspaces are mutually
orthogonal.

2. The sequence of vectors αk in Step 6 represent the principal component loadings

vectors. The vector αk is orthogonal to the subspace .

3. Any (k−1) vectors spanning the projected points can form the columns of V k. In
this respect, the algorithm is indeterminate. Different choices for this set will lead
to different projections at successive iterations because the L1 norm is not
rotationally invariant [10]. One way to make the algorithm determinate is to always
use singular value decomposition to define a new coordinate system as in Step 5.

4. The solution of linear programs is the most computationally-intensive step in each

iteration. A total of  linear programs are solved. Each linear
program has 2n + k variables and n constraints. The algorithm has a worst-case
running time of

where  is the complexity of solving a linear program with r variables and s
constraints. Since the complexity of linear programming is polynomial, the
complexity of L1-PCA* is polynomial

5. The algorithm produces an L1 best-fit subspace at each iteration. Accordingly, this
procedure performs well for outlier-contaminated data so long as the accrued effect
of the L1 distances of the outliers does not force the optimal solution to fit them
directly.
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The following three-dimensional example will help to illustrate L1-PCA*. Consider the data
matrix

These points are displayed in Figure 2(a). The L1 best-fit plane obtained in Step 3 by
applying Theorem 1 and after solving three LPs is defined by β3x = 0 where β3 = (−0.80,
−1.00, −0.39). The plane can be see in Figure 2(b). This plane minimizes the total sum of L1
distances of the points to their projections at 9.75. Notice that all projections occur along j*
= 2 (y-axis). The projected points Z3 from Steps 4 and 5 are

Notice that only the second component of each point changes. The singular value
decomposition of Z3 is U Λ VT, where

The first two columns of V span the plane and comprise the 3 by 2 matrix V3. The third
principal component loadings vector is α3 = (−0.59, −0.75, −0.29) using the formula in Step
6. Notice that α3 orthogonal to the best-fit subspace, and that for this first iteration, α3

points in the same direction as α3. The next iteration will use the data set X2 = Z3V3 which
is calculated in Step 7 and corresponds to a re-orientation of the axes so that the plane
becomes the two-dimensional space where the data resides:

Figure 2(c) is a plot of the data points in the matrix X2, embedded in the two-dimensional
best-fit subspace. The figure also shows the resulting best-fit subspace found in the next
iteration in terms of the new axes. Figure 2(c) illustrates how our method remains insensitive
to outliers despite the use of SVD as a method for determining the basis for projected points
at each iteration. The choice of v1 and v2 by using SVD is adversely affected by the outlier;
however, L1-PCA* overcomes the poor choice of v1 and v2 and rotates the axes so that the
blue and green lines are the principal components. Traditional PCA would identify v1 and v2
as the principal component loadings vectors for the projected points. The line in the v1 − v2
plane perpendicular to the line labeled β2 is the L1 best-fit subspace for the two-dimensional
problem solved in the next iteration and represents the projection of the first principal
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component in this plane. Notice that the presence of the outlier in the second quadrant does
not significantly affect the fit. The line labeled β2 is the projection of the second L1 principal
component in this plane.

Figure 2(d) depicts the two best-fit subspaces and the three principal component axes in
terms of the original coordinates of the data. The two subspaces are the red plane and the
line labeled α1. The three principal component axes are the lines labeled α1, α2, and α3.

Figure 2(e) compares the plane defined by the first two principal component axes from L1-
PCA* to that derived using L2-PCA. The view is oriented so that the plane from L1-PCA* is
orthogonal to the plane of the page. Most of the data points are near the plane given by L1-
PCA* indicating a good fit despite the presence of the outlier x10 = (3.0, 3.0, 3.0). The
outlier has clearly affected the location of the plane derived using L2-PCA and does not fit
the rest of the data well. This comparison between L1- and L2-based methods for PCA is
formalized in the experiments below.

6 Correspondences between L1-PCA* and L2-PCA
When Algorithm L1-PCA* is applied to a data set, values analogous to those used in an
application of L2-PCA are obtained. These values permit an analysis with all the
functionality of L2-PCA. Table 1 collects these results along with their explicit formulas in
L1-PCA*. We include correspondences for principal components and scores, and projections
of new points into fitted subspaces. Below we explain how to obtain these correspondences.
These are summarized in Table 1 and their results using the numerical example are in Table
2.

Extracting Principal Components and Scores
As Algorithm L1-PCA* iteratively projects points into lower-dimensional subspaces, we can
collect the normal vectors as principal component loadings vectors. The vector that is
orthogonal to projected points is unique at each iteration k. This vector is precisely βk. Also,
when the singular value decomposition of the projected points is calculated in Step 5,

, the principal component loadings vector βk/||βk|| is the column of V
corresponding to the smallest value in the diagonal matrix Λ. This direction defined by βk is
a k-dimensional vector in the current subspace. Formula 1 in Table 1 presents αk, the kth L1
principal component loadings vector in terms of the original m-dimensional space.

The rows of the matrix Xk,  in Table 1, are the principal component scores. These are the
projected points in the projected coordinate system. For an observation i, the projection into
the k-dimensional subspace in terms of the original coordinates is calculated using Formula
3.

Projecting New Points
The principal component loadings obtained with Formula 1 of Table 1 define the
subspace(s) into which observations are projected. In L2-PCA, the matrix the columns of
which are the first k principal component loadings vectors is the rotation matrix and is used
to project points into the k-dimensional fitted subspace. The projection of a point using L1-
PCA* depends on the sequence of intermediate subspaces so that the matrix of principal
component loadings vectors should not be used as a projection matrix. L1-PCA* projects
optimally one dimension at a time in a unit direction that may not coincide with the normal
vector βk.
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For a new point xn+1, the projection into the best-fit (m − 1)-dimensional subspace is given
by (Ij*)mxn+1. The projected point in terms of the original coordinates is given by
Vm(Ij*)mxn+1. To project the point into a k-dimensional subspace, use Formulas 4 and 5.

Table 2 applies the formulas from Table 1 to the numerical example from the previous
section for three subspaces: 1) for k = 3, the space  where the original data reside, 2) for k
= 2, the fitted plane in Figure 2(b), and 3) for k = 1, the line labeled α1 in Figure 2(d).

7 Computational Results
L1-PCA* is implemented and its performance on simulated and real-world data is compared
to L2-PCA, pcaPP, and L1-PCA. The R package pcaPP is a publicly-available
implementation of the L1-norm-based PCA procedure developed by Croux and Ruiz-Gazen
[8]. The approach implemented in pcaPP maximizes an L1 measure of dispersion in the data
to find successive locally-optimal directions of maximum dispersion. We implemented L1-
PCA, an algorithm developed by Ke and Kanade [17] that approximates L1-norm best-fit
subspaces directly which stands in contrast to the successive approaches L1-PCA* and
pcaPP.

L1-PCA* is implemented in a C program that uses ILOG CPLEX 11.1 Callable Library [14]
for the solution of the linear programs required for Step 3. The singular value decomposition
in Step 5 is calculated using the function dgesvd in LAPACK [2]. The L2-PCA and pcaPP
implementations are publicly available in the stats [24] and pcaPP [11] packages for the R
language for statistical computing [24]. The function used for L2-PCA is prcomp. L1-PCA is
implemented as part of an R package that will be released at a later date [16]. All
experiments are performed on machines with 2.6GHz Opteron processors and at least 4GB
RAM.

Tests with simulated data
The implementations are tested on simulated data. Simulated data provide a controlled
setting for comparison of data analysis algorithms and reveal trends that help make
generalizable conclusions. The objectives for the data are to explore the impact of outliers
on the procedures by varying the dimensionality and magnitude of outlier contamination.
The data are generated such that a predetermined subspace contains most of the dispersion.
The dimension of this “true” subspace is varied to assess the dependence on this data
characteristic.

Each data set consists of n = 1000 observations with m dimensions. The first q dimensions
define the predetermined subspace and the remaining dimensions contain noise. The first q
dimensions are sampled from a Laplace(0, 10) distribution; the remaining dimensions are
sampled from a Laplace(0, 1) distribution. Outliers are introduced in the data set by
generating additional points where the first q dimensions are sampled from a Laplace(0, 10)
distribution, the next p dimensions are sampled from a Laplace(μ, 0.01) distribution so that
the outliers are on the same side of the true subspace, and the remaining m − p − q
dimensions are sampled from a Laplace(0, 1) distribution. The problem suite also includes
control data sets (p = 0, μ = 0) without outlier observations. Outlier observations comprise
ten percent of each data set. We refer to the parameter p as the number of outlier-
contaminated dimensions and the parameter μ as the outlier magnitude. Data sets are also
generated by replacing distribution Laplace(0, 10) with N(0, 10), replacing Laplace(0, 1)
with N(0, 1), and replacing Laplace(μ, 0.01) with N(μ, 0.01). Figure 3 is a schematic of the
roles of the data components in the simulated data.
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Tests are conducted for the configurations that result when m = 10, 100; q = 2, 5; p = 1, 2, 3;
and μ = 25, 50, 75; in addition to the control data sets; for a total of 60 configurations. We
define the error for an observation as the L1 distance from its projected point in the best-
fitting q-dimensional subspace determined by the four methods to the predetermined q-
dimensional subspace.

The problem suite is processed by the L1-PCA*, L2-PCA, pcaPP, and L1-PCA
implementations. The results for Laplacian noise are reported in Tables 3-4 and the results
for Gaussian noise are reported in Tables 5-6. These tables contain the mean and standard
deviation of the sum of errors for 100 replications of each configuration.

Our experiments include eight controls (m = 10, 100, q = 2, 5, Laplacian and Gaussian
noise) when μ = 0 and p = 0 for each distribution of noise. In these data sets, there are no
outliers. L2-PCA outperforms L1-PCA* in seven of the eight control experiments. As
expected, L2-PCA outperforms L1-PCA* in the control experiments when the noise is
Gaussian. In the presence of Laplacian noise, L1-PCA* performs better than L2-PCA when
the dimension of the underlying subspace is higher (q = 5) and the dimension of the original
data is lower (m = 10). The explanation is that the fitted subspaces of successively smaller
dimension derived by L1-PCA* are optimal with respect to the projected data at each
iteration and do not necessarily coincide with the L1 best-fit subspace with respect to the
original data points. Therefore, there is a degradation in the performance of L1-PCA* as the
dimension of the true subspace decreases. L1-PCA approximates subspaces directly, and
performs best in the control experiments in the presence of Laplacian noise. For the control
experiments, pcaPP is not competitive.

Figure 4 illustrates the results for q = 5 and Laplacian noise. The figure compares the
performance of the four implementations with respect to outlier magnitude μ, number of
outlier-contaminated dimensions p, and number of total dimensions m. For small
contamination (μ = 25 and p = 1), there is little discernible difference among L1-PCA*, L1-
PCA, and L2-PCA, and these three methods outperform pcaPP. For moderate levels of
contamination (μ = 50), L1-PCA* provides a clear advantage in the presence of outliers. The
other methods fit the outlier observations, while L1-PCA* ignores them and fits the clean
data. In the cases with extreme outlier contamination (μ = 75 and p ≥ 2), all of the methods
break down and fit the outlier observations with the exception of pcaPP when m = 10, μ =
75, and p = 3. This advantage for pcaPP for μ = 75 and p = 3 is not present when m = 100.
This adverse reaction of pcaPP to an increase in dimension can be explained by a
dimensionality curse effect since the algorithm relies on a grid search procedure. Similar
patterns are observed in the experiments when the noise are Gaussian, except that the
increased noise in the data causes each method to break down sooner (Figure 5).

For each method, as μ and p are increased, the breakdown point is reached where the
methods begin to fit the outlier observations better than the non-contaminated data. For
Laplacian noise and for p = 1, 2, 3, L1-PCA* does not break down, even as μ is increased to
50, while significant increases in the sum of errors are seen for L2-PCA, pcaPP, and L1-
PCA. The approach of the breakdown point for L1-PCA* and L2-PCA as p and μ increase is
signaled in Tables 3-6 by an increase in the standard deviations of the sum of errors. For the
configurations with large standard deviations; such as m = 10, q = 2, p = 3, and μ = 50 for
L1-PCA*; the methods fit the non-contaminated data for some samples and fit the outlier
observations for other samples which result in drastically different sums of errors. The
standard deviations of the sums of errors for pcaPP are larger than those for the other
methods for almost every configuration, an indication that pcaPP is sensitive to small
changes in the data. For q = 5 and Laplacian noise, we can see in Figure 4 that L1-PCA* is
less susceptible to breakdown and only breaks down when p ≥ 2 and μ = 75. In summary,
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L1-PCA* is competitive with other methods in the presence of low outlier contamination
and provides substantial benefits in the presence of moderate outlier contamination. Our
experiments show that L1-PCA* is the indicated procedure in the presence of unbalanced
outlier contamination. These experiments validate the intuition that L1-PCA* is robust to
outliers because of the underlying reliance on optimally-fitted L1 subspaces.

Tests with Real Data
The four implementations; L1-PCA*, L2-PCA, pcaPP, and L1-PCA; are applied to real-
world data that are known to contain outliers. The “Milk” data set is introduced by Daudin
[9] and used by Choulakian [7] for tests with an L1 projection-pursuit algorithm for PCA.
The “McDonald and Schwing” data set is introduced by McDonald and Schwing [23] and is
used by Croux and Ruiz-Gazen [8] for tests with an L1 projection-pursuit algorithm for
PCA. For each data set, the data are centered by subtracting the attribute medians.

Figure 6 contains plots of the sum of residuals of non-outlier observations against the
dimension of the fitted subspace for the two data sets. The residual for an observation is
measured as the L1 distance from the original point to the projected point in the fitted
subspace. If a method is properly ignoring the outlier observations and fitting the non-
contaminated data, then the plotted values should be small.

Figure 6(a) contains the results for the Milk data set. Observations 17, 47, and 70 are
identified as outliers in previous analyses (see [7]). When the outliers are removed the
correlation of variables 4 and 6, 4 and 7, 5 and 6, and 5 and 7 increase by more than 0.3 each
when outliers are removed, indicating that the outlier contamination is present in more than
one dimension. The sum of residuals for the non-outlier observations for L1-PCA* and
pcaPP are almost identical and are less than that for L2-PCA and L1-PCA for two and three
dimensions.

The residuals for the non-outliers in the McDonald and Schwing data set are depicted in
Figure 6(b). Observations 29 and 48 are identified as outliers in previous analyses (see [8]).
When the outliers are removed, the correlation of variables 5 and 12, 5 and 13, 12 and 15, 13
and 14, 13 and 16 increase by at least 0.3 each, indicating that the outlier contamination is
present in more than one dimension. The sum of residuals for non-outlier observations for
pcaPP is larger for smaller-dimensional fitted subspaces when compared to L1-PCA*, L2-
PCA, and L1-PCA. Procedure pcaPP appears to be pushing the fitted subspace away from
the outlier observations at the expense of the fit of non-outlier observations.

The expectation that L1-PCA* performs well in the presence of outliers is validated for these
data sets. For the two real data sets, Figure 6 shows that L1-PCA* generates subspaces that
are competitive in terms of having low residuals for non-outliers. The diminished advantage
of using L1-PCA* for these real data sets when compared to the simulated data can be
attributed to the fact that the outliers in the real data are more balanced in that they are not
located on one side of the best-fitting subspace for the non-contaminated data. Real data
with outlier contamination are likely to have some imbalance in the location of the outliers.
L1-PCA* is well-suited in these situations.

8 Conclusions
This paper proposes a new procedure for PCA based on finding successive L1-norm best-fit
sub-spaces. The result is a pure L1 PCA procedure in the sense that it uses the globally
optimal solution of an optimization problem where the sum of L1 distances is minimized.
Several “pure” L1 PCAs are possible by taking any one of the properties of traditional L2
PCA and using the L1 norm. We describe a complete PCA procedure, L1-PCA*, based on
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this result, and include formulas for correspondences with familiar L2-PCA outputs. The
procedure is tested on simulated and real data. The results for simulated data indicate that
the procedure can be more robust than L2-PCA and competing L1-based procedures, pcaPP
and L1-PCA, for unbalanced outlier contamination and for a wide range of outlier
magnitudes. Experiments with real data confirm that L1-PCA* is competitive in data sets
with outliers. L1-PCA* represents an alternative tool for the numerous applications of PCA.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Level sets for the L1 and L2 norms.

Brooks et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
L1-PCA* implementation for a 3-dimensional example. (a) The point set in 3-D. (b) The L1
best-fit plane. (c) The projection in the best-fit plane with best-fit line. (d) L1-PCA* results.
(e) Comparison of L1-PCA* versus L2-PCA.
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Figure 3.
Data set design for simulation experiments. Observations are represented by rows and
variables are represented by columns. For each instance, outliers comprise 10% of the data
set.
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Figure 4.
Laplacian noise. The sum of errors, the sum of L1 distances of projected points in a 5-
dimensional subspace to the “true” 5-dimensional subspace of the data, versus outlier
magnitude with Laplacian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The
average sum of errors over 100 iterations is plotted. Error bars represent one standard
deviation. The parameter p is the number of outlier-contaminated dimensions.
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Figure 5.
Gaussian noise. The sum of errors, the sum of L1 distances of projected points in a 5-
dimensional subspace to the “true” 5-dimensional subspace of the data, versus outlier
magnitude with Gaussian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The
average sum of errors over 100 iterations is plotted. Error bars represent one standard
deviation. The parameter p is the number of outlier-contaminated dimensions.

Brooks et al. Page 18

Comput Stat Data Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Sum of residuals of non-outlier observations versus the dimension of the fitted subspace for
(a) the Milk data set and (b) the McDonald and Schwing data set.
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Figure 7.
Laplacian noise. The sum of errors, the sum of L1 distances of projected points in a 2-
dimensional subspace to the “true” 2-dimensional subspace of the data, versus outlier
magnitude with Laplacian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The
average sum of errors over 100 iterations is plotted. Error bars represent one standard
deviation. The parameter p is the number of outlier-contaminated dimensions.
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Figure 8.
Gaussian noise. The sum of errors, the sum of L1 distances of projected points in a 2-
dimensional subspace to the “true” 2-dimensional subspace of the data, versus outlier
magnitude with Gaussian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The
average sum of errors over 100 iterations is plotted. Error bars represent one standard
deviation. The parameter p is the number of outlier-contaminated dimensions.
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Table 1

Correspondences between L1-PCA* and L2-PCA for estimating the k-dimensional best-fit subspace

Concept Formula

1 kth principal component loadings vector αk, k = 2, … ,m
 (Set α1 orthogonal to α2, … , αm)

(∏ℓ=m+1
k+1 V ℓ) β k

∣ ∣ β k ∣ ∣ 2

2 Score of observation i
 (from Step 4 of Algorithm L1-PCA*) xi

k

3 Projection of point xi for observation i
 (in terms of original coordinates) (∏ℓ=m+1

k+1 V ℓ)xi
k

4 Score of a new point xn+1
(∏ℓ=m+1

m+1 (V ℓ)T (I j∗)ℓ)xn+1

5 Projection of a new point xn+1

 (in terms of original coordinates) (∏r=m+1
k+1 V r)(∏ℓ=k+1

m+1 (V ℓ)T (I j∗)ℓ)xn+1
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Table 2

Calculated Values for Numerical Example using Formulas from Table 1 (xn+1 = (−2.0, 3.0, 1.0))

Formula 1 k = 3 α3 = (−0.59, −0.75, −0.29)

Principal k = 2 α2 = (0.04, −0.40, 0.92)

Components k = 1 α1 = (0.80, −0.53, −0.27)

Formula 2

Scores k = 3 (X 3)T
=

− 1.17 0.53 − 1.02 1.12 2.08 − 1.61 1.17 2.00 3.00 3.00

1.20 0.24 0.40 1.36 − 1.82 0.53 − 1.52 − 1.03 − 2.00 3.00

− 0.30 − 1.00 1.11 − 1.69 . − 0.76 0.99 0.71 − 1.44 − 1.00 3.00

k = 2 (X 2)T
=

− 1.58 0.38 − 0.97 0.92 2.43 − 1.77 1.70 2.13 3.54 4.73

0.24 1.07 − 1.21 1.82 0.92 − 1.13 − 0.66 1.61 1.22 − 2.91

k = 1 (X 1)T
= − 1.67 0.40 − 1.03 0.98 2.57 − 1.87 1.80 2.25 3.74 5.00

Formula 3

Projections k = 3

− 1.17 0.53 − 1.02 1.12 2.08 − 1.61 1.17 2.00 3.00 3.00

1.20 0.24 0.40 1.36 − 1.82 0.53 − 1.52 − 1.03 − 2.00 3.00

− 0.30 − 1.00 1.11 − 1.69 − 0.76 0.99 0.71 − 1.44 − 1.00 3.00

k = 2

− 1.17 0.53 − 1.02 1.12 2.08 − 1.61 1.17 2.00 3.00 3.00

1.05 − 0.03 0.38 − 0.22 − 1.36 0.90 − 1.21 − 1.03 − 2.00 3.58

− 0.30 − 1.00 1.11 − 1.69 − 0.76 0.99 0.71 − 1.44 − 1.00 3.00

k = 1

− 1.34 0.32 − 0.83 0.78 2.06 − 1.50 1.45 1.81 3.00 4.01

0.89 − 0.22 0.55 − 0.52 − 1.37 1.00 − 0.96 − 1.20 − 2.00 − 2.67

0.45 − 0.11 0.28 − 0.26 − 0.69 0.50 − 0.48 − 0.60 − 1.00 − 1.34

Formula 4 k = 3 (−2.00, 3.00, 1.00)

Scores k = 2 (−2.26, −1.16)

New Point k = 1 −2.39

Formula 5 k = 3 (−2.00, 3.00, 1.00)

Projections k = 2 (−2.00, 1.20, 1.00)

New Point k = 1 (−1.92, 1.28, 0.64)

Comput Stat Data Anal. Author manuscript; available in PMC 2014 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Brooks et al. Page 24

Table 3

Average (Standard Deviation) of L1 Distance to True Subspace for m = 10 Laplacian Noise/Error 100
Replications for Each Configuration

q p μ L1-PCA* L2-PCA pcaPP L1-PCA

2 0 0 339.8 ( 66.0 ) 329.1 ( 60.2 ) 4600.2 ( 978.6 ) 244.5 ( 46.2 )

2 1 25 328.5 ( 60.0 ) 640.7 ( 185.9 ) 5556.0 ( 1216.1 ) 253.1 ( 48.7 )

2 2 25 371.5 ( 73.7 ) 1515.7 ( 681.4 ) 7456.1 ( 1711.5 ) 253.9 ( 47.1 )

2 3 25 872.4 ( 427.8 ) 8974.9 ( 3298.1 ) 9145.1 ( 1852.6 ) 5520.1 ( 4965.3 )

2 1 50 358.4 ( 75.6 ) 6521.5 ( 393.8 ) 8085.5 ( 1045.0 ) 6211.4 ( 248.6 )

2 2 50 337.4 ( 60.4 ) 11637.9 ( 111.2 ) 10010.6 ( 1091.2 ) 11611.9 ( 107.5 )

2 3 50 3644.8 ( 6662.5 ) 16912.9 ( 80.8 ) 11097.6 ( 1090.0 ) 16850.1 ( 63.8 )

2 1 75 329.3 ( 61.8 ) 8698.4 ( 88.5 ) 8835.1 ( 940.1 ) 8606.3 ( 58.0 )

2 2 75 16599.0 ( 75.1 ) 16584.4 ( 71.7 ) 9940.4 ( 1130.2 ) 16538.7 ( 75.5 )

2 3 75 24372.2 ( 61.9 ) 24371.8 ( 68.2 ) 10288.8 ( 1297.9 ) 24329.6 ( 56.6 )

5 0 0 347.5 ( 51.8 ) 370.4 ( 56.0 ) 4555.6 ( 716.1 ) 273.3 ( 39.4 )

5 1 25 330.1 ( 50.2 ) 884.1 ( 191.1 ) 5819.6 ( 986.1 ) 271.3 ( 40.9 )

5 2 25 386.3 ( 72.1 ) 2503.5 ( 785.3 ) 8258.3 ( 1549.5 ) 286.0 ( 44.6 )

5 3 25 1644.9 ( 947.7 ) 11485.5 ( 1308.1 ) 10510.0 ( 1727.2 ) 9581.7 ( 3963.4 )

5 1 50 395.5 ( 75.8 ) 6447.3 ( 308.8 ) 9985.7 ( 1142.8 ) 6379.1 ( 269.2 )

5 2 50 326.1 ( 52.5 ) 11636.4 ( 129.0 ) 14075.7 ( 1017.2 ) 11629.6 ( 110.4 )

5 3 50 3944.9 ( 6881.0 ) 16882.8 ( 65.8 ) 16555.9 ( 1136.5 ) 16845.3 ( 78.1 )

5 1 75 325.3 ( 55.1 ) 8719.7 ( 76.3 ) 11983.1 ( 996.1 ) 8659.6 ( 85.6 )

5 2 75 16554.3 ( 60.0 ) 16584.5 ( 63.3 ) 15153.7 ( 1198.3 ) 16546.4 ( 67.5 )

5 3 75 24330.9 ( 64.1 ) 24351.5 ( 56.6 ) 16541.6 ( 1179.0 ) 24327.3 ( 59.0 )

q: dimension of “true” underlying subspace

p: number of outlier-contaminated dimensions

μ: outlier magnitude
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Table 4

Average (Standard Deviation) of L1 Distance to True Subspace for m = 100 Laplacian Noise/Error 100
Replications for Each Configuration

q p μ L1-PCA* L2-PCA pcaPP L1-PCA

2 0 0 5012.0 ( 294.1 ) 4054.7 ( 223.0 ) 42876.7 ( 2733.3 ) 2965.2 ( 167.5 )

2 1 25 5079.1 ( 306.8 ) 4379.2 ( 276.9 ) 43127.7 ( 2088.2 ) 2991.8 ( 164.3 )

2 2 25 5055.7 ( 272.7 ) 5210.7 ( 754.1 ) 45059.6 ( 2644.3 ) 3001.6 ( 161.7 )

2 3 25 6069.4 ( 727.1 ) 13567.6 ( 2811.4 ) 46975.9 ( 2926.5 ) 8774.4 ( 4563.1 )

2 1 50 5127.4 ( 295.5 ) 9842.0 ( 500.7 ) 46602.8 ( 2507.1 ) 8628.0 ( 453.7 )

2 2 50 5052.1 ( 305.0 ) 14850.5 ( 237.8 ) 49793.2 ( 2478.7 ) 13998.4 ( 339.3 )

2 3 50 6668.7 ( 4793.3 ) 20106.7 ( 217.6 ) 52352.1 ( 2922.9 ) 19140.3 ( 144.6 )

2 1 75 5036.1 ( 260.9 ) 11868.0 ( 213.0 ) 49244.6 ( 2666.6 ) 10923.4 ( 165.8 )

2 2 75 20649.4 ( 262.5 ) 19790.3 ( 217.9 ) 52503.2 ( 2703.2 ) 18913.6 ( 155.2 )

2 3 75 28369.1 ( 262.8 ) 27549.7 ( 211.9 ) 54090.3 ( 3307.9 ) 26720.3 ( 436.8 )

5 0 0 8590.3 ( 278.1 ) 6933.6 ( 202.9 ) 70283.2 ( 3071.5 ) 5182.5 ( 187.5 )

5 1 25 8603.1 ( 285.1 ) 7451.2 ( 326.7 ) 71539.1 ( 3933.4 ) 5178.2 ( 171.3 )

5 2 25 8663.4 ( 314.3 ) 9014.1 ( 712.9 ) 73553.8 ( 3275.1 ) 5194.2 ( 213.9 )

5 3 25 10326.2 ( 922.5 ) 18144.2 ( 1251.5 ) 76066.9 ( 3690.2 ) 15035.6 ( 2951.7 )

5 1 50 8682.2 ( 291.9 ) 12879.5 ( 439.0 ) 75432.8 ( 3286.9 ) 11186.4 ( 420.0 )

5 2 50 8623.1 ( 306.7 ) 18030.7 ( 251.3 ) 82312.4 ( 3241.5 ) 16459.9 ( 242.5 )

5 3 50 12340.6 ( 6879.0 ) 23276.8 ( 257.7 ) 86927.0 ( 4196.8 ) 21677.5 ( 231.0 )

5 1 75 8564.1 ( 287.2 ) 15107.4 ( 213.0 ) 81899.0 ( 3897.0 ) 13488.4 ( 192.7 )

5 2 75 24608.9 ( 292.8 ) 22979.6 ( 216.2 ) 87993.7 ( 3899.2 ) 21373.5 ( 203.4 )

5 3 75 32371.0 ( 299.4 ) 30743.9 ( 242.8 ) 90029.9 ( 3800.5 ) 29097.8 ( 194.9 )

q: dimension of “true” underlying subspace

p: number of outlier-contaminated dimensions

μ: outlier magnitude
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Table 5

Average (Standard Deviation) of L1 Distance to True Subspace for m = 10 Gaussian Noise/Error 100
Replications for Each Configuration

q p μ L1-PCA* L2-PCA pcaPP L1-PCA

2 0 0 313.8 ( 61.6 ) 253.1 ( 50.6 ) 3312.2 ( 637.9 ) 323.9 ( 64.9 )

2 1 25 342.2 ( 64.0 ) 921.6 ( 408.7 ) 4104.5 ( 870.0 ) 323.4 ( 58.4 )

2 2 25 368.2 ( 75.4 ) 6540.2 ( 373.4 ) 5663.8 ( 1261.7 ) 6675.4 ( 347.8 )

2 3 25 315.2 ( 56.2 ) 9014.0 ( 161.8 ) 7188.9 ( 1276.1 ) 9019.2 ( 157.6 )

2 1 50 327.5 ( 66.1 ) 5945.0 ( 60.8 ) 6342.9 ( 923.5 ) 5979.1 ( 68.3 )

2 2 50 4569.8 ( 5343.7 ) 11188.4 ( 53.3 ) 7725.0 ( 887.7 ) 11262.7 ( 72.0 )

2 3 50 16428.7 ( 55.0 ) 16400.3 ( 48.2 ) 8622.2 ( 991.6 ) 16433.2 ( 54.6 )

2 1 75 8464.7 ( 55.3 ) 8420.7 ( 43.4 ) 6804.2 ( 847.4 ) 8470.5 ( 64.4 )

2 2 75 16217.4 ( 58.2 ) 16181.2 ( 50.1 ) 7650.8 ( 774.2 ) 16230.9 ( 60.9 )

2 3 75 23914.2 ( 54.6 ) 23886.2 ( 46.1 ) 7743.1 ( 837.0 ) 23923.6 ( 51.1 )

5 0 0 342.9 ( 43.3 ) 272.7 ( 37.2 ) 3323.9 ( 525.1 ) 337.0 ( 46.9 )

5 1 25 378.1 ( 53.4 ) 1381.1 ( 337.0 ) 4747.7 ( 837.0 ) 340.8 ( 51.2 )

5 2 25 416.6 ( 72.6 ) 6544.6 ( 390.3 ) 7142.7 ( 1021.1 ) 6751.3 ( 402.9 )

5 3 25 309.7 ( 48.3 ) 8961.2 ( 166.0 ) 9876.1 ( 1164.5 ) 9023.1 ( 155.9 )

5 1 50 340.6 ( 56.7 ) 5963.8 ( 59.9 ) 8629.7 ( 645.3 ) 6030.6 ( 79.1 )

5 2 50 10909.0 ( 1875.4 ) 11189.1 ( 46.9 ) 11456.6 ( 699.8 ) 11262.6 ( 58.8 )

5 3 50 16383.4 ( 49.1 ) 16357.3 ( 37.6 ) 12814.8 ( 705.6 ) 16392.5 ( 53.4 )

5 1 75 8495.9 ( 48.2 ) 8438.6 ( 40.6 ) 9399.0 ( 755.7 ) 8501.7 ( 52.6 )

5 2 75 16221.3 ( 49.0 ) 16178.6 ( 39.4 ) 11348.0 ( 1056.0 ) 16229.8 ( 47.0 )

5 3 75 23878.3 ( 38.5 ) 23854.2 ( 37.3 ) 11995.8 ( 871.1 ) 23884.5 ( 45.6 )

q: dimension of “true” underlying subspace

p: number of outlier-contaminated dimensions

μ: outlier magnitude
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Table 6

Average (Standard Deviation) of L1 Distance to True Subspace for m = 100 Gaussian Noise/Error 100
Replications for Each Configuration

q p μ Li-PCA* L2-PCA pcaPP L1-PCA

2 0 0 3941.4 ( 242.1 ) 3130.7 ( 171.0 ) 30524.2 ( 1520.4 ) 3873.4 ( 222.0 )

2 1 25 3995.1 ( 221.7 ) 3841.3 ( 404.3 ) 31296.6 ( 1782.1 ) 3919.1 ( 205.5 )

2 2 25 4007.9 ( 236.1 ) 8910.4 ( 421.6 ) 33394.3 ( 2204.3 ) 9657.8 ( 342.9 )

2 3 25 3969.2 ( 229.6 ) 11418.2 ( 228.3 ) 35798.6 ( 2353.9 ) 11982.3 ( 244.1 )

2 1 50 3948.1 ( 208.7 ) 8348.5 ( 145.6 ) 35591.2 ( 2142.0 ) 8964.0 ( 184.5 )

2 2 50 7585.4 ( 4947.6 ) 13599.2 ( 155.6 ) 38132.4 ( 2254.6 ) 14294.2 ( 174.5 )

2 3 50 19447.2 ( 190.7 ) 18787.3 ( 148.9 ) 39397.2 ( 2142.2 ) 19504.4 ( 545.8 )

2 1 75 11435.0 ( 780.0 ) 10826.2 ( 144.5 ) 37157.3 ( 2191.3 ) 11465.6 ( 209.1 )

2 2 75 19260.1 ( 197.1 ) 18565.4 ( 135.0 ) 39185.0 ( 2395.3 ) 19254.7 ( 202.4 )

2 3 75 26936.7 ( 169.2 ) 26268.0 ( 149.6 ) 39902.9 ( 2575.0 ) 26891.1 ( 178.7 )

5 0 0 6513.4 ( 215.0 ) 5153.2 ( 184.8 ) 49849.0 ( 3663.3 ) 6399.8 ( 215.9 )

5 1 25 6556.8 ( 224.8 ) 6252.6 ( 417.5 ) 51223.5 ( 5684.2 ) 6408.6 ( 208.2 )

5 2 25 6624.2 ( 247.0 ) 11230.7 ( 358.5 ) 54312.2 ( 3270.9 ) 12712.2 ( 399.8 )

5 3 25 6474.8 ( 197.4 ) 13683.9 ( 217.7 ) 57664.4 ( 3355.7 ) 14944.9 ( 270.4 )

5 1 50 6465.6 ( 240.3 ) 10696.2 ( 188.0 ) 58066.3 ( 2745.5 ) 11983.2 ( 310.2 )

5 2 50 16971.2 ( 1523.5 ) 15931.6 ( 159.6 ) 63716.0 ( 2714.6 ) 17261.5 ( 201.8 )

5 3 50 22360.3 ( 227.1 ) 21095.7 ( 161.0 ) 66299.2 ( 2812.8 ) 22370.1 ( 231.8 )

5 1 75 14467.8 ( 219.5 ) 13184.2 ( 174.3 ) 61481.8 ( 3534.9 ) 14444.7 ( 259.4 )

5 2 75 22192.6 ( 233.2 ) 20917.8 ( 174.6 ) 65874.3 ( 3126.6 ) 22254.4 ( 316.3 )

5 3 75 29864.4 ( 226.1 ) 28586.3 ( 177.4 ) 67072.6 ( 2599.8 ) 29877.5 ( 226.1 )

q: dimension of “true” underlying subspace

p: number of outlier-contaminated dimensions

μ: outlier magnitude
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