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Abstract

The application of “concentration” steps is the main principle behind Forgy’s

k-means algorithm and Rousseeuw and van Driessen’s fast-MCD algorithm.

Despite this coincidence, it is not completely straightforward to combine both

algorithms for developing a clustering method which is not severely affected

by few outlying observations and being able to cope with non spherical clus-

ters. A sensible way of combining them relies on controlling the relative clus-

ter scatters through constrained concentration steps. With this idea in mind,

a new algorithm for the TCLUST robust clustering procedure is proposed

which implements such constrained concentration steps in a computationally

efficient fashion.

Keywords: Cluster Analysis, Robustness, Impartial trimming,

Classification EM algorithm, TCLUST.

1. Introduction

It is easy to realize that there are clear relations between Forgy’s k-

means algorithm (Forgy, 1965) and the fast-MCD algorithm (Rousseeuw and
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Van Driessen, 1999). These two widely applied algorithms play a clear key

role in Cluster Analysis and in Robust Statistics, respectively. The connec-

tion between them mainly refers to the application of the so-called “concen-

tration” steps. Roughly speaking, in these concentration steps, the closest

observations to a given center are considered in order to update this center

estimate, such that the algorithm searches for regions with a high concentra-

tion of observations.

A great drawback when using the k-means method is that it ideally

searches for spherically scattered clusters with similar sizes. Further, the

presence of a certain fraction of outlying observations could negatively affect

its performance (see, e.g., Garćıa-Escudero et al., 2010).

Under the previous premises, it seems quite logical to try to combine the

clustering ability of k-means with the ability to robustly estimate covariance

structures provided by the fast-MCD algorithm.

The trimmed k-means algorithm (Garćıa-Escudero et al., 2003) can be

seen as a simple combination of k-means and fast-MCD algorithms, where

spherical clusters are still assumed. In each concentration step, the propor-

tion α of the most remote observations (considering Euclidean distances) to

the previous k centers are discarded. Subsequently, k new centers are ob-

tained by using the group means of the non-discarded observations. Note that

the approach simplifies to the well-known Forgy’s k-means algorithm when

the trimming level α is set to 0. More information on the trimmed k-means

approach can be found in Cuesta-Albertos et al. (1997) and Garćıa-Escudero

and Gordaliza (1999).

It is also a logical step to think about the trimmed k-means algorithm but
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considering Mahalanobis distances (xi−mj)
′S−1

j (xi−mj) (as the fast-MCD

algorithm does) instead of Euclidean distances. In this case, the centers mj

and the “scatter matrices” Sj (for j = 1, . . . , k) would be updated by com-

puting sample means and sample covariance matrices of the non-discarded

observations assigned to each group. Unfortunately, this “naive” combina-

tion of algorithms does not provide sensible clustering results, since large

clusters tend to “eat” smaller ones. This problem was already noticed in

Maronna and Jacovkis (1974) in the untrimmed case (α = 0).

For avoiding this drawback, additional constraints are introduced, which

limit the difference between the cluster scatters. In fact, many well-known

clustering methods implement (implicitly and explicitly) such constraints.

For example, the k-means method assumes the same spherical scatter for all

the clusters.

Hathaway (1985), in a pioneering work on the mixture fitting frame-

work, proposed constraining the relative differences between cluster scatters

through a constant c that controls the strength of the constraints. With this

idea in mind, Garćıa-Escudero et al. (2008) introduces the TCLUST method

which is based on controlling the relative sizes of the eigenvalues of the cluster

scatter matrices.

The TCLUST method has good robustness behavior and nice theoretical

properties (the existence of solutions for both sample and population prob-

lems, together with the consistency of sample solutions to population ones).

Unfortunately, from a computational viewpoint, solving the TCLUST prob-

lem is not an easy task. Although an algorithm for solving this problem was

given in Garćıa-Escudero et al. (2008), the most critical issue there was how
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to enforce the eigenvalue ratio constraints. This is clearly its computational

bottle-neck because a complex optimization problem must be solved in each

concentration step. To be more precise, a maximization of a (k × p)-variate

function with
(
k×p
2

)
constraints needs to be solved (k stands for the num-

ber of clusters and p for the data dimension). This makes the algorithm

computationally unfeasible even for moderate values of k and/or p.

In this work, we present an algorithm for implementing the constrained

concentration steps, which clearly speeds up the previous TCLUST algo-

rithm and makes it computationally feasible for practical applications. This

algorithm only requires the evaluation of a not very complex function 2pk+1

times in each concentration step.

The proposed algorithm can be seen as a Classification EM algorithm

(Schroeder, 1976; Celeux and Govaert, 1992) and, more generally, as a gen-

eralized k-means algorithm (Bock, 2007). Note that the proposed algorithm

allows to exactly solve the (constrained) maximization step, which forces the

trimmed likelihood target function to increase monotonically through the

iterations.

An implementation of the algorithm described in this work is available

through the R package tclust available at http://CRAN.R-project.org/

package=tclust. A description of how this R package can be used in prac-

tical applications can be found in Fritz et al. (2012). In this work, we detail

the algorithms internally applied by this package.

The methodology behind the discussed approach is explained in Section

2, while the algorithm is presented in Section 3. Section 4 contains a brief

simulation study, investigating the performance of the algorithm, and it is
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compared to other closely related ones in Section 5. Section 6 explains how

this algorithm allows the practical application of exploratory tools which

help us to decide on the number of clusters and the trimming level. Section

7 finally presents concluding thoughts.

2. Constrained robust clustering and TCLUST

Given a sample of observations {x1, · · · ,xn} in Rp and ϕ(·;µ,Σ), the

probability density function of a p-variate normal distribution with mean µ

and covariance matrixΣ, we consider the following general robust constrained

clustering problem for a fixed trimming level α:

Search for a partition R0, R1, · · · , Rk of the indices {1, · · · , n}

with #R0 = ⌈nα⌉, centers m1, · · · ,mk in Rp, symmetric posi-

tive semidefinite p × p scatter matrices S1, · · · ,Sk and weights

p1, · · · , pk with pj ∈ [0, 1] and
∑k

j=1 pj = 1, which maximizes

k∑
j=1

∑
i∈Rj

log
(
pjϕ(xi;mj,Sj)

)
. (2.1)

Depending on the constraints imposed on the weights pj and on the scat-

ter matrices Sj, the maximization of (2.1) for α = 0 leads to well established

clustering procedures. For instance, assuming equal weights p1 = · · · = pk

and scatter matrices S1 = · · · = Sk = σ2I with I being the identity

matrix and σ > 0 yields the k-means method. The determinantal crite-

rion introduced by Friedman and Rubin (1967) is obtained when assuming

p1 = · · · = pk and S1 = · · · = Sk = S with S being a positive definite matrix.

In general, the “likelihood” in (2.1) when α = 0 and p1 = · · · = pk is often re-

ferred to as the Classification-Likelihood (see, e.g., Scott and Symons, 1971).
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The use of (2.1) assuming different weights pj goes back to Symons (1981)

and Bryant (1991) and is known as the penalized Classification-Likelihood

criterion.

Trimmed alternatives to the previously commented approaches can be

constructed by introducing a trimming level α > 0 to (2.1), which yields

“trimmed likelihoods”. This way, for instance, the trimmed k-means method

in Cuesta-Albertos et al. (1997) extends k-means and the trimmed deter-

minantal criterion in Gallegos and Ritter (2005) extends the determinantal

criterion. Note that ⌈nα⌉ observations (R0) are not taken into account when

computing (2.1), and thus the harmful effect of outlying observations, up

to a contamination level α, can be avoided. Gallegos and Ritter (2005) in-

troduce the so-called “spurious outlier model” that theoretically justifies the

use of trimmed likelihoods. It is also important to note that this robust

clustering problem reduces to the fast-MCD method when assuming k = 1

(i.e. only partitioning the data into ⌈nα⌉ trimmed and ⌊n (1− α)⌋ regular

observations).

It is straightforward to see that the direct maximization of (2.1) without

any constraint on the scatter matrices is not a well defined problem. For

instance, a single cluster j made up of only one observation xi causes (2.1)

to tend to infinity by taking a center mj = xi and a scatter matrix Sj with

det(Sj) → 0. Thus, partitions containing spurious clusters are quite likely

and even preferred to more sensible clustering partitions. This also explains

why the previously described “naive” algorithm, combining trimmed k-means

and the fast-MCD, does not always work properly.
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In order to make the maximization of (2.1) a well defined problem, Garćıa-

Escudero et al. (2008) proposed to additionally consider an eigenvalue ratio

constraint on the scatter matrices S1, · · · ,Sk:

maxj,l λl(Sj)

minj,l λl(Sj)
≤ c, (2.2)

with λl(Sj) for l = 1, · · · , p, as the set of eigenvalues of the scatter matrix Sj

and c ≥ 1 as a constant which controls the strength of the constraint (2.2).

The maximization of (2.1) under the eigenvalue ratio constraint (2.2)

leads to the TCLUST problem introduced by Garćıa-Escudero et al. (2008).

The smaller the value of c is, the stronger the restriction imposed on the

solution, yielding the strongest constraint when c = 1.

Garćıa-Escudero et al. (2008) proves the existence of solutions for the pre-

viously stated robust constrained clustering problem whenever some patho-

logical (non-interesting for robust clustering) data configurations are ex-

cluded. To be more precise, data configurations where all data points are

concentrated in k points after deleting a fraction α of data points are ex-

cluded.

The TCLUST method has good theoretical and robustness properties but

no practically applicable algorithm is available yet when k× p is moderately

large. To overcome this drawback, a computationally efficient algorithm for

implementing this method will be described in the next section.

3. Algorithm

An algorithm for approximately maximizing (2.1) under the constraint

(2.2) was presented in Garćıa-Escudero et al. (2008), whereas a significantly
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faster approach will be presented here. Further, an inaccuracy in the presen-

tation of this algorithm will be corrected.

Starting with the three steps (E, C and M-) for the Classification EM

algorithm described in Celeux and Govaert (1992), we propose the following

algorithm:

E-step. For each observation xi and Dj(xi; θ) = pjϕ(xi;mj,Sj), the posterior

probabilities
Dj(xi; θ)∑k
j=1 Dj(xi; θ)

for j = 1, · · · , k,

are computed, with θ = (p1, · · · , pk,m1, · · · ,mk,S1, · · · ,Sk) as the

set of cluster parameters in the current iteration of the algorithm.

C-step. Each non-trimmed observation xi will be assigned to the cluster which

provides maximum posterior probability. In order to implement the

trimming procedure, the ⌈nα⌉ observations xi with smallest values of

D(xi; θ) = max{D1(xi; θ), · · · , Dk(xi; θ)} (3.1)

are discarded as possible outliers (for this iteration).

M-step. The parameters are updated, based on the non-discarded observations

and their cluster assignments. At this point, it is crucial to properly

enforce the constraints on the cluster scatter matrices.

Note that the distance of an observation xi to the center of cluster j

is quantified throughout Dj(xi; θ). The smaller Dj(xi; θ), the larger the

distance of observation xi to a center mj. Further, D(xi; θ) defines an

overall measure for outlyingness. If k = 1, then the observations with
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the largest (3.1) values are those with the smallest Mahalanobis distances

(xi−mj)
′S−1

j (xi−mj) (as considered in the concentration steps of the fast-

MCD algorithm). When k > 1, p1 = · · · = pk and S1 = · · · = Sk = σ2I, the

observations with the largest (3.1) values are those with the smallest values of

minj=1,··· ,k ∥xi −mj∥2 (as considered in the (trimmed) k-means algorithm).

A more detailed presentation of the proposed algorithm is as follows:

1. Initialization: The procedure is initialized nstart times by selecting

different θ0 = (p01, · · · , p0k,m0
1, · · · ,m0

k,S
0
1, · · · ,S0

k). For this purpose,

we propose to randomly select k×(p+1) observations and to accordingly

compute k cluster centersm0
j and k scatter matrices S0

j from the chosen

data points. If needed, the cluster scatter matrix constraints are applied

to these S0
j (as will be described in Step 2.2). Weights p01, · · · , p0k in

the interval (0, 1) and summing up to 1 are also randomly chosen.

2. Concentration step: The following steps are executed until conver-

gence (i.e., θl+1 = θl) or a maximum number of iterations iter.max is

reached.

2.1. Trimming and cluster assignments (E and C-steps): Based on

the current parameters θl = (pl1, · · · , plk,ml
1, · · · ,ml

k,S
l
1, · · · ,Sl

k)

the ⌈nα⌉ observations with the smallest values of D(xi, θ
l) are

discarded. Each remaining observation xi is then assigned to a

cluster j such that Dj(xi, θ
l) = D(xi, θ

l). This yields a partition

R0, R1, · · · , Rk of {1, · · · , n} holding the indexes of the trimmed

observations in R0 and the indexes of the observations belonging

to cluster j in Rj for j = 1, · · · , k.
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2.2. Update parameters (M-step): Given nj = #Rj, the weights are

updated by

pl+1
j = nj/[n(1− α)]

and the centers by the sample means

ml+1
j =

1

nj

∑
i∈Rj

xi.

Updating the scatter estimates is more difficult, as the sample

covariance matrices

T j =
1

nj

∑
i∈Rj

(xi −ml+1
j )(xi −ml+1

j )′,

may not satisfy the specified eigenvalue ratio constraint. In this

case, the spectral decomposition of T j = U ′
jDjU j is consid-

ered, with U j being an orthogonal matrix and Dj = diag(dj1, dj2,

· · · , djp) a diagonal matrix. Let us consider truncated eigenvalues

defined as

dmjl =


djl if djl ∈ [m, cm]

m if djl < m

cm if djl > cm

, (3.2)

with m as some threshold value. The scatter matrices are updated

as

Sl+1
j = U ′

jD
∗
jU j,

with D∗
j = diag

(
d
mopt

j1 , d
mopt

j2 , · · · , dmopt

jp

)
and mopt minimizing

m 7→
k∑

j=1

nj

p∑
l=1

(
log
(
dmjl
)
+

djl
dmjl

)
. (3.3)
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As it will be shown in Proposition 3.2, this expression has to be

evaluated only 2kp+ 1 times to exactly find the minimum.

3. Evaluate target function: After the concentration steps, the value of the

target function (2.1) is computed. The parameters yielding the highest

value of this target function are returned as the algorithm’s output.

The proposed algorithm can be used to solve the maximization of (2.1)

when assuming equal weights p1 = · · · = pk, by simply setting all weights

constantly to plj = 1/k within each iteration. Little changes to this algo-

rithm would also yield a generalized version of a robust clustering method

introduced by Gallegos (2002) but relaxing the constraint det(S1) = · · · =

det(Sk) thereby considering determinant ratio constraints as in Section 3.9.1

of McLachlan and Peel (2000). In a similar way, the presented algorithm can

also be adapted to develop EM algorithms for constrained mixture fitting

problems.

The number of random starts nstart and the maximum number of con-

strained concentration steps iter.max depends on the complexity of the pro-

cessed data set. The larger the values of nstart and iter.max are (which

of course increase the computational effort), the higher the probability that

the algorithm ends up close to the global optimum. Experience shows that

not excessively large values of nstart and iter.max are needed to obtain

a proper solution if, apart from outliers, the cluster structure is easy to be

discovered. Moreover, note that the concentration steps are stopped when

the convergence of parameters is achieved in Step 2 of the algorithm. Thus,

choosing a higher value than needed of iter.max is not too problematic.

More insights about how parameters nstart and iter.max affect the per-
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formance of the proposed algorithm will be given in Section 4.

The main novelty of this algorithm, compared to Garćıa-Escudero et al.

(2008), is how constraints on the eigenvalue ratio are enforced. Equation

(3.4) in Garćıa-Escudero et al. (2008) constrains eigenvalues by solving the

minimization problem

(d∗11, d
∗
12, · · · , d∗jl, · · · , d∗kp) 7→

k∑
j=1

nj

p∑
l=1

(
log
(
d∗jl
)
+

djl
d∗jl

)
, (3.4)

under the restriction

(d∗11, d
∗
12, · · · , d∗jl, · · · , d∗kp) ∈ Λ, (3.5)

with Λ as the cone

Λ =
{
d∗jl : d

∗
jl ≤ c · d∗rs for every j, r ∈ {1, · · · , k} and l, s ∈ {1, · · · , p}

}
.

(3.6)

This is clearly a more complex problem than minimizing (3.3), as its complex-

ity tremendously increases with the number of clusters k and the dimension

p. The problem of minimizing (3.4) in Λ was translated into a quadratic pro-

gramming problem, which was approximately solved by recursive projections

onto cones (Dykstra, 1983). These recursive projections must be carried out

in each concentration step and, thus, the algorithm becomes extremely slow

and even unfeasible for moderately high values of k and/or p. Moreover,

there was a mistake in Garćıa-Escudero et al. (2008), as the term nj in (3.4)

was omitted and, thus, the algorithm proposed there can only be applied to

similarly sized clusters.

The following proposition serves to justify the new M-step considered in

the proposed algorithm:
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Proposition 3.1. If the sets Rj, j = 1, · · · , k, are kept fixed, the maximum

of (2.1) under constraint (2.2) can be obtained through the following steps:

(i) The best choice of pj is pj = nj/⌊n(1− α)⌋ with nj = #Rj.

(ii) Fixed pj as given in (i), the best choice for mj is mj =
∑

i∈Rj
xi/nj.

(iii) Fixed the eigenvalues for the matrix Sj and the optimum values given

in (i) and (ii) for pj and mj, the best choice for the set of unitary

eigenvectors is the set of unitary eigenvectors of the sample covariance

matrix of the observations in Rj.

(iv) With the optimal selections from (i), (ii) and (iii), if djl are the eigen-

values of the sample covariance matrix, the best choice for the truncated

eigenvalues d
mopt

jl is as in (3.2) with mopt minimizing function (3.3).

Then, the best choice for the scatter matrix Sj is obtained with the

eigenvectors of the sample covariance matrix of the observations in Rj

and with the optimally truncated eigenvalues.

Proof. The proofs of statements (i), (ii) and (iii) are included in the proof

of Proposition 4 in Garćıa-Escudero et al. (2008).

Let us consider the spectral decomposition of the sample covariance ma-

trices of observations given by:

T j =
1

nj

∑
i∈Rj

(xi −mj)(xi −mj)
′ = U ′

jDjU j, (3.7)

where U j are orthogonal matrices and Dj = diag(dj1, dj2, · · · , djp) are diag-

onal matrices.

Let Sj be the optimally constrained scatter matrices maximizing (2.1)

under restriction (2.2) when R0, R1, · · · , Rk are known and parameters mj
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and pj are those given by (i) and (ii). Analogously to the previous decom-

position of the sample covariance matrices, matrices Sj can be split up into

Sj = V ′
jD

∗
jV j with V j orthogonal matrices andD∗

j = diag(d∗j1, d
∗
j2, · · · , d∗jp)

diagonal matrices. Statement (iii) tells us that eigenvectors of the optimal

constrained matrices Sj must be exactly the same as the eigenvectors of the

unrestricted sample covariance matrices in (3.7) (i.e., we can set U j = V j).

We just need to search for the optimal eigenvalues {d∗j,l} to obtain the opti-

mally constrained scatter matrices Sj = U ′
jD

∗
jU j.

Given the eigenvalues {dj,l}, the optimal {d∗j,l} are obtained by minimizing

expression (3.4) when {d∗j,l} ∈ Λ with Λ as defined in (3.6). The proof of

this claim follows from the proof of Proposition 4 in Garćıa-Escudero et al.

(2008), with the only difference that expression (3.4) now contains the cluster

sizes nj, whereas Equation (3.4) in the mentioned article wrongly did not.

Note that Λ can be written as

Λ =
∪
m≥0

Λm with Λm =
∪
m≥0

{
d∗jl : m ≤ d∗jl ≤ cm

}
.

Thus, for globally minimizing expression (3.4) in Λ, we need to be able to

minimize it when {d∗j,l} ∈ Λm for every possible value m > 0. The minimiza-

tion (for a fixed value of m) can be significantly simplified by considering

truncated eigenvalues d∗jl = dmjl like those in (3.2).

Possible singularities in T j are not a problem, provided that not all values

of djl are 0 at the same time. Under this mild assumption, it is easy to see

that m > 0 and this prevents that any value of d∗jl drops to 0 (i.e. no singular

clusters are obtained after the truncation of the eigenvalues).

There is a closed form for obtaining mopt (and thus, the constrained
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eigenvalues) just by evaluating the function (3.3) 2pk + 1 times:

Proposition 3.2. Let us consider e1 ≤ e2 ≤ · · · ≤ e2kp obtained by ordering

the following 2pk values:

d11, d12, · · · , djl, · · · , dkp, d11/c, d12/c, · · · , djl/c, · · · , dkp/c,

and, f1, · · · , f2kp+1 any values satisfying:

f1 < e1 ≤ f2 ≤ e2 ≤ · · · ≤ f2kp ≤ e2kp < f2kp+1.

We can choose mopt as the value of:

mi =

∑k
j=1 nj

(∑p
l=1 djl(djl < fi) +

1
c

∑p
l=1 djl(djl > cfi)

)∑k
j=1 nj

(∑p
l=1((djl < fi) + (djl > cfi))

) ,

i = 1, · · · , 2kp+ 1, yielding the minimum value of (3.3).

Proof. Firstly, let us rewrite the target function (3.3) as

f : m 7→
k∑

j=1

nj

[ p∑
l=1

(log(m) + djl/m)(djl < m) (3.8)

+

p∑
l=1

(log(djl) + 1)(m ≤ djl < cm)

+

p∑
l=1

(log(cm) + djl/cm)(djl > cm)

]
.

Since f is a continuously differentiable function, it minimizes in one of its

critical values, which satisfies the following fixed point equation:

m∗ =

∑k
j=1(sj(m

∗) + tj(m
∗)/c)∑k

j=1 njrj(m∗)
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with

rj(m) =

p∑
l=1

((djl < m) + (djl > cm)),

sj(m) =

p∑
l=1

djl(djl < m) and tj(m) =

p∑
l=1

djl(djl > cm).

Functions rj,sj and tj take constant values in the intervals (−∞, e1], (e1, e2],

· · · , (e2k,∞). Therefore, we only need to evaluate (3.8) at the 2kp+1 values

m1, · · · ,m2kp+1.

4. Simulation study

In this section, a small simulation study is presented, investigating the

effect of the choice of parameters iter.max (number of concentration steps)

and nstart (number of random initializations) on the performance of the

algorithm.

A so-called M5 type data set is considered, which is based on the “M5

scheme” as introduced in Garćıa-Escudero et al. (2008). These simulated p ≥

2 dimensional data sets consist of three partly overlapping clusters generated

from three p-variate normal distributions with means

µ1 = (0, β, 0, . . . , 0) ,µ2 = (β, 0, . . . , 0) and µ3 = (−β,−β, 0, . . . , 0) ,

with β ∈ R+ and covariance matrices

Σ1 = diag (1, . . . , 1) ,Σ2 = diag (45, 30, 1, . . . , 1) and
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Figure 1: An M5 type data set in two dimensions with uniformly distributed outliers (a)

and outliers restricted to a line (b). Plots (c) and (d) show the corresponding clustering

results obtained by tclust.

Σ3 =


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...
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. . . 0

0 0 0 0 1


.
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The parameter β specifies how strong the clusters overlap, i.e. smaller

values (e.g. 6) yield heavily overlapping clusters, whereas larger values (e.g.

10) yield a better separation of the clusters and thus a problem which is easier

to solve. Theoretical cluster weights are fixed as (0.2, 0.4, 0.4), implying that

the first cluster size is half the size of clusters two and three. Two further

different types of outliers are considered which are added to the data:

Type 1: Uniformly distributed outliers in the bounding box of the data.

Type 2: Uniformly distributed outliers restricted to a random hyperplane

of dimension p− 1.

All outliers are drawn under the restriction that the squared Mahalanobis

distance of each outlier with respect to all three clusters must be larger than

the 0.975 quantile of the chi-squared distribution with p degrees of freedom.

Choosing a number of observations n = 2000, parameters p = 2 and

β = 8 and a 10% outlier portion results in data sets as shown in Figure

1 (a) and (b) with outlier types 1 and 2 respectively. Considering outlier

type 2 in a two dimensional data set reduces the space of the outliers to a

line as seen in the mentioned figure. Panels (c) and (d) in the same figure

show the corresponding cluster results computed with an R implementation

of the described algorithm from package tclust. Apparently, the cluster

structure is captured nicely by the algorithm; however, at the boundaries and

overlapping regions of the clusters, some differences between the theoretical

and the computed cluster assignment can be noticed.

For the simulation study, the algorithm has been applied to data sets

of dimension p = (2, 6, 10), with separation of the cluster determined by

β = (6, 8, 10) and the two described outlier types on a data set with n = 2000,
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Figure 2: Classification errors and runtimes of the tclust algorithm applied to simulated

M5 type data sets for different values of iter.max and nstart = 32 when p = 10 and

β = 6 are fixed.

split into three clusters of sizes 360, 720 and 720 and a 10% outlier por-

tion yielding 200 contaminated observations. For each possible combina-

tion of these parameters, 100 samples have been drawn. In addition, the

tclust algorithm has been applied to each of these samples with values

(2, 4, 6, 8, 12, 16, 24, 32, 64) for parameters iter.max and nstart. Moreover,
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for each of these settings, a very precise “reference result” has been com-

puted with parameters iter.max = 10000 and nstart = 200. All simula-

tions were run on an AMD Phenom II X6 1055T at 2.8GHz.

Figure 2 shows the box plots of the classification errors in percent and

runtimes for different values of iter.max and the two outlier types, using

nstart = 32, p = 10 and µ = 6. The label “X” at the very right of each

plot represents the “reference result”, which is assumed to be very close to

the theoretically optimal solution. Differences between the outlier types can

be seen, as in panel (a) a value of iter.max = 24 already gives a result very

similar to the reference. On the other hand, in panel (b), with the outliers

restricted to a hyperplane of dimension p − 1, even a value iter.max = 64

yields three out of 100 solutions which apparently differ from the results in

the reference solution “X”.

When considering the runtimes in panels (c) and (d) a general pattern

can be observed, as at a certain point the runtimes no longer increase linearly

with the parameter iter.max. This is apparently caused by the convergence

criterion in Step 2 of the algorithm, which stops the iterations earlier than

specified by the chosen value of iter.max as soon as the same parameters are

obtained within two consecutive concentration steps. The runtimes are quite

similar for the different outlier types; however, for values iter.max larger

than 16, the algorithm applied to data contaminated by the second outlier

type seems to converge slightly faster. This can be explained, as for the

majority of the samples, the second outlier type is easier to grasp. As soon

as the cluster structure has been found approximately, the outliers can be

identified easily, as most of them do not overlap with the actual clusters. This
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Figure 3: Classification errors and runtimes of the tclust algorithm applied to simulated

M5 type data sets for different values of nstart and iter.max = 24 when p = 10 and

β = 6 are fixed.

is not the case with the first outlier scheme. Although the cluster structure

can be found quickly, and most of the observations are assigned correctly,

the outliers located in the outer regions of the clusters make it more difficult

for the algorithm to converge.

Figure 3 shows a similar scenario, but here the parameter nstart is varied
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and the parameters iter.max = 24, p = 10 and µ = 6 are fixed. When ap-

plying the algorithm on data contaminated with the first outlier type, results

computed with nstart = 24 are almost equal to the reference solution “X”

as shown in panel (a). However, when the second outlier type is considered,

even nstart = 64 is not sufficient to obtain a completely converged solu-

tion. The corresponding runtimes, as shown in Figure 3 (c) and (d), depend

linearly on the parameter nstart, as expected. Due to the earlier conver-

gence of the algorithm, when contamination of the second type is present (as

commented before), runtimes in panel (d) are slightly lower than in panel

(a).

Figure 4 gives classification errors (a) and runtimes (b) for different values

of β and p, the first outlier type and values iter.max = 64 and nstart = 64

fixed. As with increasing β the clusters are more easily separable, a larger

value of β yields smaller classification errors. Due to the better separation

of the clusters, the algorithm converges faster when β is large, resulting in

lower runtimes.

Also, larger values of p decrease the classification error, as in higher di-

mensional space the clusters are separated more clearly. In addition, an

increase in the number of dimensions clearly increases the runtimes, which

is expected due to the algorithm structure.

5. Relationships with other approaches

If the constraints on the eigenvalues were not considered (for instance

fixing a very large value of constant c) and equal weights p1 = · · · = pk were

assumed, the algorithm would essentially coincide with the one proposed by
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Figure 4: Classification errors and runtimes of the tclust algorithm applied to simulated

M5 type data sets for different values of p and β and when values nstart = 64 and

iter.max = 64 are fixed.

Neykov et al. (2007) when the Classification EM approach (not the mix-

ture fitting one) is applied there. As already mentioned, explicitly stating

relative cluster scatter constraints and providing a computationally efficient
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procedure for solving them have key importance in the presented approach

to robust clustering. Note that this yields a wide range of different cluster-

ing solutions depending on the choice of constant c. These solutions range

from almost spherical clusters when c is close to 1 to more unrestricted ones

when c is huge. The researcher may choose from among them, depending on

the clustering application in mind. Moreover, since both approaches share

a similar type of target function (i.e., (2.1) with p1 = · · · = pk), it is easy

to see that Neykov et al. (2007)’s target function is unbounded too and, if

no constraints are posed, certain precautions in the associated algorithm are

clearly needed in order to avoid the degeneration of the clustering solution.

Neykov et al. (2007) also considers other interesting finite mixtures statistical

problems where trimmed likelihoods can be successfully applied if robustness

is a major concern.

Gallegos and Ritter (2009) have also considered a trimmed likelihood ap-

proach with scatter matrix constraints. They propose to apply Hathaway

(1985)’s original extension of his univariate constraints to multivariate prob-

lems by constraining

min
l

min
1≤h ̸=j≤k

λl(ShS
−1
j ) ≥ 1

c
with c ≥ 1. (5.1)

However, these constraints were not directly enforced by the algorithm. They

propose to obtain all possible local maxima of the trimmed likelihood (with

a similar algorithm to that found in Neykov et al. (2007) or ours without

considering any constraints) and, afterwards, the ratio in (5.1) and the value

of the trimmed likelihood for these local maxima are monitored in order to

choose sensible candidate clustering solutions. Gallegos and Ritter (2010)

also deal with the unboundedness of the trimmed likelihood by controlling
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the smaller cluster sizes, which implies solving a λ-assignment problem in

the concentration steps.

In a mixture fitting framework without trimming, Ingrassia and Rocci

(2007) proposed algorithms for addressing constrained mixture likelihood

maximization. They give an interesting discussion starting from the con-

straint (5.1) and ending with the same type of constraints as in (2.2). They

propose an algorithm based on truncating scatter matrices eigenvalues when

lower and upper bounds on these eigenvalues are known. Relaxing this as-

sumption, when no suitable external information is available for bounding

them, they also consider a bound on the ratio of the eigenvalues. However,

their algorithm for this last proposal does not directly maximize the likeli-

hood as is done in Step 2.2 of our algorithm. Rather, it is based on obtaining

iterative estimates of a lower bound on the scatter matrices eigenvalues η

needed in order to properly truncate the eigenvalues.

Another possibility for dealing with noise in Cluster Analysis is based

on trying to “fit” noisy observations through the consideration of additional

mixture components, as for instance, the approach followed by the MCLUST

method (see, e.g., Fraley and Raftery, 1998). This well established approach

is based on adding a uniformly distributed mixture component to accommo-

date the presence of background noise. Although this approach provides clear

robustness in many problems, its performance may depend on whether the

“uniformly distributed” assumption for the noise approximately holds. For

instance, in a very extreme case, this approach breaks down with only one

observation placed in a very remote position as Hennig (2004) showed. On

the other hand, the TCLUST procedure does not impose a specific model
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for noise, which explains its good robustness performance (Ruwet et al.,

2012a,b).

6. Computation of Classification Trimmed Likelihood curves

One of the main motivations for a fast algorithm lies in the graphical

tools introduced in Garćıa-Escudero et al. (2011) (see also Fritz et al., 2012),

which help to make appropriate choices for the number of clusters k and the

trimming level α. The practical application of these tools, as e.g. the Classifi-

cation Trimmed Likelihood curves, implies solving many TCLUST problems

for different values of α and k. This clearly turns out to be unfeasible without

a computationally efficient algorithm at hand.

Of course, the determination of k and α is not a well-defined problem

and, usually, several choices are arguable for these two parameters. For

instance, the question of whether small subsets of isolated observations are

actually clusters or only outliers is in many cases philosophical and usually

related to the context in which a clustering problem is considered. In any

case, the Classification Trimmed Likelihood curves provide helpful guidance

for obtaining a small set of sensible choices for k and α which have to be

carefully evaluated by the researcher.

To exemplify this, let us consider a data set like in Figure 1,(b) and (d),

and the Classification Trimmed Likelihood curves in Figure 5,(a), which plot

the chosen trimming level α against the maximum value attained by the

objective function (2.1) for a set of values of k (see Garćıa-Escudero et al.,

2011). If there was a reason to fix the number of clusters to k = 3, 10%

of observations which are restricted to a line may be considered as outliers.

26



0.00 0.05 0.10 0.15 0.20

−
15

00
0

−
13

00
0

−
11

00
0

(a) CTL curves

α

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue
Restriction Factor = 50

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

  
 

 

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5 5

5 5
5

5

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

(b) k=4 and alpha = 0

−20 −10 0 10 20

−
20

0
20

40

Figure 5: (a) Classification Trimmed Likelihood curves for a data set like in 1,(b) and (d).

(b) Clustering solution for this data set when k = 4 and α = 0.

Further, if no trimming is allowed, the Classification Trimmed Likelihood

curves imply that k = 4 is a more sensible choice in this example than k = 3

whereas considering k > 4 does not further increase the solution’s quality.

This can be seen in Figure 5,(a), as the objective function’s value is almost

equal for k = 4 and k = 5 under the restriction α = 0. The solution given

by the proposed algorithm for k = 4 and α = 0 is shown in Figure 5,(b). A

large value of c = 50 is considered, such that the “cluster” made up by the

observations restricted to a line (collinear data points) is properly detected.

Further, the Classification Trimmed Likelihood curves show that increasing

k from 3 to 4 would not result in a better solution, if a trimming level of
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α = 0.1 is considered. A detailed discussion on the interpretation of the

Classification Trimmed Likelihood is given in Garćıa-Escudero et al. (2011)

and Fritz et al. (2012).

7. Conclusions

A computationally feasible algorithm for robust heterogeneous clustering

has been presented. The keystone of the proposed algorithm is the con-

sideration of constrained concentration steps which combine elements of the

fast-MCD algorithm with Forgy’s k-means algorithm, but enforce constraints

on the ratio of the scatter matrices’ eigenvalues. This is done by additionally

evaluating an explicit function at 2kp + 1 values within each concentration

step. The presented algorithm was implemented in the R package tclust.
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