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Abstract

Bayesian inference for stochastic volatility models using MCMC methods highly depends
on actual parameter values in terms of sampling efficiency. While draws from the posterior
utilizing the standard centered parameterization break down when the volatility of volatility pa-
rameter in the latent state equation is small, non-centered versions of the model show deficien-
cies for highly persistent latent variable series. The novel approach of ancillarity-sufficiency
interweaving has recently been shown to aid in overcoming these issues for a broad class of
multilevel models. In this paper, we demonstrate how such an interweaving strategy can be
applied to stochastic volatility models in order to greatly improve sampling efficiency for all
parameters and throughout the entire parameter range. Moreover, this method of “combining
best of different worlds” allows for inference for parameter constellations that have previously
been infeasible to estimate without the need to select a particular parameterization beforehand.
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1 Introduction

Returns of financial and economic time series often exhibit time-varying volatilities. To account
for this behavior, Taylor (1982) suggests in his pioneering paper to model the logarithm of the
squared volatilities by latent autoregressive processes of order one. This specification, commonly
referred to as the stochastic volatility (SV) model, presents itself as a competitive alternative to
GARCH-type designs by modeling the volatilities non-deterministically. Also, it arises naturally
as a discretization of continuous-time models frequently appearing in the mathematical finance
literature (see e.g. Hull & White, 1987).

Following e.g. Jacquier et al. (1994) or Kim et al. (1998), observed log-returns are denoted y =

(y1, y2, . . . , yT )′ and the SV model is specified as

yt = eht/2 εt, (1)

ht = µ+ φ(ht−1 − µ) + σηt, (2)

where it is assumed that the iid standard normal innovations εt and ηs are independent for t, s ∈
{1, . . . , T}. The unobserved process h = (h0, h1, . . . , hT ) appearing in state equation (2) is usually
interpreted as the latent time-varying volatility process with initial state distributed according to
the stationary distribution, i.e. h0|µ, φ, σ ∼ N (µ, σ2/(1− φ2)) . From now on, we will refer to
equations (1) and (2) as the SV model in its centered parameterization (C).

Simulation efficiency in state-space models can often be improved through model reparameteriza-
tion. Papers related to this matter include Gelfand et al. (1995), Pitt & Shephard (1999), Frühwirth-
Schnatter (2004), Roberts et al. (2004), Frühwirth-Schnatter & Sögner (2008), and Strickland et al.
(2008). The pioneering paper by Taylor (1982) as well as several other papers like Kim et al.
(1998) or Liesenfeld & Richard (2006) consider a partially non-centered parameterization, where
the level µ of ht – which defines the scale of yt – is shifted from the state equation (2) to the ob-
servation equation (1) by setting h̄t = ht − µ. Kim et al. (1998) compare both parameterizations
within a Bayesian inference. They show that the partially non-centered parameterization leads to
very high inefficiency when sampling µ and recommend choosing the centered parameterization
in any case. Nevertheless, the centered parameterization has several disadvantages. Firstly, ineffi-
ciency when drawing σ is still high, see e.g. Table 1 in Kim et al. (1998). Secondly, the conclusions
are only valid if φ is close to one, which is commonly the case when the SV model is applied to
capture conditional heteroskedasticity of observed financial times series. However, this is not nec-
essarily true when the SV model is applied in more general contexts such as capturing conditional
heteroskedasticity in latent variables or regression residuals.
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For the purpose of this paper, the (fully) non-centered parameterization (NC), given through

yt ∼ N
(

0, ωeσh̃t
)
, (3)

h̃t = φh̃t−1 + ηt, ηt ∼ N (0, 1) , (4)

where ω = eµ, is of particular importance. The initial value of h̃0|φ is once again drawn from the
stationary distribution of the latent process, i.e. h̃0|φ ∼ N (0, 1/(1− φ2)). Note that h̃t = (ht −
µ)/σ. For a moderate parameter range where φtrue ∈ {0.8, 0.9, 0.95} and σtrue ∈ {0.2, 0.3, 0.4},
Strickland et al. (2008) illustrate that this type of non-centering typically yields lowest inefficiency
factors when estimating stochastic volatility and stochastic conditional duration models with ran-
domly sized block updating. Also, in similar contexts, there are several papers showing that
MCMC sampling improves a lot by considering a non-centered version of a state space model,
see e.g. Frühwirth-Schnatter (2004) and Frühwirth-Schnatter & Wagner (2010). These authors
show that non-centering is especially useful if the error variance in the state equation is consider-
ably smaller than the error variance in the observation equation. Pitt & Shephard (1999) show for
linear Gaussian state space models that the speed of convergence in the centered parameterization
decreases as |φ| increases when the signal to noise ratio is fixed.

No matter which parameterization is chosen, the likelihood in the SV model has an intractable
form. Thus, Bayesian estimation commonly relies on sampling the latent states h and treat these
as known for updating the parameters µ, φ, and σ. In their seminal paper, Jacquier et al. (1994)
propose a single-move Metropolis-Hastings (MH) algorithm. Each individual ht is sampled condi-
tional on past and future, i.e. drawn from p(ht|h[−t], σ, φ, µ,y), where h[−t] denotes all elements of
h except ht. Due to the commonly high persistence of the latent process, Shephard & Kim (1994)
note that the draws obtained from this sampler are also highly correlated and thus only slowly con-
verging to the stationary distribution. Alternatively, Shephard & Pitt (1997) propose a multi-move
sampler, where volatility blocks of random length are updated at a time, while Shephard (1994)
and Omori et al. (2007) propose a method to draw directly from p(h|σ, φ, µ,y). This becomes pos-
sible through a normal mixture approximation of log(ε2t ) and requires forward filtering backward
sampling (FFBS) methods (Carter & Kohn, 1994; Frühwirth-Schnatter, 1994; Durbin & Koopman,
2002). Within a more general Gaussian state-space framework, Rue (2001) and McCausland et al.
(2011) propose sampling the latent volatilities through Cholesky-factorization of the precision ma-
trix by exploiting its band-diagonal structure. We adopt this method to sample the latent volatilities
“all without a loop” (AWOL). For a more extensive review of both Bayesian and non-Bayesian SV
estimation methods, see Bos (2012).

The contribution of this paper is threefold. Firstly, we explore the impact of alternative parameter-
izations for a wide parameter range including empirically plausible values and more extreme ones
that can be relevant for applications of SV models within more general frameworks such as SV
factor models or regression analysis. It turns out that simulation efficiency heavily depends on the

3



true parameter values of the data generating process, thus no single “best” parameterization exists.
Secondly, we provide a strategy to overcome this deficiency by interweaving C and NC utilizing
an ancillarity-sufficiency interweaving strategy (ASIS) introduced by Yu & Meng (2011). This
results in a robustly efficient sampler that always outperforms the more efficient parameterization
with respect to all parameters at little extra cost in terms of design and computation. Thirdly, we
provide evidence that empirical sampling efficiency heavily depends on the realization of the data
generating process by massively parallel simulation experiments.

The paper is structured as follows: Section 2 gives insight into the estimation procedure for each
of the two selected parameterizations. Section 3 explains how ASIS can be applied in order to
interweave these parameterizations. Extensive simulation results presented in Section 4 compare
sampling efficiency for all parameters amongst the different parameterizations, Section 5 provides
real-data results for several daily exchange rates, and Section 6 concludes.

2 Bayesian Inference in the SV Model

2.1 Prior Distributions

To perform Bayesian inference, a prior distribution p(µ, φ, σ) needs to be specified. For both pa-
rameterizations, we choose the same independent components for each parameter. The level µ ∈ R
is equipped with the usual normal prior µ ∼ N (bµ, Bµ). For the persistence parameter φ ∈ (−1, 1),
we choose (φ+ 1)/2 ∼ B (a0, b0) as in Kim et al. (1998), implying

p(φ) =
1

2B(a0, b0)

(
1 + φ

2

)a0−1(1− φ
2

)b0−1
. (5)

Clearly, the support of this distribution is the unit ball and thus guarantees stationarity of the au-
toregressive volatility process. For the volatility of volatility σ ∈ R+, we choose σ2 ∼ Bσ · χ2

1 =

G
(

1
2
, 1
2Bσ

)
. Note that this specification differs from the commonly employed conjugate Inverse-

Gamma prior σ2 ∼ G−1 (c0, C0) and is motivated by Frühwirth-Schnatter & Wagner (2010), who
equivalently stipulate the prior for ±

√
σ2 to follow a centered normal distribution, i.e. ±

√
σ2 ∼

N (0, Bσ). It turns out that this choice is less influential when the true volatility of volatility is
small because σ is not bound away from zero a priori.
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2.2 MCMC Methodology

Observation equation (1) can easily be rewritten as

ỹt = ht + log(ε2t ), εt ∼ N (0, 1) , (6)

where ỹt denotes log y2t . Alternatively, ỹt can be interpreted as the transformed de-meaned returns
log(yt−ȳ)2, but might just as well be taken log((yt−ȳ)2+c) with a fixed offset constant c = 10−3 as
in Kim et al. (1998) or log(y2t + c) with c = 10−4 as in Omori et al. (2007) in order to avoid values
equal to zero. Equation (6) now takes the form of a linear but non-Gaussian state space model.
Moreover, one can approximate the distribution of log(ε2t ) by a mixture of normal distributions, i.e.
log(ε2t )|rt ∼ N

(
mrt , s

2
rt

)
. Here, rt ∈ {1, . . . , 10} defines the mixture component indicator at time

t, while mrt and s2rt denote mean and variance of the rtth mixture component as tabulated in Omori
et al. (2007). This representation allows rewriting (6) as a linear and conditionally Gaussian state
space model,

ỹt = mrt + ht + εt, εt ∼ N
(
0, s2rt

)
, (7)

where speedy MCMC sampling becomes possible in three steps.

Algorithm 1 (AWOL Sampler). Choose appropriate starting values for the parameters µ, φ, σ and
the indicators r = (r1, r2, . . . , rT )′ – e.g. start with components with high weights – and repeat the
following steps:

(a) Sample the latent volatilities AWOL by drawing from h[−0]|y, r, µ, φ, σ2 or h̃[−0]|y, r, µ, φ, σ2,
respectively. The initial value is drawn from h0|h1, µ, φ, σ2 or from h̃0|h̃1, φ.

(b) Sample µ, φ, σ2 via Bayesian regression.

- For C, we investigate a 1-block sampler, drawing from µ, φ, σ2|h, a 2-block sampler,
where σ2 is drawn from σ2|h, µ, φ, while µ and φ are sampled jointly from µ, φ|h, σ2,
and a 3-block sampler, where all parameters are individually drawn from the full condi-
tionals. Due to non-conjugacy of the chosen priors, MH updates are used in all variants.

- In NC, MH is needed only for updating φ by drawing from φ|h̃, while µ and σ2 can
be Gibbs-updated jointly from µ, σ2|y, h̃, r (2-block) or individually from µ|y, h̃, r, σ2

and σ2|y, h̃, r, µ (3-block).

(c) Update the indicators r from r|y,h in C, or r|y, h̃, µ, σ2 in NC, via inverse transform sam-
pling.
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2.3 Step (a): Sampling the Latent Volatilities AWOL

Conditional on all other variables, the joint density for h (and h̃) is multivariate normal. Due to
the order-one autoregressive nature of the latent volatility process, this distribution can be written
in terms of the tridiagonal precision matrix Ω, giving rise to sampling all without a loop (AWOL).
This method is employed in Rue (2001) and McCausland et al. (2011) and does not require the
“end-user” to implement any loops – hence the name. Thus, it is very convenient in terms of
implementation and fast in terms of computation. No FFBS methods are needed, there is no need
to invert the tridiagonal precision matrix Ω and it is fast due to the availability of band back-
substitution already implemented in practically all widely used programming libraries.

In the centered parameterization, we draw from h[−0]|µ, σ, φ, r,y ∼ NT (Ω−1c,Ω−1) with

Ω =



1
s2r1

+ 1
σ2

−φ
σ2 0 . . . 0

−φ
σ2

1
s2r2

+ 1+φ2

σ2
−φ
σ2

. . . ...

0 −φ
σ2

. . . . . . 0
... . . . . . . 1

s2rT−1

+ 1+φ2

σ2
−φ
σ2

0 . . . 0 −φ
σ2

1
s2rT

+ 1
σ2


,

and

c =



1
s2r1

(ỹ1 −mr1) + µ(1−φ)
σ2

1
s2r2

(ỹ2 −mr2) + µ(1−φ)2
σ2

...
1

s2rT−1

(ỹT−1 −mrT−1
) + µ(1−φ)2

σ2

1
s2rT

(ỹT −mrT ) + µ(1−φ)
σ2


.

Analogously, in the noncentered case, we draw from h̃[−0]|µ, σ, φ, r,y ∼ NT (Ω−1c,Ω−1) with

Ω =



σ2

s2r1
+ 1 −φ 0 . . . 0

−φ σ2

s2r2
+ 1 + φ2 −φ . . . ...

0 −φ . . . . . . 0
... . . . . . . σ2

s2rT−1

+ 1 + φ2 −φ

0 . . . 0 −φ σ2

s2rT
+ 1


,
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and

c =



σ
s2r1

(ỹ1 −mr1 − µ)

σ
s2r2

(ỹ2 −mr2 − µ)

...
σ

s2rT−1

(ỹT−1 −mrT−1
− µ)

σ
s2rT

(ỹT −mrT − µ)


.

For both parameterizations, this is accomplished by first computing the Cholesky decomposition
Ω = LL′. Due to the band structure of Ω, this is computationally inexpensive and can either be
implemented directly or via the LAPACK-routine dpbtrf (Anderson et al., 1999), to name but
one of the many widely available (and thoroughly tested) linear algebra routines designed for this
task. Note that only main diagonal and lower first off-diagonal elements of L will be nonzero.
Next, we draw ε ∼ NT (0, IT ) and then efficiently solve La = c for a and L′h = a + ε for h by
using band back-substitution instead of actually calculating L−1. Finally, the initial value can be
sampled from h0|h1, µ, φ, σ ∼ N (µ+ φ(h1 − µ), σ2) in C and from h̃0|h̃1, φ ∼ N(h̃1φ, 1) in NC.

2.4 Step (b)-C: Sampling of µ, φ and σ in C

For sampling θ = (µ, φ, σ2), it is helpful to rewrite the conditional AR(1) model as a conditional
regression model with the lagged latent variables as regressors,

ht = γ + φht−1 + ηt, ηt ∼ N
(
0, σ2

)
,

via γ = (1 − φ)µ. Note that the implied conditional prior p(γ|φ) follows a normal distribution
with mean bµ(1 − φ) and variance Bµ(1 − φ)2. In this Subsection, we will discuss three common
blocking strategies for sampling θ.

For a one block update of θ, we use a single MH step. The posterior arising from an auxiliary
regression model with conjugate priors is used as the proposal density:

paux(θnew|h) = paux(γnew, φnew|h, σ2
new)paux(σ

2
new|h).

We choose paux(σ
2) ∝ σ−1 to denote the density of an auxiliary improper conjugate G−1

(
−1

2
, 0
)

prior, and paux(γ, φ|σ2) to denote the density of an auxiliary conjugate N2 (0, σ2B0) prior with
B0 = diag(B11

0 , B
22
0 ). More specifically, paux(γ|σ) ∼ N (0, σ2B11

0 ) and paux(φ|σ) ∼ N (0, σ2B22
0 ).

In order to avoid collinearity problems when σ2 is close to zero (and thus ht almost constant for all
t), we pick slightly informative variances, i.e. B11

0 = 1012 and B22
0 = 108. This yields

γ, φ|h, σ2 ∼ N2

(
bT , σ

2BT

)
, (8)
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with BT = (X′X+B−10 )−1 and bT = BTX′h[−0], where X is the T ×2 design matrix with ones in
the first column and h[−T ] in the second. The marginalized auxiliary posterior distribution for σ2 is

given through σ2|h ∼ G−1 (cT , CT ) , with cT = (T − 1)/2 and CT = 1
2

(∑T
i=1 h

2
i − b′TX′h[−0]

)
.

The acceptance probability is given through min(1, R), with

R =
p(h0|θnew)p(γnew|φnew)p(φnew)p(σ2

new)

p(h0|θold)p(γold|φold)p(φold)p(σ2
old)

× paux(φold, γold|σ2
old)paux(σ

2
old)

paux(φnew, γnew|σ2
new)paux(σ2

new)
.

In the two-block sampler, we draw the first block from the full conditional distribution γ, φ|h, σ2

given in (8) and accept with probability min(1, R), where

R =
p(h0|γnew, φnew)p(γnew|φnew)p(φnew)

p(h0|γold, φold)p(γold|φold)p(φold)
× paux(γold, φold)

paux(γnew, φnew)
.

In order to construct a suitable proposal for the – now full conditional – density p(σ2|h, µ, φ), we
again use the auxiliary conjugate prior paux(σ

2) ∝ σ−1, under which we straightforwardly obtain

σ2|h, µ, φ ∼ G−1 (cT , CT ) , (9)

where cT = T/2 and CT = 1
2

(∑T
t=1((ht − µ)− φ(ht−1 − µ))2 + (h0 − µ)2(1− φ2)

)
. The ac-

ceptance probability simplifies to min(1, R) with

R =
p(σ2

new)

p(σ2
old)
× paux(σ

2
old)

paux(σ2
new)

= exp

{
σ2

old − σ2
new

2Bσ

}
.

In the three-block sampler, each individual parameter is drawn from the full conditional distribution
µ|·, φ|·, and σ2|·, respectively. Thus, σ2 is drawn from (9). For sampling φ, we obtain a proposal
from

φ|h, γ, σ2 ∼ N


[∑T

t=1 ht−1ht

]
− γ

∑T−1
t=0 ht∑T−1

t=0 h
2
t + 1/B22

0

,
σ2∑T−1

t=0 h
2
t + 1/B22

0

 .

The acceptance probability is equal to min(1, R) with

R =
p(h0|φnew, µ, σ

2)p(φnew)

p(h0|φold, µ, σ2)p(φold)
× paux(φold|σ2)

paux(φnew|σ2)
.

For sampling γ from the full conditional posterior distribution, we obtain a proposal from

γ|h, φ, σ2 ∼ N

(∑T
t=1 ht − φ

∑T−1
t=0 ht

T + 1/B11
0

,
σ2

T + 1/B11
0

)
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and an acceptance probability equaling min(1, R) with

R =
p(h0|γnew, φ, σ

2)p(γnew|φ)

p(h0|γold, φ, σ2)p(γold|φ)
× paux(γold|σ2)

paux(γnew|σ2)
.

2.5 Step (b)-NC: Sampling of µ, φ and σ in NC

In the noncentered parameterization, only φ is left in the state equation. To sample this parameter,
we employ a flat auxiliary prior paux(φ) ∝ c, yielding the proposal

φ|h̃ ∼ N

(∑T−1
t=0 h̃th̃t+1∑T−1
t=0 h̃

2
t

,
1∑T−1

t=0 h̃
2
t

)
,

and an acceptance probability of min(1, R), where R = p(h̃0|φnew)p(φnew)/p(h̃0|φold)p(φold).

For sampling µ and σ, one can straightforwardly rewrite the conditional observation equation (7)
as a regression model with homoskedastic errors, i.e.

y̆ = X

[
µ

σ

]
+ ε, (10)

where ε ∼ NK (0, IK), and

y̆ =

 (ỹ1 −mr1)/sr1
...

(ỹT −mrT )/srT

 , X =

 h̃1/sr1 1/sr1
...

...
h̃T/srT 1/srT

 .

The joint posterior distribution is again bivariate Gaussian with variance-covariance matrix BT =

(B−10 + X′X)−1 and mean bT = BT (B−10 b0 + X′y̆), where b0 = (bµ, 0)′ and B0 = diag(Bµ, Bσ)

denote mean and variance of the joint prior density p(µ, σ), respectively.

Alternatively, one could sample both parameters from the full conditional posteriors (three-block
sampling), yielding µ|y, h̃, r, σ ∼ N (bT,µ, BT,µ) with

bT,µ = BT,µ

(
T∑
t=1

ỹt −mrt − σh̃t
s2rt

+
bµ
Bµ

)
, BT,µ = 1/

(
T∑
t=1

1/s2rt +
1

Bµ

)
,

and σ|y, h̃, r, µ ∼ N (bT,σ, BT,σ) with

bT,σ = BT,σ

T∑
t=1

h̃t(ỹt −mrt − µ)

s2rt
, BT,σ = 1/

(
T∑
t=1

h̃2t
s2rt

+
1

Bσ

)
.
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2.6 Step (c): Sampling the Indicators r

We proceed exactly as Omori et al. (2007). Observing that ỹt − ht = ε∗t with ε∗t ∼ N
(
mrt , s

2
rt

)
,

one easily obtains the posterior probabilities P(rt = k|·) for k ∈ {1, . . . , 10} and t ∈ {1, . . . , T}
according to

P(rt = k|·) ∝ P(rt = k)
1

sk
exp

{
−(ε∗t −mk)

2

2s2k

}
,

where P(rt = k) denotes the mixture weights of the kth component. In our implementation, we do
the calculations on a log-scale and normalize with respect to the maximum as required. The actual
drawing is then conducted via inverse transform sampling. Note that due to T × 10 exponential
function calls, this step is computationally rather expensive but can easily be parallelized.

3 Interweaving C and NC by ASIS

To provide some intuition about the sampling efficiency in C, let φ = 0 for a moment. This implies
that the state equation (2) reduces to ht ∼ N (µ, σ2) iid for all t ∈ {1, . . . , T}. In this setting,
h becomes more informative about µ when the conditional variance σ2 gets smaller. Thus, more
information is missing when treating h as latent data. Consequently, when sampling µ under the
assumption that φ = 0 and σ2 is small, we expect C to be inefficient. On the other hand, if φ ap-
proaches 1, the latent process converges towards a random walk and h will be very uninformative
about µ. Thus, only little information is lost when treating h as latent data and C has better chances
to work fine. In NC, no major troubles are to be expected if φ = 0, since the state equation (4)
reduces to h̃t ∼ N (0, 1) iid for all t ∈ {1, . . . , T}, which is obviously independent of the value
of σ. Thus, sampling µ and σ in the linearized equation (10) reduces to simple linear regression
with independent regressors. If, however, φ goes towards 1, we are prone to running into spurious
regression problems. Certainly these arguments rely on massive oversimplification (e.g. by not tak-
ing into account the impact of the mixture approximation or spillover effects by inefficient proposal
densities and different blocking strategies) and can only provide a faint idea of what is going on in
the general case.

Nevertheless, due to the fact that in the context of the model at hand, the latent variables h in C
form a sufficient statistic for µ and σ, while the transformed volatilities h̃ in NC form an ancillary
statistic for these parameters, there is hope that interweaving C and NC helps to increase sampling
efficiency. Yu & Meng (2011) propose an ancillary-sufficiency interweaving strategy (ASIS) which,
in certain situations, converges geometrically even when C and/or NC fail to do so. They explain
this “seemingly magical property” by relating to Basu’s theorem (Basu, 1955) on the independence
of complete sufficient and ancillary statistics and show in a quite general context that the geometric
convergence rate of the sampler interweaving h and h̃ is always bound by R

√
rCrNC, where R is
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the maximal correlation between h and h̃ in their joint posterior distribution p(h, h̃|y) and rC, rNC

denote the geometric rate of convergence of C and NC, respectively. This means that the rate of
convergence of the interwoven sampler is mainly governed by the individual convergence rates and
the posterior correlation R, implying that ancillary-sufficiency pairs of latent variables are likely
to be good candidates for reducing sampling inefficiency. It is worth noting that the original ASIS
notation Yobs for the observed data directly transforms to y for the model at hand, while Ymis –
denoting the “missing” part of the data – equals h.

The idea of interweaving is surprisingly simple. It is based on sampling the parameters in question
– in our case µ, σ (and φ) – twice: once utilizing C and again utilizing NC. Ad hoc, it is not clear
whether one should start C and redraw NC (“baseline C”) or vice versa (“baseline NC”). We will
discuss both strategies and assess their performance individually. Algorithm 2 below describes the
former, i.e. both the latent volatilities and the indicators are sampled once with baseline C, while the
parameters µ, φ, σ are sampled once in each parameterization within each iteration of the sampler.
It is termed “GIS-C”, where the first three letters are borrowed from Yu & Meng (2011) and stand
for global interweaving strategy. C simply denotes the fact that we use the centered baseline.

Algorithm 2 (GIS-C). Choose appropriate starting values and repeat the following steps:

(a) Draw h (C).

(b) Draw µ, φ, σ (C).

(b*) Move to NC by the simple deterministic transformation h̃t = ht−µ
σ

for all t.

(b**) Redraw µ, φ, σ (NC).

(b***) Move back to C by calculating ht = µ+ σh̃t for all t.

(c) Draw the indicators r (C).

The individual sampling steps are implemented exactly as described in subsections 2.3 to 2.6. Note
that since φ is not involved in the reparameterization, in step (b**), one might as well redraw µ

and σ only; the difference concerning sampling efficiency is however negligible. Also note that
although additional sampling steps are introduced as (b*) to (b***), overall sampling time is only
affected minimally because these steps are very cheap in terms of computation cost.

The sampler with noncentered baseline is of course very similar. As before, for each iteration the
parameters µ, φ, and σ are sampled twice (once in C and once in NC), while the latent volatilities
and the indicators are sampled in NC only.

Algorithm 3 (GIS-NC). Choose appropriate starting values and repeat the following steps:
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(a) Draw h̃ (NC).

(b) Draw µ, φ, σ (NC).

(b*) Move to C by the simple deterministic transformation ht = µ+ σh̃t for all t.

(b**) Redraw µ, φ, σ (C).

(b***) Move back to NC by transforming back: h̃t = ht−µ
σ

for all t.

(c) Draw the indicators r (NC).

To conclude, note that the strategy of interweaving is intrinsically different to alternating the pa-
rameterizations, for instance by (randomly) choosing one parameterization and running a complete
MCMC cycle within that parameterization. Also, it is distinct from compromising between two
parameterizations, e.g. by partial noncentering.

4 Simulation Results

In order to assess simulation efficiency of our algorithms, we simulate data from the model specified
in equations (1) and (2). For the sake of simplicity and readability, µtrue is set to −10 for all runs.
Results not reported here show that this choice is of minor influence. The parameters φtrue and
σtrue vary on a {0, 0.5, 0.8, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99} × {0.5, 0.4, 0.3, 0.2, 0.1} grid, resulting
in 45 distinct parameter settings. This choice includes previously investigated and empirically
plausible values, see e.g. Jacquier et al. (1994), Kim et al. (1998), Liesenfeld & Richard (2006),
and Strickland et al. (2008). Moreover, the range is chosen to also include more extreme values
that frequently arise when univariate SV is applied to capture conditional heteroskedasticity in
latent variables such as factors or residuals of regression-type problems. We repeat this exercise for
500 data sets and apply four sampling schemes (C, NC, GIS-C, GIS-NC) by using M = 100 000

MCMC draws after a burn-in of 10 000 for each data set. Time series length is fixed to T = 5000,
which corresponds to just above 20 years of daily data. Overall, this results in 90 000 chains of
length 110 000, or a total of around 50 trillion latent instantaneous volatility draws. Nevertheless,
due to parallel implementation of native C code on our local computer cluster using 500 cores,
sampling can easily be done overnight. Throughout all simulations we use priors with means
equaling the true values, more specifically bµ = µtrue, Bµ = 10, a0 = 40, b0 = 80/(1 + φtrue) −
40, Bσ = σ2

true, and starting values are set to true values to avoid values outside the stationary
distribution after the burn-in period.

Computation of parallel MCMC chains for each parameter constellation was conducted on a cluster
of workstations consisting of 44 IBM dx360M3 nodes with a total of 544 cores running R 2.15.1
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(R Core Team, 2013) and OpenMPI 1.4.3 (Gabriel et al., 2004). For high-level-parallelization and
parallel random number generation according to L’Ecuyer et al. (2002), the R packages parallel
(part of R) and snow (Tierney et al., 2011) were used. Ex-post analysis and timing was done on a
Laptop with a 2.67GHz Intel i5 M560 CPU running the same R version. For the actual sampling, the
R package stochvol (Kastner, 2013), available on CRAN, was created. The core implementation
is written in C, interfaced to R via Rcpp (Eddelbuettel & François, 2011). Inefficiency factors and
effective sample sizes were computed with the R package coda (Plummer et al., 2006).

The mean time for running 1000 simulation draws varies between 2.3 seconds for C and 2.4 seconds
for GIS-NC on a Laptop with a 2.67GHz Intel i5 M560 CPU using one core. Note that these
numbers are fairly constant for all true parameter values and grow linearly with T . As an example,
the time to run 1000 simulations for T = 500 varies between 0.23 and 0.24 seconds.

4.1 To Center Or Not to Center?

Simulation efficiency of the two raw parameterizations mainly depends on the values of the pa-
rameters φ (persistence) and σ (volatility of volatility). To illustrate the latter, Figure 1 shows
autocorrelations of an exemplary parameter setup with small volatility of volatility σtrue = 0.1 for
a single time series that has been randomly selected from the pool of all 500 time series. Here, C
“fails” in the sense that the draws from p(µ|y) and p(σ|y) exhibit large autocorrelation, while NC
performs substantially better. This observation is in line with findings of Pitt & Shephard (1999)
and Frühwirth-Schnatter (2004), who observe that simulation efficiency in the centered parameter-
ization decreases with decreasing σtrue for linear Gaussian state space models.

On the other hand, Figure 2 portraits a parameter setup with larger volatility of volatility σtrue = 0.5,
while persistence φtrue and level µtrue are the same as before. Here, we see that draws from C show
little autocorrelation, while MCMC chains obtained from NC do not mix well.

4.2 Sampling Efficiency

For assessing simulation efficiency, the inefficiency factor (IF) is employed as a benchmark. It is
an estimator for the integrated autocorrelation time τ of a stochastic process given through τ = 1 +

2
∑∞

s=1 ρ(s),where ρ(s) is the autocorrelation function for lag s. We estimate τ through the spectral
density of the Markov chain, i.e. IF = γ0/s

2, where γ0 denotes the estimated spectral density
evaluated at zero and s2 denotes the sample variance of the MCMC draws. The inefficiency factor
is directly proportional to the squared Monte Carlo standard error MCSE2 through the relationship
MCSE2 = s2

M
× IF. In other words, 100 000 draws from a Markov chain with an IF of 100 have

roughly the same MCSE as 1000 draws from an independent sample. Consequently, the effective
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Figure 1: Sample autocorrelations of 100 000 MCMC draws obtained from C (left hand side) and NC (right hand side)
for a small volatility of volatility setup.
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Figure 2: Sample autocorrelations of 100 000 MCMC draws obtained from C (left hand side) and NC (right hand side)
for a large volatility of volatility setup.

sample size ESS is given by M/IF. Clearly, the aim is to provide samplers with small IFs, thus
large ESSs, at smallest possible computational cost.

Even for artificially created datasets of length T = 5000 or larger, estimation results may de-
pend substantially on the actual realization of the underlying process. Also, other factors – most
importantly the initial seed for drawing pseudo random variables in the individual MCMC steps
– can influence both sample statistics from the posterior distribution as well as sample statistics
for evaluating simulation efficiency. To compensate for this fact, we repeat each simulation with
500 independently generated artificial data sets. The boxplots provided in Figure 3 and Figure 4
illustrate the variation of IFs for the same parameter constellations as above. While the overall pic-
ture about non-centering remains the same, we can now observe some substantial deviation from
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the median for certain realizations. Furthermore, the plots show that both interweaving strategies
GIS-C and GIS-NC help to avoid woe by working well no matter which raw parameterization fails.
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Figure 3: Boxplots of 500 repeated measurements of inefficiency factors of 100 000 draws from the marginal densities.
The underlying latent volatility process exhibits small volatility of volatility.
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Figure 4: Boxplots of 500 repeated measurements of inefficiency factors of 100 000 draws from the marginal densities.
The underlying latent volatility process exhibits large volatility of volatility.

4.3 Efficiency Overview

In order to gain insight into the entire parameter range of interest, Tables 1, 3 and 5 provide a
summary of median inefficiency factors across all 45 parameter constellations.

Median IFs obtained from draws from p(µ|y) in Table 1 confirm clearly that the centered param-
eterization is quite capable of efficiently estimating the level µ of the latent process throughout a
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p(µ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 591 227 62 18 6 5 3 2 3
0.2 245 90 23 9 3 2 2 2 3

C (1-block) 0.3 112 48 15 5 2 2 2 2 4
TCPU = 2.30 0.4 70 34 11 3 2 2 2 2 5

0.5 52 26 8 3 2 2 2 2 5
0.1 641 223 64 18 6 5 3 2 3
0.2 253 89 22 9 3 2 2 2 3

C (2-block) 0.3 113 47 15 5 2 2 2 2 4
TCPU = 2.31 0.4 72 33 11 3 2 2 2 2 5

0.5 52 26 8 2 2 2 2 2 5
0.1 609 244 67 20 6 5 4 2 2
0.2 250 89 23 8 3 2 2 1 2

C (3-block) 0.3 112 47 14 5 2 2 1 1 2
TCPU = 2.31 0.4 69 33 11 4 2 1 1 2 2

0.5 51 25 8 3 2 1 1 2 2
0.1 9 10 12 13 21 30 50 113 487
0.2 24 21 15 22 70 108 190 419 1729

NC (2-block) 0.3 23 17 17 41 148 234 407 922 3743
TCPU = 2.34 0.4 18 16 23 70 265 412 726 1707 6790

0.5 17 17 32 105 411 660 1149 2534 9421
0.1 9 10 13 13 21 31 50 116 516
0.2 24 21 14 22 71 109 191 437 1883

NC (3-block) 0.3 23 17 17 41 149 240 416 935 3843
TCPU = 2.35 0.4 18 16 23 70 268 410 735 1722 7152

0.5 17 17 32 106 409 661 1151 2589 10355
0.1 9 9 11 8 4 3 3 2 3
0.2 23 20 11 5 2 2 2 2 3

GIS-C (2-block) 0.3 22 15 9 4 2 2 2 2 3
TCPU = 2.36 0.4 17 13 7 3 2 2 2 2 4

0.5 15 12 5 2 2 2 2 2 4
0.1 9 9 12 8 4 3 2 2 2
0.2 23 20 11 5 2 2 2 1 1

GIS-C (3-block) 0.3 22 15 9 3 2 1 1 1 2
TCPU = 2.37 0.4 17 13 7 3 1 1 1 1 2

0.5 15 12 5 2 1 1 1 2 2
0.1 9 9 11 8 4 3 3 2 3
0.2 23 20 11 5 2 2 2 2 3

GIS-NC (2-block) 0.3 22 16 9 3 2 2 2 2 3
TCPU = 2.40 0.4 17 13 7 3 2 2 2 2 4

0.5 15 12 5 2 2 2 2 2 4

Table 1: Inefficiency factors for 100 000 draws from p(µ|y) in various parameterizations using different blocking
strategies. Time series length T = 5000, the values reported are medians of 500 repetitions and TCPU denotes the
median time to complete 1000 iterations.

Shading: 0 50 100 150 200 250 300 350 400 450 500+

wide parameter range, no matter which blocking strategy is used. Only a combination of both small
σtrue and small φtrue leads to large inefficiency. As was to be expected, this is exactly the area where
the non-centered parameterization performs comparably well; median IFs are small to moderately
large. On the other end of the scale – where we find both highly persistent and highly varying latent
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variables – NC becomes close to useless with very large IFs of 1000 and above for both blocking
strategies.

The lower three panels of Table 1 show the performance of the interwoven samplers with different
baselines, GIS-C and GIS-NC. It stands out that in terms of simulation efficiency, both variants are
always better than or en par with the ideal parameterization, while there are practically no differ-
ences between the sampler with baseline C and the one with baseline NC. Comparing CPU time of
the raw samplers with their interwoven counterparts reveals the computational cost of interweaving,
which amounts to merely around 2% in our setup. Thus, even when taking into account the extra
cost, interweaving is hardly ever a bad choice. Also note that GIS-C is practically as fast as NC.

Table 2 shows a direct comparison of the interwoven sampler with the raw parameterizations in
terms of increase in effective sample size. All numbers are positive, showing that interweaving is
more efficient than the ideal parameterization, but sometimes only slightly. Note that in comparison
to the suboptimal parameterization, GIS is always at least twice as effective.

p(µ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 2 2 9 49 53 34 21 14 11
GIS-C vs. 0.2 4 4 36 61 18 13 9 6 15

better 0.3 2 13 79 39 11 9 6 6 21
(2-block) 0.4 8 25 62 23 7 5 5 7 28

0.5 13 41 47 15 5 6 5 8 32
0.1 7404 2264 459 113 409 797 1825 5290 16547

GIS-C vs. 0.2 999 335 107 298 2924 5415 10731 24612 64832
worse 0.3 415 210 102 1070 8051 14082 25470 54664 114292

(2-block) 0.4 329 154 250 2588 16212 26504 45144 88863 164695
0.5 248 114 509 4754 26553 43176 72398 121917 240626
0.1 2 2 9 48 58 55 54 35 21

GIS-C vs. 0.2 1 4 33 55 30 20 12 7 12
better 0.3 6 14 65 50 19 13 7 6 14

(3-block) 0.4 8 26 63 47 14 8 5 4 11
0.5 12 40 64 43 11 6 5 2 9
0.1 6897 2475 478 138 428 856 2032 6553 34199

GIS-C vs. 0.2 973 336 111 299 3156 5959 12427 32023 129984
worse 0.3 417 207 98 1106 8806 16048 30069 70163 220819

(3-block) 0.4 313 150 250 2679 17978 29935 53886 116617 373912
0.5 243 108 513 4933 29265 48629 85550 167572 533651

Table 2: Percentage gains in effective sample size for the 2-block and the 3-block sampler. First and third table:
ESSGIS-C vs. max(ESSC,ESSNC). Second and fourth table: ESSGIS-C vs. min(ESSC,ESSNC).

Shading: 0 10 20 30 40 50 60 70 80 90 100+ (1 and 3)
Shading: 0 100 200 300 400 500 600 700 800 900 1000+ (2 and 4)

Next, we turn to assessing simulation efficiency for the persistence parameter φ, summarized in Ta-
ble 3. Because φ is not involved in the reparameterization, the differences between C and NC (and
consequently also between the raw and the interwoven samplers) are much less pronounced. For a
summary of efficiency gains, see Table 4. It stands out that one- and two-block samplers show very
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p(φ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 138 203 238 317 367 339 262 170 80
0.2 136 195 289 241 113 89 66 43 26

C (1-block) 0.3 129 172 209 104 49 40 30 22 15
TCPU = 2.30 0.4 113 146 115 57 28 23 19 14 13

0.5 96 112 73 36 19 16 13 11 11
0.1 139 201 234 318 360 319 241 152 69
0.2 137 194 288 232 106 82 59 38 22

C (2-block) 0.3 129 171 203 100 46 36 27 19 13
TCPU = 2.31 0.4 113 148 112 54 26 22 17 12 11

0.5 96 113 71 35 18 15 12 9 10
0.1 29900 29980 35443 33223 13461 9054 4862 2347 719
0.2 29607 30722 27821 8991 1799 1142 685 363 154

C (3-block) 0.3 26975 26012 11051 2212 564 372 241 141 69
TCPU = 2.31 0.4 23672 20661 4382 882 249 181 122 76 42

0.5 18800 13056 1990 449 146 105 74 50 30
0.1 138 201 226 169 85 74 61 53 58
0.2 136 193 144 80 52 48 45 45 58

NC (2-block) 0.3 130 159 92 56 43 42 41 44 53
TCPU = 2.34 0.4 113 121 67 47 39 40 40 43 48

0.5 96 91 55 42 38 37 38 40 42
0.1 139 202 223 168 85 73 60 51 57
0.2 137 192 144 79 52 48 45 45 58

NC (3-block) 0.3 129 161 92 56 43 42 41 43 52
TCPU = 2.35 0.4 113 120 67 47 39 39 40 43 50

0.5 96 91 56 42 38 38 38 40 45
0.1 128 186 206 157 76 66 51 39 26
0.2 125 180 134 70 39 33 28 21 14

GIS-C (2-block) 0.3 119 149 82 43 25 21 17 13 9
TCPU = 2.36 0.4 105 113 55 31 18 15 12 9 7

0.5 88 84 41 23 14 12 9 7 6
0.1 139 201 223 168 79 67 52 40 28
0.2 137 194 139 72 40 34 28 22 14

GIS-C (3-block) 0.3 130 160 84 44 26 22 18 14 9
TCPU = 2.37 0.4 114 120 56 31 18 16 13 10 7

0.5 95 87 42 24 14 12 10 8 6
0.1 127 187 208 155 76 66 51 39 27
0.2 126 180 134 70 39 33 27 21 14

GIS-NC (2-block) 0.3 119 150 82 43 25 22 17 13 9
TCPU = 2.40 0.4 105 113 55 31 18 15 12 9 7

0.5 89 84 41 23 14 11 9 7 6

Table 3: Inefficiency factors for 100 000 draws from p(φ|y) in various parameterizations using different blocking
strategies. Time series length T = 5000, the values reported are medians of 500 repetitions and TCPU denotes the
median time to complete 1000 iterations.

Shading: 0 50 100 150 200 250 300 350 400 450 500+

similar IFs, whereas the three-block sampler deteriorates due to massive overconditioning for mod-
erate and small φtrue or σtrue. Note however that again the interwoven sampler is exempt from these
defects due to the fact that NC performs solidly. Results not reported here show that for shorter
time series with T = 500, sampling inefficiency is uniformly smaller for all parameterizations. The
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interwoven 2-block samplers for instance show IFs of 30 or below for all underlying true parameter
values.

p(φ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 8 8 10 7 12 12 20 36 119
GIS-C vs. 0.2 9 7 8 14 34 44 64 82 57

better 0.3 9 7 12 31 71 69 52 42 47
(2-block) 0.4 7 7 22 52 46 41 34 32 65

0.5 8 8 35 50 31 28 28 28 81
0.1 9 9 14 102 371 381 376 293 162

GIS-C vs. 0.2 9 8 115 231 173 146 114 115 315
worse 0.3 9 15 147 131 81 93 136 233 480

(2-block) 0.4 8 31 104 76 118 158 220 358 600
0.5 8 34 72 79 174 225 317 441 636
0.1 0 0 0 0 7 9 14 28 107

GIS-C vs. 0.2 0 0 3 11 30 42 60 105 301
better 0.3 0 1 9 28 67 90 129 213 455

(3-block) 0.4 0 0 19 51 116 147 211 332 486
0.5 0 4 33 76 167 214 297 420 404
0.1 21444 14828 15826 19673 16944 13337 9245 5750 2505

GIS-C vs. 0.2 21498 15775 19897 12448 4413 3304 2347 1571 966
worse 0.3 20674 16207 12989 4984 2081 1593 1252 925 631

(3-block) 0.4 20651 17183 7693 2735 1267 1044 858 667 588
0.5 19595 14829 4642 1788 934 782 660 547 658

Table 4: Percentage gains in effective sample size for the 2-block and the 3-block sampler. First and third table:
ESSGIS-C vs. max(ESSC,ESSNC). Second and fourth table: ESSGIS-C vs. min(ESSC,ESSNC).

Shading: 0 10 20 30 40 50 60 70 80 90 100+ (1 and 3)
Shading: 0 100 200 300 400 500 600 700 800 900 1000+ (2 and 4)

Finally, we investigate sampling efficiency for σ. Table 5 summarizes median IFs for draws from
p(σ|y). We observe a similar overall picture to the one presented in Table 1: C performs poorly
when σtrue and φtrue are small, and NC performs poorly when σtrue and φtrue are large, while inter-
weaving strategies perform well for all underlying parameter values. This result partially contrasts
the conclusions of Strickland et al. (2008), who associate better mixing with larger |φ| for all pa-
rameterizations and recommend the non-centered parameterization in any setup. It should be noted,
however, that these authors use a different sampling algorithm that does not rely on Gaussian mix-
ture approximation. Moreover, the parameter range investigated in their paper does not span the
range of parameters examined in our paper. For a summary of percentage gains in terms of effective
sample size, see Table 6.

5 Application to Exchange Rate Data

We apply our estimation methodology to daily Euro exchange rates. The data stems from the Euro-
pean Central Bank’s Statistical Data Warehouse and comprises 3140 observations of 23 currencies
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p(σ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 5403 5125 3634 1907 829 679 497 348 247
0.2 3067 1938 809 398 196 167 140 117 107

C (1-block) 0.3 687 505 328 164 98 88 78 71 73
TCPU = 2.30 0.4 246 269 169 96 64 60 56 53 60

0.5 140 169 109 66 49 46 43 43 50
0.1 5440 4899 3608 1845 768 604 431 300 194
0.2 3001 1813 779 374 181 151 124 100 80

C (2-block) 0.3 663 490 316 155 90 79 68 59 50
TCPU = 2.31 0.4 238 260 163 91 58 54 48 43 38

0.5 135 166 105 63 44 41 37 34 31
0.1 5347 5083 3274 1265 701 617 495 388 220
0.2 3089 1774 559 565 342 280 212 150 92

C (3-block) 0.3 675 398 470 357 189 147 112 78 55
TCPU = 2.31 0.4 239 226 380 242 115 92 69 51 41

0.5 133 210 309 166 77 61 47 39 32
0.1 57 64 91 130 90 83 73 71 87
0.2 99 95 121 87 70 70 75 89 137

NC (2-block) 0.3 61 77 94 70 71 77 89 114 189
TCPU = 2.34 0.4 38 75 75 66 79 90 106 144 257

0.5 31 68 67 67 90 103 126 173 316
0.1 57 64 90 130 90 83 73 72 92
0.2 99 96 123 87 70 71 76 91 145

NC (3-block) 0.3 60 77 95 70 72 78 90 115 199
TCPU = 2.35 0.4 38 75 75 66 81 91 108 146 273

0.5 31 68 67 67 90 105 129 176 335
0.1 56 64 89 122 82 75 64 58 61
0.2 97 93 114 76 53 50 48 48 51

GIS-C (2-block) 0.3 58 72 82 53 42 41 40 39 40
TCPU = 2.36 0.4 35 69 58 42 35 35 34 33 33

0.5 28 59 47 35 31 30 29 29 28
0.1 56 64 89 125 85 76 65 60 63
0.2 97 93 117 76 54 51 49 49 52

GIS-C (3-block) 0.3 57 73 83 53 43 41 40 40 41
TCPU = 2.37 0.4 34 70 59 43 35 35 34 33 33

0.5 28 60 48 36 31 30 29 29 28
0.1 56 64 88 123 83 74 64 58 61
0.2 96 93 113 75 53 50 48 48 50

GIS-NC (2-block) 0.3 58 72 81 52 42 41 40 39 40
TCPU = 2.40 0.4 35 69 59 42 35 35 34 33 33

0.5 28 58 47 35 31 30 29 29 28

Table 5: Inefficiency factors for 100 000 draws from p(σ|y) in various parameterizations using different blocking
strategies. Time series length T = 5000, the values reported are medians of 500 repetitions and TCPU denotes the
median time to complete 1000 iterations.

Shading: 0 50 100 150 200 250 300 350 400 450 500+

ranging from January 3, 2000 to April 4, 2012. In choosing the prior for φ we follow Kim et al.
(1998), i.e. (φ + 1)/2 ∼ B (20, 1.5), and for the other parameters we pick rather vague priors:
µ ∼ N (−10, 100) and σ2 ∼ G

(
1
2
, 1
2

)
. After a burn-in of 10 000, we use 1 000 000 draws from the

respective distributions in each parameterization for posterior inference.
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p(σ|y)
σtrue

φtrue 0 0.5 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0.1 1 0 2 6 10 11 15 21 43
GIS-C vs. 0.2 2 2 6 15 33 39 55 85 58

better 0.3 5 7 15 33 69 89 73 49 26
(2-block) 0.4 8 9 28 57 66 55 42 29 15

0.5 13 16 41 76 43 36 27 19 10
0.1 9550 7593 3947 1409 834 708 574 414 218

GIS-C vs. 0.2 2999 1842 584 393 242 200 157 108 170
worse 0.3 1041 583 286 195 114 93 124 190 374

(2-block) 0.4 588 277 180 115 126 160 215 332 677
0.5 382 183 123 87 191 246 332 506 1031
0.1 2 0 2 3 7 9 13 21 45

GIS-C vs. 0.2 2 4 5 14 30 40 55 85 77
better 0.3 5 5 14 31 69 90 126 97 36

(3-block) 0.4 9 6 26 56 127 160 103 52 23
0.5 12 13 41 88 150 102 61 36 16
0.1 9449 7825 3575 909 727 714 663 552 248

GIS-C vs. 0.2 3086 1810 379 642 539 453 333 206 180
worse 0.3 1075 444 463 568 345 256 181 191 391

(3-block) 0.4 594 222 542 469 224 162 218 338 720
0.5 374 248 548 365 192 248 341 513 1103

Table 6: Percentage gains in effective sample size for the 2-block and the 3-block sampler. First and third table:
ESSGIS-C vs. max(ESSC,ESSNC). Second and fourth table: ESSGIS-C vs. min(ESSC,ESSNC).

Shading: 0 10 20 30 40 50 60 70 80 90 100+ (1 and 3)
Shading: 0 100 200 300 400 500 600 700 800 900 1000+ (2 and 4)

To exemplify, Figure 5 shows exchange rates of EUR/US$ along with absolute de-meaned log-
returns, which are then used to estimate the time-varying volatilities displayed below. The trans-
formed latent process and the absolute log-returns exhibit a similar overall pattern. Nevertheless,
the volatility path is much smoother, which is due to the highly persistent autoregressive process
(the posterior mean of φ is 0.993, the posterior mean of σ is 0.07). Marginal posterior density esti-
mates and two-way scatterplots can be found in Figure 6. Note that only p(µ|y) is symmetric, while
both p(φ|y) and p(σ|y) are skewed. Moreover, the parameter draws are (sometimes nonlinearly)
correlated.

Results for all 23 examined exchange rates are displayed in Table 7. It stands out that for curren-
cies which are closely tied to the Euro, posterior parameter means differ substantially to those found
above. Most notably, the Danish krone exhibits very low overall level of volatility (µmean = −18),
paired with moderate persistence (φmean = 0.916) and moderately high volatility of volatility
(σmean = 0.38). Looking at the inefficiency factors for the raw parameterizations, one observes
striking superiority of C in terms of sampling efficiency of µ, while NC usually performs better
in terms of sampling efficiency of σ. Again, interweaving overcomes these problems by showing
lowest IFs uniformly for all parameters and all time series. Even though not reported here in detail
due to space constraints, the choice of the baseline (GIS-C vs. GIS-NC) is negligible.
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Figure 5: Indirectly quoted EUR/US$ exchange rates (top) with de-meaned absolute log-returns (middle) and estimated
instantaneous volatilities (bottom) based on 1000 000 draws via GIS-C.

6 Concluding Remarks

Previous studies have shown that simple reparameterizations often turn out to have substantial
impact on MCMC simulation efficiency in state-space specifications. This paper contributes to
the literature by exploring the influence of choosing between two selected parameterizations for
Bayesian estimation of SV models. Moreover, it provides evidence that inefficiency factors ob-
tained from simulation experiments can heavily depend on the realization of the data generat-
ing process. Through the findings of this paper it becomes clear that employing an ancillarity-
sufficiency interweaving strategy (ASIS) introduced by Yu & Meng (2011) helps to overcome
shortcomings of either the centered or the non-centered parameterization by outperforming those
in terms of sampling efficiency with respect to all parameters at very little extra computational cost,
whereas the baseline of the interweaving strategy is of minor influence.

The concept of interweaving different parameterizations of state-space models is clearly very gen-
eral, and there is good reason to hope for similar magic when applying ASIS to extension of the
basic SV model such as more general innovation distributions (e.g. Liesenfeld & Jung, 2000; Dela-
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Figure 6: Marginal posterior density estimates and bivariate scatterplots of 1000 thinned draws for the EUR/US$
exchange rate data, based on 1000 000 samples obtained via GIS-C.

tola & Griffin, 2011), asymmetry (e.g. Yu, 2005; Omori et al., 2007) or both (e.g. Chib et al., 2002;
Wang et al., 2011; Tsiotas, 2012; Ishihara & Omori, 2012; Nakajima & Omori, 2012). Preliminary
results for an SV model with leverage, where a centered parameterization from Yu (2005) is com-
pared with a non-centered version based on transforming ht into h̃t = (ht − µ)/σ as in the present
paper, show that this hope is in fact an actual possibility. A thorough investigation of this issue is
however beyond the scope of this article.

7 Acknowledgments

The authors would like to thank the editor and two referees for their perspicacious comments on an
earlier draft of this paper, and Stefan Theußl for helpful advice concerning coding and implemen-
tation.

23



Posterior means IFC IFNC IFGIS-C
µ φ σ µ φ σ µ φ σ µ φ σ

Australian dollar -10.3 0.976 0.17 3 167 256 216 120 149 2 68 97
Canadian dollar -10.1 0.987 0.09 3 350 539 211 128 159 3 89 120

Swiss franc -12.0 0.985 0.21 3 55 129 807 99 162 3 33 73
Czech koruna -11.5 0.953 0.28 3 140 200 151 121 154 3 72 96
Danish krone -18.0 0.916 0.38 5 102 145 85 90 115 4 57 72

UK pound sterling -10.8 0.992 0.10 2 95 233 802 120 150 2 39 87
Hong Kong dollar -10.2 0.993 0.07 2 128 309 526 89 96 2 36 75
Indonesian rupiah -9.9 0.966 0.23 4 234 313 216 201 242 3 114 142

Japanese yen -10.0 0.989 0.12 3 110 227 513 98 140 3 47 91
Korean won -10.0 0.987 0.14 2 92 192 501 96 134 2 40 79

Mexican peso -9.8 0.977 0.16 2 137 221 220 101 128 2 60 86
Malaysian ringgit -10.3 0.990 0.08 2 220 390 404 104 124 2 59 90
Norwegian krone -11.1 0.970 0.18 2 139 217 150 83 107 2 53 76

New Zealand dollar -10.0 0.963 0.17 4 344 432 105 153 177 3 114 135
Philippine peso -10.1 0.981 0.12 3 376 529 209 189 220 2 123 160

Polish zloty -10.4 0.975 0.19 2 96 171 261 85 117 2 43 69
Romanian leu -11.1 0.970 0.31 2 51 100 446 87 137 2 32 60

Russian rouble -10.6 0.988 0.15 4 75 172 891 121 151 3 38 82
Swedish krona -11.3 0.991 0.11 1 52 156 752 75 99 1 23 60

Singapore dollar -10.6 0.995 0.07 4 138 348 998 126 132 4 47 100
Thai bhat -10.2 0.980 0.13 3 202 314 207 102 125 3 64 90

Turkish lira -9.8 0.966 0.27 2 72 127 259 84 127 2 42 69
US dollar -10.1 0.993 0.07 2 126 308 504 87 99 2 37 74

Table 7: Posterior means and inefficiency factors for various estimation methods of the SV model, applied to EUR
exchange rate data.
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