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Abstract

In this work we introduce and compare several bandwidth selection procedures for
kernel density estimation of a random variable that is sampled under random double
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we study are appropriate modifications of the normal reference rule, the least squares
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method. The methods are first shown to work from a theoretical point of view. A
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1 Introduction

This paper is concerned with the problem of how to select the bandwidth needed in kernel

density estimation of a random variable that is sampled under random double truncation.

Randomly truncated data appear in a variety of fields, including astronomy, medicine,

epidemiology and economics. Under random truncation, only values falling in a random set

which varies across individuals are observed. For the recorded values, the truncation set is

also observed. However, when the value of interest falls outside of the corresponding random

set, nothing is observed. This issue typically introduces an observational bias, and hence

proper corrections in statistical data analysis and inference are needed.

Nonparametric methods for one-sided (left or right) truncated data were introduced in

the seminal paper Lynden-Bell (1971), see also Stute (1993) and Woodroofe (1985). Some

authors have pointed out that the available information on the truncation time allows to

construct more efficient estimators. See for example Wang (1989), Asgharian et al. (2002)

and de Uña-Álvarez (2004).

When the data are subject to double truncation, the literature on nonparametric methods

is much scarcer. A possible reason is the absence of closed form estimators. Indeed, the

existing methods for doubly truncated data are iterative and computationally intensive,

and these issues make both the theoretical developments and the practical implementation

difficult. The first paper on nonparametric maximum likelihood estimation (NPMLE) of the

distribution function under double truncation appeared in 1999 (Efron and Petrosian, 1999),

and was motivated by a data set on quasars in astronomy. Shen (2010a) formally established

the uniform strong consistency and the asymptotic normality of the NPMLE, while bootstrap

methods to approximate the finite sample distribution of the NPMLE with doubly truncated

data were explored in Moreira and de Uña-Álvarez (2010a). The literature also contains

semiparametric approaches to estimate the distribution function under double truncation.

Moreira and de Uña-Álvarez (2010b) investigated this problem when the distribution of the

truncation times is assumed to belong to a given parametric family, see also Shen (2010b).

The estimation of a density function in the presence of random double truncation was

introduced by Moreira and de Uña-Álvarez (2011). The authors proposed and studied both

a nonparametric and a semiparametric estimator, and they also explored the asymptotic

properties of the proposed estimators. The estimators are obtained as a convolution be-

tween a kernel function and one of the estimators of the cumulative distribution function

mentioned above (namely Efron and Petrosian, 1999 for the nonparametric approach and

Moreira and de Uña-Álvarez, 2010b for the semiparametric one).

Our aim in this paper is to propose and compare several automatic bandwidth selec-
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tion procedures for the kernel density estimators introduced by Moreira and de Uña-Álvarez

(2011). The procedures we study are appropriate modifications of the normal reference rule,

the least squares cross-validation procedure, two types of plug-in procedures, and a bootstrap

based method. The methods are first shown to work from a theoretical point of view. A

simulation study is then carried out to assess the finite sample behavior of these bandwidth

selectors. Although these selection procedures are well studied in the literature for com-

pletely observed data, their theoretical and practical behavior is quite different for doubly

truncated data, and to the best of our knowledge, they have never been previously studied in

the literature. Note that, from a historic point of view, the literature on bandwidth selection

for kernel density estimation has, after a period of a clear preponderance of cross-validation

methods, expanded in several directions, which ranged from a revival of the classical plug-in

methods (see, e.g. Sheather and Jones, 1991) to the development of bootstrap-motivated

techniques, see e.g. Cao et al. (1994) for completely observed data and Sánchez-Sellero et al.

(1999), who investigated the bootstrap methodology for left-truncated and right-censored

(LTRC) data.

The paper is organized as follows. In the next section we revisit the kernel density

estimators proposed by Moreira and de Uña-Álvarez (2011). In Section 3 we present our five

bandwidth selection procedures, and we give a theoretical justification for their definition.

The finite sample performance of these methods is studied in Section 4 via a simulation

study. In Section 5 we illustrate the use of the bandwidth selection methods by means of

data on quasars in astronomy. The main conclusions of our study are summarized in Section

6.

2 Kernel density estimation with doubly truncated data

Let X∗ be the random variable of interest with distribution function F , and assume that

it is doubly truncated by the random pair (U∗, V ∗) with joint distribution H , where U∗

and V ∗ (U∗ ≤ V ∗) are the left and right truncation variables respectively. This means that

the triplet (U∗, X∗, V ∗) is observed if and only if U∗ ≤ X∗ ≤ V ∗, while no information is

available when X∗ < U∗ or X∗ > V ∗. We assume that X∗ is independent of (U∗, V ∗). Let

(Ui, Xi, Vi), i = 1, ..., n, denote the sampling information, these are i.i.d. data with the same

distribution as (U∗, X∗, V ∗) given U∗ ≤ X∗ ≤ V ∗. Introduce α = P (U∗ ≤ X∗ ≤ V ∗), the

probability of no-truncation. For any distribution W denote the left and right endpoints

of its support by aW = inf {t : W (t) > 0} and bW = inf {t :W (t) = 1}, respectively. Let

H1(u) = H(u,∞) and H2(v) = H(−∞, v) be the marginal distribution functions of U∗ and

V ∗, respectively. When aH1 ≤ aF ≤ aH2 and bH1 ≤ bF ≤ bH2 , F and H are both identifiable
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(see Woodroofe, 1985).

To define the nonparametric kernel density estimator, proposed by Moreira and de Uña-Álvarez

(2011), we first need to introduce the NPMLE of the distribution function ofX∗ (Efron and Petrosian,

1999). Let (we use the convention 0/0 = 0)

Fn(x) = αn

∫ x

−∞

F ∗
n(dt)

Gn(t)
,

where αn = (
∫∞

−∞
Gn

−1(t)F ∗
n(dt))

−1 is an estimator of α, F ∗
n(x) = n−1

∑n
i=1 I[Xi≤x] is the

ordinary empirical distribution function of the Xi’s, and

Gn(t) =

∫

{u≤t≤v}

Hn(du, dv)

is a nonparametric estimator of G(t) = P (U∗ ≤ t ≤ V ∗), which is the probability of sampling

a lifetimeX∗ = t. Here, Hn(u, v) =
∑n

i=1 ψ̂iI[Ui≤u,Vi≤v] is the NPMLE of the joint distribution

H of the truncation times, where the vector ψ̂ = (ψ̂1, . . . , ψ̂n) maximizes the likelihood

L(ψ) =

n∏

i=1

ψi
Ψi

with respect to ψ, with Ψi =
∑n

j=1 ψjI[Uj≤Xi≤Vj ] (see Moreira and de Uña-Álvarez, 2011 for

more details).

Now, define

fh(x) =

∫
Kh(x− t)Fn(dt) = αn

1

n

n∑

i=1

Kh(x−Xi)G
−1
n (Xi), (2.1)

where K is a kernel density function, Kh(·) = K(·/h)/h, and h = hn is a bandwidth sequence

tending to zero as n tends to infinity.

Suppose now that H belongs to a parametric family of distribution functions {Hθ : θ ∈

Θ}, where Θ is a compact subset of Rk. We estimate θ by maximizing the weighted likelihood

of the (Ui, Vi)’s:

θ̂ = argmax
θ∈Θ

n∏

i=1

hθ(Ui, Vi)

Gθ(Xi)
,

where hθ(u, v) =
∂2

∂u∂v
P (U∗ ≤ u, V ∗ ≤ v) = Hθ(du, dv) and

Gθ(t) =

∫

{u≤t≤v}

Hθ(du, dv).

This leads to a semiparametric estimator of the distribution F :

Fθ̂(x) = αθ̂

∫ x

−∞

F ∗
n(dt)

Gθ̂(t)
,
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where αθ̂ = (
∫∞

−∞
G−1

θ̂
(t)F ∗

n(dt))
−1, and also to a semiparametric estimator of the density f :

fθ̂,h(x) =

∫
Kh(x− t)Fθ̂(dt) = αθ̂

1

n

n∑

i=1

Kh(x−Xi)G
−1

θ̂
(Xi). (2.2)

Moreira and de Uña-Álvarez (2010b) established the asymptotic normality of both θ̂ and

Fθ̂. They also derived the asymptotic properties of fh(t) and fθ̂,h(t) through the analysis of

their asymptotically equivalent (but unfeasible) version:

fh(x) =

∫
Kh(x− t)F n(dt) = α

1

n

n∑

i=1

Kh(x−Xi)G
−1(Xi), (2.3)

where

F n(x) = α
1

n

n∑

i=1

G−1(Xi)I[Xi≤x].

Consider now the following regularity assumptions:

(A1) The kernel function K is a density function with
∫
tK(t)dt = 0, µ2(K) =

∫
t2K(t)dt <

∞, and R(K) =
∫
K(t)2dt <∞.

(A2) The sequence of bandwidths h = hn satisfies h→ 0 and nh→ ∞ as n→ ∞.

(A3) The functions f(x) and G−1(x)f(x) are twice continuously differentiable in x.

Moreira and de Uña-Álvarez (2011) showed that under these assumptions the asymptotic

mean and variance of fh(x) are given by

E
[
fh(x)

]
= f(x) +

1

2
h2f ′′(x)µ2(K) + o(h2),

and

Var
[
fh(x)

]
= (nh)−1αG−1(x)f(x)R(K) + o((nh)−1).

As usual in kernel density estimation, the choice of the bandwidth h strongly influences

the shape of the estimator fh. In order to select an optimal bandwidth, we need to choose a

way to measure the discrepancy between the estimator fh and its target density. The global

error of fh can be measured through the integrated MSE, namely

MISE(fh) =

∫
MSE(fh(x))dx,
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where MSE(fh(x)) =
[
Efh(x)− f(x)

]2
+ Var

(
fh(x)

)
. Under assumptions (A1)-(A3), we

have from the previous results:

MISE(fh) = AMISE(fh) + o((nh)−1) + o(h4), (2.4)

where

AMISE(fh) =
1

4
h4R (f ′′)µ2

2(K) + (nh)−1αR(K)

∫
G−1f (2.5)

and R (f ′′) =
∫
(f ′′)2. Minimization of AMISE(fh) with respect to h leads to the asymp-

totically optimal bandwidth

hAMISE =

[
αR(K)

∫
G−1f

R (f ′′)µ2
2(K)

]1/5
n−1/5. (2.6)

Of course, this expression depends on unknown quantities involving f and G, which must

be estimated in practice. In the next section we propose five automatic bandwidth selection

methods in the context of doubly truncated data, which are all based on the minimization

(with respect to h) of an appropriate estimator of MISE(fh) or AMISE(fh).

3 Automatic bandwidth selection

In this section we propose five bandwidth selection methods for the nonparametric estimator

fh and the semiparametric estimator fθ̂,h. The five methods are appropriate adaptations to

double truncation of the normal reference rule, the one- and two-stage plug-in procedure, the

cross-validation procedure, and a bootstrap method. In order to simplify the presentation,

we restrict attention in this section to the semiparametric estimator fθ̂,h, but the proposed

methods can be readably adapted to the nonparametric case.

3.1 Normal reference bandwidth selection

The estimation of the optimal bandwidth given in (2.6) involves the estimation of R(f ′′)

(apart from the estimation of α and
∫
G−1f , which can be done using the estimators from

Section 2). One simple and straightforward way to estimate R(f ′′) is to assume that X∗ fol-

lows a normal density N(µ, σ2), in which case it can be easily shown that R(f ′′) = 3
8
π−1/2σ−5.

If a Gaussian kernel is used, the window width obtained from (2.6) then equals

hAMISE =

(
4

3
α

∫
G−1f

)1/5

σn−1/5. (3.7)
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A quick way of choosing the smoothing parameter, would be to estimate σ, α and
∫
G−1f

from the data and then to substitute the estimates into (3.7). However, when f is not a

normal density, the estimator of R(f ′′) is in general not consistent. It may lead to over-

smoothing if the population is multimodal, as a result of
∫
(f ′′)2 being large relative to the

standard deviation (see Silverman, 1986 and Wand and Jones, 1995). Better results can be

obtained by using a robust measure of spread. If we write formula (3.7) in terms of the

interquartile range IQR of the underlying normal distribution, we get that hAMISE = 0.79

IQR n−1/5
(
α
∫
G−1f

)1/5
. The IQR is more robust against outliers if f has heavy tails (see

Wand and Jones, 1995). Silverman (1986) recommended the use of the smaller between σ

and IQR to reduce the chances of oversmoothing. This leads to the following bandwidth

parameter:

ĥNR =

(
4

3
αθ̂

∫
G−1

θ̂
(t)Fθ̂(dt)

)1/5

min (σ̂, 0.79IQR)n−1/5, (3.8)

where, under double truncation, σ2 can be estimated by

σ̂2 = αθ̂

∫ (
t−mθ̂

)2
G−1

θ̂
(t)F ∗

n(dt), (3.9)

with mθ̂ = αθ̂
∫
tG−1

θ̂
(t)F ∗

n(dt) and IQR = F−1

θ̂
(0.75)− F−1

θ̂
(0.25). Normal reference band-

width selectors provide a quick ‘first guess bandwidth’ and can be expected to give reasonable

answers when the data are close to normal. However, we need a more elaborated procedure to

estimate R(f ′′) for cases where the density is far away from a normal density. An appropriate

nonparametric estimator for R(f ′′) is discussed in the next subsection.

3.2 Plug-in bandwidth selection

Before explaining how to estimate R(f ′′) in a more accurate way, we first need to consider

the problem of estimating integrals of the form R(f (s)) =
∫
(f (s)(x))2dx for positive integers

s.

3.2.1 Estimation of the integrated squared density derivatives

Using integration by parts, we can write R(f (s)) = (−1)s
∫
f (2s)(x)f(x)dx under certain

smoothness assumptions on f . It is therefore sufficient to study the estimation of integrals

of the form ψr =
∫
f (r)(x)f(x)dx for r even (see Wand and Jones, 1995 for details). Note

that ψr = E{f (r)(X)}, which leads to the following semiparametric estimator under double

truncation:

ψ̂r(g) = αθ̂ n
−1

n∑

i=1

f
(r)

θ̂,g
(Xi)G

−1

θ̂
(Xi) = α2

θ̂
n−2

n∑

i=1

n∑

j=1

L(r)
g (Xi −Xj)G

−1

θ̂
(Xi)G

−1

θ̂
(Xj)
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(Jones and Sheather, 1991 and Wand and Jones, 1995), where the bandwidth g and the ker-

nel L are possibly different from h and K. The asymptotic properties of ψ̂r(g) are important

for the plug-in bandwidth selector described below. They will be derived under the following

assumptions:

(i) The kernel L is a symmetric kernel of order k, k = 2, 4, . . . , possessing r derivatives,

such that (−1)(r+k)/2+1L(r)(0)µk(L) > 0.

(ii) The functions f and G−1f have, respectively, r + k and 2 continuous derivatives that

are each ultimately monotone.

(iii) The bandwidth g = gn satisfies gn = o(1) and ng2r+1
n → ∞.

Note that we can write

ψ̂r(g) = α2
θ̂
n−2L(r)

g (0)

n∑

i=1

G−2

θ̂
(Xi) + α2

θ̂
n−2

∑

i

∑

j 6=i

L(r)
g (Xi −Xj)G

−1

θ̂
(Xi)G

−1

θ̂
(Xj),

and define

ψ̃r(g) = α2 n−2L(r)
g (0)

n∑

i=1

G−2(Xi) + α2 n−2
∑

i

∑

j 6=i

L(r)
g (Xi −Xj)G

−1(Xi)G
−1(Xj),

which is the unfeasible estimator based on the true α and G. It can be easily seen using

the asymptotic properties of θ̂ given in Moreira and de Uña-Álvarez (2011), that ψ̂r(g) and

ψ̃r(g) are asymptotically equivalent. Moreover,

E[ψ̃r(g)]

= α2n−1L(r)
g (0)E

[
G−2(X)

∣∣∣U ≤ X ≤ V
]

+α2(1− n−1)E
[
L(r)
g (X1 −X2)G

−1(X1)G
−1(X2)

∣∣∣U1 ≤ X1 ≤ V1, U2 ≤ X2 ≤ V2

]
.

Using a Taylor expansion, the smoothness assumptions on f and G−1f , and the fact that

L
(r)
g (0) = g−r−1L(r)(0), the bias can be written as

E[ψ̃r(g)− ψr] = α n−1g−r−1L(r)(0)

∫
G−1f + (k!)−1gkψr+kµk(L) +O(gk+2).

Note that the two main terms in this asymptotic bias cancel each other if we choose g

equal to

gAMSE =

[
−
αk!L(r)(0)

∫
G−1f

ψr+kµk(L)

]1/(r+k+1)

n−1/(r+k+1), (3.10)
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which is possible thanks to the assumption on the sign of L(r)(0)µk(L)ψr+k.

By similar calculations as done in Wand and Jones (1995) for the case of completely

observed data, we can also obtain the formula of the asymptotic variance of ψ̃r(g). We refer

to Wand and Jones (1995) (page 69-70) for a discussion on the order of this variance in the

general case and in the case where g = gAMSE, and on how this variance depends on the

larger value between k and r.

3.2.2 Plug-in bandwidth selection

We are now ready to present the plug-in bandwidth selection method, which is based on the

idea of ‘plugging-in’ appropriate estimators of the unknown quantities that appear in the

formula of the AMISE-optimal bandwidth (see (2.6)). First, rewrite this formula using the

definition of ψ4 as

hAMISE =

[
αR(K)

∫
G−1f

ψ4µ
2
2(K)

]1/5
n−1/5. (3.11)

By replacing ψ4 and α
∫
G−1f by the estimators ψ̂4(g) and αθ̂

∫
G−1

θ̂
(t)Fθ̂(dt) respectively,

we obtain the direct plug-in (DPI) rule:

ĥDPI =

[
αθ̂R(K)

∫
G−1

θ̂
(t)Fθ̂(dt)

ψ̂4(g)µ2
2(K)

]1/5

n−1/5.

However, this formula still depends on the pilot bandwidth g, and is therefore not readably

usable in practice. However, we can select g by making use of formula (3.10) with r = 4. If

we take L = K, which can be any kernel of second order (so k = 2), we have:

gAMSE =

[
−
2αK(4)(0)

∫
G−1f

ψ6µ2(K)

]1/7
n−1/7.

Again the same problem appears, in the sense that the estimation of this bandwidth for-

mula necessitates an estimator of ψ6, which requires again the selection of an appropriate

bandwidth. It is clear that this process will never stop, since the formula of the optimal

bandwidth for estimating ψr depends on ψr+2 for any r. It is therefore necessary to estimate

the functional ψr for a certain r by another ‘simple’ formula, which does not depend on

any pilot bandwidth. We will use the normal reference rule described in Subsection 3.1 for

this purpose, adapted to the estimation of derivatives of f (instead of f itself). Following

Wand and Jones (1995), if f is a normal density with variance σ2 then, for r even,

ψr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
, (3.12)
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which leads to the estimator

ψ̂NRr =
(−1)r/2r!

(2σ̂)r+1(r/2)!π1/2
, (3.13)

where σ̂ is the estimator of σ defined in (3.9).

We now have a family of direct plug-in bandwidth selectors that depend on the number

of stages of functional estimation before the normal reference rule is used. The plug-in

procedure involving ` successive kernel functional estimations, is called an `-stage plug-in

bandwidth selector and is denoted by ĥDPI,`. Note that the normal reference rule can be

thought of as being a zero-stage direct plug-in bandwidth selector.

In practice, one has to decide how many steps will be included in this iterative procedure.

Typically the more steps are included the smaller will be the bias but the more variable will

be the procedure. In the simulation study carried out in the next section, we will work with

` = 0, 1 and 2. To summarize, for ` = 1 the procedure consists of the following steps:

(1) Calculate ψ̂NR6 .

(2) Calculate ψ̂4(g1), where g1 =

[
−

2α
θ̂
K(4)(0)

∫
G−1

θ̂
(t)F

θ̂
(dt)

ψ̂NR
6 µ2(K)

]1/7
n−1/7.

(3) The selected bandwidth is ĥDPI,1 =

[
α
θ̂
R(K)

∫
G−1

θ̂
(t)F

θ̂
(dt)

ψ̂4(g1)µ22(K)

]1/5
n−1/5.

Similarly, the two-stage plug-in bandwidth selector can be described as follows:

(1) Calculate ψ̂NR8 .

(2) Calculate ψ̂6(g1), where g1 =

[
−

2α
θ̂
K(6)(0)

∫
G−1

θ̂
(t)F

θ̂
(dt)

ψ̂NR
8 µ2(K)

]1/9
n−1/9.

(3) Calculate ψ̂4(g2), where g2 =

[
−

2α
θ̂
K(4)(0)

∫
G−1

θ̂
(t)F

θ̂
(dt)

ψ̂6(g1)µ2(K)

]1/7
n−1/7.

(4) The selected bandwidth is ĥDPI,2 =

[
α
θ̂
R(K)

∫
G−1

θ̂
(t)F

θ̂
(dt)

ψ̂4(g2)µ22(K)

]1/5
n−1/5.

3.3 Least-squares cross-validation bandwidth selection

The bandwidth selection procedures introduced in Subsections 3.1 and 3.2 are based on the

asymptotic expression of the mean integrated squared error (AMISE). Another approach
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is to directly try to estimate the MISE and to minimize this estimator with respect to h.

Given the estimator fθ̂,h of a density f , the mean integrated squared error can be written as

MISE(fθ̂,h) = E[ISE(fθ̂,h)]

= E
[ ∫

(fθ̂,h(x)− f(x))2dx
]
= E

[ ∫
f 2
θ̂,h

(x) dx− 2

∫
fθ̂,h(x)f(x)dx+

∫
f 2(x)dx

]
.

The term
∫
f 2(x)dx does not depend on h, and so minimizing MISE(fθ̂,h) is equivalent to

minimizing

S(fθ̂,h) =MISE(fθ̂,h)−

∫
f 2(x)dx = E

[∫
f 2
θ̂,h
(x) dx− 2α

∫
fθ̂,h(x)G

−1(x)F ∗(dx)

]
.

In order to construct an estimator of S(fθ̂,h), let fθ̂,h;−i be the density estimator con-

structed from all data points except Xi, i.e.

fθ̂,h;−i(x) =

∫
Kh(x− t)F̂θ̂;−i(dt) = αθ̂;−i

1

n− 1

∑

j 6=i

Kh(x−Xj)G
−1

θ̂;−i
(Xj), (3.14)

where Gθ̂;−i(·) is the estimator of G(·) defined in Section 2, except that the i-th data point

is not used for estimating θ. Now define

LSCV (h) =

∫
f 2
θ̂,h
(x) dx− 2n−1

n∑

i=1

αθ̂;−ifθ̂,h;−i(Xi)G
−1

θ̂;−i
(Xi),

and estimate the optimal h by minimizing LSCV (h) over h:

ĥLSCV = argmin
h

LSCV (h).

Note that

E
[
n−1

n∑

i=1

αθ̂;−ifθ̂,h;−i(Xi)G
−1

θ̂;−i
(Xi)

]

= E
[
αθ̂;−1fθ̂,h;−1(X1)G

−1

θ̂;−1
(X1)

∣∣∣U1 ≤ X1 ≤ V1

]

= E
[
αθ̂;−1

∫
fθ̂,h;−1(x)G

−1

θ̂;−1
(x)F ∗(dx)

]
,

and this is asymptotically equivalent toE[α
∫
fθ,h;−1(x)G

−1(x)F ∗(dx)] = E[
∫
fθ,h;−1(x)F (dx)]

= E[
∫
fθ,h(x)f(x)dx], where the latter equality follows from the fact that E{fθ,h(x)} depends

only on the kernel and the bandwidth, and not on the sample size. Hence, E[LSCV (h)] is

asymptotically equivalent to S(fθ̂,h), which suggests that we can expect ĥLSCV to be close

to the minimizer of S(fθ̂,h) or MISE(fθ̂,h).
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3.4 Smoothed bootstrap bandwidth selection

The final bandwidth selector is based on the estimation of the MISE of fθ̂,h(·) by means

of a smoothed bootstrap procedure. The reason we use a smoothed bootstrap procedure

(as opposed to a non-smoothed one) is the same as in Silverman and Young (1987), namely

without smoothing the bootstrap would be inconsistent. The bootstrap procedure can be

described as follows. For fixed B and for b = 1, . . . , B:

1. Let Xboot
b,i , i = 1, . . . , n, be an i.i.d. sample from fθ̂,g, where g is chosen to be ĝDPI,2

(other choices for g are possible as well), and let (U boot
b,i , V

boot
b,i ), i = 1, . . . , n, be an i.i.d.

sample from Hn. Next, for each i = 1, . . . , n, we keep the triplet (U boot
b,i , X

boot
b,i , V

boot
b,i ) in

the resample only if the condition U boot
b,i ≤ Xboot

b,i ≤ V boot
b,i is fulfilled. If not, the same

resampling procedure is repeated until a triplet is found for which the inequality holds

true.

2. Let θ̂bootb and f boot
θ̂boot
b

,b,h
(·) be the estimator of θ and of the density f respectively, obtained

from the bootstrap sample (U boot
b,i , X

boot
b,i , V

boot
b,i ), i = 1, . . . , n.

Note that in the first step above, no smoothing is required for the sampling distribution of

the truncation times, as is the case for single truncation times (see Sánchez-Sellero et al.

(1999), page 57-58). Next, let

BMISE(h) = B−1

B∑

b=1

∫ (
f boot
θ̂boot
b

,b,h
(t)− fθ̂,g(t)

)2

dt,

which for B large will approximate well the bootstrap MISE given by

MISEboot(h) = Eboot
[ ∫ (

f boot
θ̂boot,h

(t)− fθ̂,g(t)
)2

dt
]
,

where Eboot denotes the expected value conditionally on the original sample. Now, define

ĥboot = argmin
h

BMISE(h).

As is the case for the cross-validation procedure (see Subsection 3.3), we obtain here

an estimator of the optimal bandwidth by minimizing an estimator of the (non-asymptotic)

MISE of fθ̂,h, whereas the normal reference rule (see Subsection 3.1) and the plug-in band-

width selection procedures (see Subsection 3.2) are based on the minimization of an ap-

propriate estimator of the (asymptotic) AMISE. In the next section, we will examine the

behavior of each of these bandwidth selectors for small samples via a thorough simulation

study.
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4 Simulations

In this section we illustrate through a simulation study the finite sample behavior of the five

bandwidth selection methods: the normal reference bandwidth selector (NR), the one-stage

plug-in bandwidth selector (DPI1), the two-stage plug-in bandwidth selector (DPI2), the

least squares cross-validation selector (LSCV) and the bootstrap bandwidth selector (Boot),

for both the nonparametric and the semiparametric kernel density estimator.

We consider two different situations of double truncation. In Case 1, U∗, V ∗ and X∗ are

mutually independent. In Case 2, we simulate U∗ and let V ∗ = U∗+τ for some fixed constant

τ > 0. The density of (U∗, V ∗) does not exist for Case 2, and hence the role of the joint density

of (U∗, V ∗) must be played by one of the marginal densities (see Moreira and de Uña-Álvarez,

2010a for more details).

Two different models are simulated for each of the two cases. For Case 1, we take

U∗ ∼ U(0, 1), V ∗ ∼ U(0, 1), X∗ ∼ U(0.25, 1) (Model 1.1) and U∗ ∼ U(0, 1), V ∗ ∼ U(0, 1),

X∗ ∼ 0.75N(0.5, 0.15) + 0.25 (Model 1.2). For Case 2, we take τ = 0.25, U∗ ∼ U(0, 1),

X∗ ∼ U(0.25, 1) (Model 2.1) and τ = 0.25, U∗ ∼ U(0, 1), X∗ ∼ 0.75N(0.5, 0.15) + 0.25

(Model 2.2). Note that when we move from Model 1.1 (respectively 2.1) to Model 1.2

(respectively 2.2) we are changing the lifetime distribution while fixing the distribution of

the truncation variables. On the other hand, when we move from Model 1.1 (respectively

1.2) to Model 2.1 (respectively 2.2) we are maintaining the same lifetime distribution but we

change the truncation distribution. This will be interesting when interpreting the simulation

results. We also like to point out that, due to the random truncation, relatively small and

moderate values of the lifetime are more likely to be observed under Models 1.1 and 1.2, while

there is no observational bias under Models 2.1 and 2.2. Indeed, it can be easily seen that

the function G is constant under Models 2.1 and 2.2, since V ∗ = U∗ + τ and U∗ ∼ U(0, 1).

In other words, the truncated distribution F ∗ coincides with the distribution of interest F ,

i.e. the truncation mechanism does not change the sampling probabilities.

For the computation of the semiparametric density estimator, as parametric information

on (U∗, V ∗) we always consider a Beta(θ1, 1) for U∗ and a Beta(1, θ2) for V ∗ in Case 1.

For each model, we simulate M = 500 samples of (final) sample size n = 50, 100, 250 or

500. For each generated sample, we estimate the optimal bandwidth by means of the five

bandwidth selection methods (NR, DPI1, DPI2, LSCV and Boot) for both the nonparametric

and the semiparametric kernel density estimator. In Tables 1-4 we report the median and

interquartile range of the 500 estimated bandwidths for each method and each model, and

we also present for each case the theoretical optimal bandwidth (hMISE) for comparison

purposes. In Figures 1-4 we represent the graphs of the densities of log10(ĥ)− log10(hMISE)
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with ĥ obtained by one of the five bandwidth selection methods. These graphs allow to

compare the bias and variance in a visual way, and they give an idea of the shape of these

densities, whereas this information cannot be distracted from the tables.

From the tables and figures it can be seen that in general (only 5 exceptions) the IQR’s

for the semiparametric estimator are smaller than the corresponding IQR’s for the nonpara-

metric estimator. Another interesting feature is that the IQR’s are usually highest for LSCV,

followed by Boot, and then followed by NR, DPI1 and DPI2, which usually behave quite sim-

ilarly. In addition, even for samples of size n = 500, the LSCV remains quite variable. From

Tables 1 and 3 (Models 1.1 and 2.1) we can conclude that in general all methods except NR

and Boot (at least for n = 500) perform quite well, however the DPI1 and DPI2 perform

almost as well. This can be explained by the fact that the target is an uniform density, which

provokes strong boundary effects. The plug-in bandwidths are in all cases smaller than the

bootstrap bandwidth. This confirms the findings in Cao et al. (1994). From Figures 1-4, we

can conclude that the semiparametric estimator has less variance than the nonparametric

one, and that the LSCV method has higher variance than all the other methods. All methods

seem to converge to the optimum when the sample size increases.

n = 50

NP SP

Method hMISE = 0.1620 hMISE = 0.1490

med IQR med IQR

NR 0.1006 0.0209 0.0996 0.0187

DPI1 0.0985 0.0229 0.0995 0.0217

DPI2 0.0915 0.0257 0.0921 0.0233

LSCV 0.1240 0.1033 0.1310 0.0983

Boot 0.1510 0.0633 0.1390 0.0502

n = 100

NP SP

Method hMISE = 0.1180 hMISE = 0.1050

med IQR med IQR

NR 0.0906 0.0142 0.0903 0.0114

DPI1 0.0854 0.0152 0.0853 0.0143

DPI2 0.0782 0.0185 0.0780 0.0167

LSCV 0.0890 0.0823 0.0920 0.0780

Boot 0.1240 0.0483 0.1140 0.0370

n = 250

NP SP

Method hMISE = 0.0750 hMISE = 0.0670

med IQR med IQR

NR 0.0786 0.0097 0.0784 0.0092

DPI1 0.0709 0.0092 0.0707 0.0094

DPI2 0.0636 0.0102 0.0642 0.0105

LSCV 0.0670 0.0490 0.0690 0.0470

Boot 0.0930 0.0253 0.0880 0.0220

n = 500

NP SP

Method hMISE = 0.0550 hMISE = 0.0490

med IQR med IQR

NR 0.0700 0.0091 0.0699 0.0084

DPI1 0.0560 0.0091 0.0603 0.0083

DPI2 0.0528 0.0091 0.0529 0.0087

LSCV 0.0460 0.0313 0.0450 0.0330

Boot 0.0720 0.0170 0.0690 0.0140

Table 1: Median and interquartile range of the 500 estimated bandwidths obtained from

the five bandwidth selection methods: NR, DPI1, DPI2, LSCV and Boot, for both the

nonparametric (NP) and the semiparametric (SP) kernel density estimators under Model

1.1. The exact value of hMISE is also reported for comparison purposes.
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n = 50

NP SP

Method hMISE = 0.0610 hMISE = 0.0590

med IQR med IQR

NR 0.0488 0.0091 0.0488 0.0092

DPI1 0.0524 0.0115 0.0527 0.0105

DPI2 0.0512 0.0132 0.0519 0.0123

LSCV 0.0630 0.0260 0.0630 0.0250

Boot 0.0690 0.0200 0.0670 0.0170

n = 100

NP SP

Method hMISE = 0.0520 hMISE = 0.0510

med IQR med IQR

NR 0.0440 0.0058 0.0441 0.0057

DPI1 0.0467 0.0074 0.0468 0.0065

DPI2 0.0458 0.0088 0.0459 0.0078

LSCV 0.0520 0.0200 0.0530 0.0190

Boot 0.0600 0.0120 0.0590 0.0100

n = 250

NP SP

Method hMISE = 0.0430 hMISE = 0.0420

med IQR med IQR

NR 0.0369 0.0036 0.0369 0.0035

DPI1 0.0392 0.0039 0.0393 0.0037

DPI2 0.0388 0.0049 0.0389 0.0047

LSCV 0.0430 0.0120 0.0430 0.0120

Boot 0.0500 0.0070 0.0480 0.0050

n = 500

NP SP

Method hMISE = 0.0370 hMISE = 0.0360

med IQR med IQR

NR 0.0325 0.0022 0.0325 0.0022

DPI1 0.0342 0.0027 0.0344 0.0024

DPI2 0.0340 0.0034 0.0342 0.0032

LSCV 0.0360 0.0090 0.0370 0.0090

Boot 0.0430 0.0050 0.0420 0.0040

Table 2: Median and interquartile range of the 500 estimated bandwidths obtained from

the five bandwidth selection methods: NR, DPI1, DPI2, LSCV and Boot, for both the

nonparametric (NP) and the semiparametric (SP) kernel density estimators under Model

1.2. The exact value of hMISE is also reported for comparison purposes.

n = 50

NP SP

Method hMISE = 0.2300 hMISE = 0.1490

med IQR med IQR

NR 0.0994 0.0190 0.1024 0.0111

DPI1 0.0892 0.0180 0.0958 0.0116

DPI2 0.0799 0.0187 0.0880 0.0172

LSCV 0.0800 0.0703 0.1140 0.0870

Boot 0.1960 0.1043 0.1455 0.0540

n = 100

NP SP

Method hMISE = 0.1800 hMISE = 0.1080

med IQR med IQR

NR 0.0893 0.0103 0.0904 0.0064

DPI1 0.0785 0.0086 0.0817 0.0063

DPI2 0.0687 0.0117 0.0733 0.0101

LSCV 0.0610 0.0523 0.0770 0.0643

Boot 0.1570 0.0663 0.1170 0.0663

n = 250

NP SP

Method hMISE = 0.1080 hMISE = 0.0630

med IQR med IQR

NR 0.0753 0.0056 0.0759 0.0036

DPI1 0.0638 0.0055 0.0646 0.0037

DPI2 0.0556 0.0074 0.0569 0.0060

LSCV 0.0470 0.0320 0.0500 0.0310

Boot 0.1090 0.0415 0.0820 0.0190

n = 500

NP SP

Method hMISE = 0.0520 hMISE = 0.0400

med IQR med IQR

NR 0.0661 0.0036 0.0662 0.0022

DPI1 0.0539 0.0029 0.0542 0.0025

DPI2 0.0461 0.0048 0.0468 0.0040

LSCV 0.0350 0.0193 0.0365 0.0200

Boot 0.0760 0.0230 0.0630 0.0103

Table 3: Median and interquartile range of the 500 estimated bandwidths obtained from

the five bandwidth selection methods: NR, DPI1, DPI2, LSCV and Boot, for both the

nonparametric (NP) and the semiparametric (SP) kernel density estimators under Model

2.1. The exact value of hMISE is also reported for comparison purposes.
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n = 50

NP SP

Method hMISE = 0.0670 hMISE = 0.0600

med IQR med IQR

NR 0.0503 0.0096 0.0509 0.0085

DPI1 0.0519 0.0125 0.0536 0.0092

DPI2 0.0503 0.0146 0.0524 0.0110

LSCV 0.0610 0.0330 0.0630 0.0270

Boot 0.0790 0.0340 0.0690 0.0160

n = 100

NP SP

Method hMISE = 0.0570 hMISE = 0.0510

med IQR med IQR

NR 0.0461 0.0052 0.0458 0.0050

DPI1 0.0466 0.0069 0.0469 0.0060

DPI2 0.0456 0.0090 0.0460 0.0081

LSCV 0.0570 0.0210 0.0540 0.0190

Boot 0.0650 0.0190 0.0590 0.0103

n = 250

NP SP

Method hMISE = 0.0420 hMISE = 0.0420

med IQR med IQR

NR 0.0389 0.0031 0.0388 0.0031

DPI1 0.0393 0.0037 0.0396 0.0036

DPI2 0.0389 0.0048 0.0391 0.0045

LSCV 0.0450 0.0140 0.0430 0.0120

Boot 0.0525 0.0100 0.0490 0.0060

n = 500

NP SP

Method hMISE = 0.0370 hMISE = 0.0360

med IQR med IQR

NR 0.0334 0.0018 0.0339 0.0019

DPI1 0.0334 0.0026 0.0344 0.0024

DPI2 0.0339 0.0034 0.0342 0.0030

LSCV 0.0370 0.0120 0.0360 0.0090

Boot 0.0430 0.0070 0.0425 0.0040

Table 4: Median and interquartile range of the 500 estimated bandwidths obtained from

the five bandwidth selection methods: NR, DPI1, DPI2, LSCV and Boot, for both the

nonparametric (NP) and the semiparametric (SP) kernel density estimators under Model

2.2. The exact value of hMISE is also reported for comparison purposes.

5 Data analysis

Let us now apply the developed bandwidth selection methods to data on the luminosity

of quasars in astronomy. One of the main aims of astronomers interested in quasars is

to understand the evolution of the luminosity of quasars (see Efron and Petrosian, 1999,

Shen, 2010a and Moreira et al., 2010). The motivating example presented in the paper by

Efron and Petrosian (1999) concerns a set of measurements on quasars in which there is

double truncation, because the quasars are observed only if their luminosity occurs within a

certain finite interval, that is bounded at both ends, and which is determined by detection

limits.

The original data set studied by Efron and Petrosian (1999), comprised independently

collected quadruplets (zi, mi, ai, bi), i = 1, . . . , n, where zi is the redshift of the ith quasar

and mi is the apparent magnitude. Due to experimental constraints, the distribution of

each luminosity in the log-scale (yi = t(zi, mi)) is truncated to a known interval [ai, bi],

where t represents a transformation which depends on the cosmological model assumed (see

Efron and Petrosian, 1999 for details). Quasars with apparent magnitude above bi were too

dim to yield dependent redshifts, and hence they were excluded from the study. The lower

limit ai was used to avoid confusion with non quasar stellar objects. The dataset contains
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at the end information about n = 210 quasars. The distribution function of the adjusted

log-luminosity has been estimated by Moreira et al. (2010), using the NPMLE for doubly

truncated data computed by the R package DTDA.

We first estimate the function G(t), i.e. the probability that an observation is not trun-

cated given that it equals t (or in other words the probability that the detection interval

contains an adjusted log-luminosity of magnitude t). In the left panel of Figure 5 we observe

that this function is varying a lot, which suggests that there is substantial observational bias,

since a constant curve indicates that no observational bias is present. In particular we see

that adjusted log luminosities below zero are observed with a particularly small probability

(see also Moreira, 2010 and Moreira et al., 2010).

Next, we apply the nonparametric estimator and our five bandwidth selection methods to

these data. The resulting kernel density estimators are depicted in the right panel of Figure

5. For comparison purposes, the naive kernel density estimator which does not correct for

the presence of double truncation is also given. It can be clearly seen that by ignoring

the presence of truncation we obtain a dramatically different kernel density estimator. We

also observe that the plug-in methods (DPI1 and DPI2), the normal reference method (NR)

and the smoothed bootstrap procedure (Boot) give very similar results, whereas the LSCV

method yields a somewhat smoother curve. A possible explanation for this can be found

in the fact that the data are rather scarce near the left endpoint of their support (there

exist only four observations of adjusted log-luminosity below -1.7) and, in the case of the

least squares cross-validation selector, it is clear that by leaving out one observation from the

dataset, it may happen that no data points are left in a given window when the bandwidth is

small. This feature forces the procedure to select a larger bandwidth, and this might explain

why the cross-validation method yields a somewhat larger bandwidth estimator than the

other methods.

6 Conclusions

In this paper we have considered the estimation of a density function by means of kernel

smoothing, when the available data are subject to double truncation. In particular, we have

proposed five bandwidth selection methods and have studied their finite sample behavior via a

thorough simulation study. The proposed methods are: the normal reference rule, a one-stage

plug-in bandwidth selector, a two-stage plug-in bandwidth selector, a least squares cross-

validation selector and a smoothed bootstrap bandwidth selector. Both a nonparametric

and a semiparametric kernel density estimator are studied. The simulations show that in

general all methods perform well, with some exceptions in Models 1.1 and 2.1, in which the
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target is an uniform density, provoking strong boundary effects. We can also conclude that

the LSCV method, even though it performs rather well (at least for large sample sizes),

has larger variance than all the other methods. As can be expected, the semiparametric

estimator has smaller variance than the nonparametric one. The proposed methods are also

applied to data on the luminosity of quasars in astronomy.

An interesting topic for future research is the study of automatic bandwidth selectors

for the estimation of the hazard rate function, which is another important curve in survival

analysis in the presence of double truncation.
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Figure 1: Density estimates of log10(ĥ)−log10(hMISE) for the semiparametric estimator (left

panel) and the nonparametric estimator (right panel) with ĥ obtained by the five bandwidth

selection methods: NR (dotted line); DPI1 (dashed line); DPI2 (solid line); LSCV (dot-

dashed line) and Boot (two-dashed line). Selected bandwidths are based on 500 simulated

samples for Model 1.1 with sample sizes n = 50 (top), 250 (middle) and 500 (bottom).
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Figure 2: Density estimates of log10(ĥ)−log10(hMISE) for the semiparametric estimator (left

panel) and the nonparametric estimator (right panel) with ĥ obtained by the five bandwidth

selection methods: NR (dotted line); DPI1 (dashed line); DPI2 (solid line); LSCV (dot-

dashed line) and Boot (two-dashed line). Selected bandwidths are based on 500 simulated

samples for Model 1.2 with sample sizes n = 50 (top), 250 (middle) and 500 (bottom).
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Figure 3: Density estimates of log10(ĥ)−log10(hMISE) for the semiparametric estimator (left

panel) and the nonparametric estimator (right panel) with ĥ obtained by the five bandwidth

selection methods: NR (dotted line); DPI1 (dashed line); DPI2 (solid line); LSCV (dot-

dashed line) and Boot (two-dashed line). Selected bandwidths are based on 500 simulated

samples for Model 2.1 with sample sizes n = 50 (top), 250 (middle) and 500 (bottom).
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Figure 4: Density estimates of log10(ĥ)−log10(hMISE) for the semiparametric estimator (left

panel) and the nonparametric estimator (right panel) with ĥ obtained by the five bandwidth

selection methods: NR (dotted line); DPI1 (dashed line); DPI2 (solid line); LSCV (dot-

dashed line) and Boot (two-dashed line). Selected bandwidths are based on 500 simulated

samples for Model 2.2 with sample sizes n = 50 (top), 250 (middle) and 500 (bottom).
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Figure 5: Left panel: Bias function for the quasars data. Right panel: Kernel density esti-

mators for the log-luminosity of the quasars data with different bandwidth selectors. Naive

(biased) estimator (solid line); NR (dashed line); DPI1 (long-dashed line); DPI2 (dotted

line); LSCV (dot-dashed line) and Boot (two-dashed line).
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