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Bernd Fellinghauera,b,∗, Peter Bühlmannb, Martin Ryffelb, Michael von
Rheinc, Jan D. Reinhardta,d

aSwiss Paraplegic Research, Nottwil, Switzerland
bSeminar für Statistik, ETH Zürich, Switzerland
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Abstract

A conditional independence graph is a concise representation of pairwise con-
ditional independence among many variables. Graphical Random Forests
(GRaFo) are a novel method for estimating pairwise conditional indepen-
dence relationships among mixed-type, i.e. continuous and discrete, vari-
ables. The number of edges is a tuning parameter in any graphical model
estimator and there is no obvious number that constitutes a good choice.
Stability Selection helps choosing this parameter with respect to a bound on
the expected number of false positives (error control).

The performance of GRaFo is evaluated and compared with
various other methods for p = 50, 100, and 200 possibly mixed-type
variables while sample size is n = 100 (n = 500 for maximum like-
lihood). Furthermore, GRaFo is applied to data from the Swiss Health
Survey in order to evaluate how well it can reproduce the interconnection of
functional health components, personal, and environmental factors, as hy-
pothesized by the World Health Organization’s International Classification
of Functioning, Disability and Health (ICF). Finally, GRaFo is used to iden-
tify risk factors which may be associated with adverse neurodevelopment of
children who suffer from trisomy 21 and experienced open-heart surgery.

GRaFo performs well with mixed data and thanks to Stability Selection
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it provides an error control mechanism for false positive selection.

Keywords: Graphical Model, High Dimensions, LASSO, Mixed Data,
Random Forests, Stability Selection

1. Introduction1

In many problems one is not confined to one response and a set of pre-2

defined predictors. In turn, the interest is often in the association structure3

of a whole set of p variables, i.e. asking whether two variables are indepen-4

dent conditional on the remaining p−2 variables. A conditional independence5

graph (CIG) is a concise representation of such pairwise conditional indepen-6

dence among many possibly mixed, i.e. continuous and discrete, variables. In7

CIGs, variables appear as nodes, whereas the presence (absence) of an edge8

among two nodes represents their dependence (independence) conditional on9

all other variables. Applications include among many others also the study10

of functional health (Strobl et al., 2009; Kalisch et al., 2010; Reinhardt et al.,11

2011).12

We largely focus on the high-dimensional case where the number of vari-13

ables (nodes in the graph) p may be larger than sample size n. A popu-14

lar approach to graphical modeling is based on the Least Absolute Shrink-15

age and Selection Operator (LASSO; Tibshirani, 1996): see Meinshausen16

and Bühlmann (2006) or Friedman et al. (2008) for the Gaussian case and17

Ravikumar et al. (2010) for the binary case. However, empirical data of-18

ten involve both discrete and continuous variables. Conditional Gaussian19

distributions were suggested to model such mixed-type data with maximum20

likelihood inference (Lauritzen and Wermuth, 1989), but no corresponding21

high-dimensional method has been suggested yet. Dichotomization, though22

always applicable, comes at the cost of lost information (MacCallum et al.,23

2002).24

Tree-based methods are easy to use and accurate for dealing with mixed-25

type data (Breiman et al., 1984). Random Forests (Breiman, 2001) evalu-26

ate an ensemble of trees often resulting in notably improved performance27

compared to a single tree (see also Amit and Geman, 1997). Furthermore,28

permutation importance in Random Forests allows to rank the relevance of29

predictors for one specific response. However, Random Forests have30

also been criticized to perform possibly biased variable selection.31

We thus also consider Conditional Forests (Strobl et al., 2007) and32
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conditional variable importance (Strobl et al., 2008), which have33

been suggested to overcome this behavior.34

In general, the definition of both the conditional and marginal per-35

mutation importance differ for discrete and continuous responses. Thus,36

ranking permutation importances across responses of mixed-type is less ob-37

vious. However, such ranking is essential to derive a network of the most38

relevant dependencies. Stability Selection proposed by Meinshausen and39

Bühlmann (2010) is one possible framework to rank the edges in the CIG40

across different types of variables. In addition, it allows to specify an up-41

per bound on the expected number of false positives, i.e. the falsely selected42

edges, and thus provides a means of error control.43

We combine Random Forests estimation with appropriate ranking among44

mixed-type variables and error control from Stability Selection. We refer to45

the new method as Graphical Random Forests (GRaFo). The specific aims46

of the paper are a) to evaluate and compare the performance of GRaFo47

with Stable LASSO (StabLASSO) and Stable Conditional Forests48

(StabcForests), which are LASSO- and conditional forest-based al-49

ternatives, and regular maximum likelihood (ML) estimation across50

various simulated settings comprising different distributions, interactions,51

and nonlinear associations for p = 50, 100, and 200 possibly mixed-type52

variables while sample size is n = 100 (n = 500 for ML), b) to apply GRaFo53

to data from the Swiss Health Survey (SHS) to evaluate the interconnec-54

tion of functional health components, personal, and environmental factors,55

as hypothesized by the World Health Organization’s (WHO) International56

Classification of Functioning, Disability and Health (ICF), and c) to use57

GRaFo to identify risk factors associated with adverse neurodevelopment in58

children with trisomy 21 after open-heart surgery and more generally to59

assess the plausibility of the suggested associations.60

2. Graphical Modeling Based on Regression-Type Methods61

2.1. Conditional Independence Graphs62

Let X = {X1, . . . ,Xp} be a set of (possibly) mixed-type random variables.63

The associated conditional independence graph of X is the undirected graph64

GCIG = (V ,E(GCIG)), where the nodes in V correspond to the p variables in65

X. The edges represent the pairwise Markov property, i.e. i − j /∈ E(GCIG) if66

and only if Xj ⊥⊥ Xi∣X ∖ {Xj,Xi}. For a rigorous introduction to graphical67
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models, see, for example, the monographs by Whittaker (1990) or Lauritzen68

(1996).69

We will now show that the pairwise Markov property can, under certain70

conditions, be inferred from conditional mean estimation.71

Theorem 1. Assume that, for all j = 1, . . . , p, the conditional distribution of
Xj given {Xh;h ≠ j} is depending on any realization {xh;h ≠ j} only through
the conditional mean function

mj({xh;h ≠ j}) = E[Xj ∣{xh;h ≠ j}],

that is:

P[Xj ≤ xj ∣{xh;h ≠ j}] = Fj(xj ∣mj({xh;h ≠ j})), (A)

where Fj(⋅∣m) is a cumulative distribution function for all m ∈ R (or m ∈ Rd

if Xj is d-dimensional). (Thereby, we assume that the conditional mean
exists). Then

Xj ⊥⊥Xi∣{Xh;h ≠ j, i}

if and only if

mj({xh;h ≠ j}) =mj({xh;h ≠ j, i})

does not depend on xi, for all {xh;h ≠ j}.72

A proof is given in Section 8. Assumption (A) trivially holds for a
Bernoulli random variable Xj:

P[Xj = 1∣{xh;h ≠ j}] = E[Xj ∣{xh;h ≠ j}] =mj({xh;h ≠ j}).

Analogously, for a multinomial random variable Xj with C levels, the prob-
ability that Xj takes the level r ∈ {1, . . . ,C} can be expressed via a Bernoulli

variable X
(r)
j with

P[X(r)j = 1∣{xh;h ≠ j}] = E[X(r)j ∣{xh;h ≠ j}] =mj({xh;h ≠ j}).

Hence, (A) holds. Moreover, if (X1, . . . ,Xp) ∼ Np(0,Σ), then (A) holds as
well (see for example Lauritzen, 1996). However, for the Conditional Gaus-
sian distribution (or CG distribution, see e.g. Lauritzen, 1996), we need to
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require for (A) that the variance is fixed and is not depending on the vari-
ables we condition on. For example, let X1 ∼ B(1, π) be Bernoulli distributed
and let

X2∣X1 ∼ {N (µ1, σ2
1), if X1 = 1

N (µ2, σ2
2), if X1 = 0

, where σ2
1 ≠ σ2

2.

Then the distribution of X2∣X1 is not a function of the conditional mean73

alone.74

Theorem 1 motivates our approach to infer conditional dependences, or75

edges in the CIG, via variable selection for many nonlinear regressions, i.e. de-76

termining whether a variable Xi is relevant in E[Xj ∣X∖ {Xj}] (regression of77

Xj versus all other variables).78

2.2. Ranking Edges79

In order to determine which edges should be included in the graphical80

model, the edges suggested by the individual regressions need to be ranked81

such that a smaller rank indicates a better candidate for inclusion1. Note82

that each edge i − j is associated with two coefficients (Xj regressed on Xi83

and all other variables and vice versa for Xi on Xj). To be conservative, we84

rank each edge i − j relative to the smaller one of the two (absolute-valued)85

ranking coefficients.86

If variables are mixed-type, a global ranking criterion is difficult to find.87

For example, continuous and categorical response variables are not di-88

rectly comparable. Instead, local rankings for each regression are performed89

separately (where “local” means that we can rank the importance of predic-90

tors for every individual regression). Analogous to global ranking, each edge91

i−j is associated with two possible ranks and the worse among them is used.92

When using Random Forests for performing the individual nonlinear re-93

gressions, the ranking scheme is obtained from Random Forests’ variable94

importance measure. For Conditional Forests, both the conditional95

and marginal variable importances can be used. When using the96

LASSO for individual linear or logistic regressions, the ranking scheme is97

1For instance, if all variables are continuous, the size of the standardized regression
coefficients from ordinary least squares is an obvious global ranking criterion. Analogously,
in a situation where all variables are binary (and identically coded), coefficients from linear
logistic regression lead to a global ranking.
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obtained from the value of the penalty parameter λ for which an es-98

timated regression coefficient first becomes non-zero (i.e. the value99

of the penalty parameter when a variable enters in a coefficient100

path plot).101

We then have to decide on the number of edges to select, i.e. the tuning102

parameter. Say it is given as q = 11. Then, for both global and local rankings,103

we select the 11 best-ranked edges across all p individual regressions. If this is104

impossible due to tied ranks (e.g. because the 11th and 12th best edges have105

a tied rank of 11.5), we neglect these (here: two) tied edges and select only106

the remainder of (here: 10) edges not in violation of the tuning parameter.107

We next outline how Stability Selection can be used to guide the choice108

of q.109

2.3. Aggregating Edge Ranks with Stability Selection110

Stability Selection (Meinshausen and Bühlmann, 2010) allows the specifi-111

cation of an upper bound on the expected number E[V ] of false positives. It112

is based on subsampling (Politis et al., 1999; Bühlmann and Yu, 2002) ran-113

dom subsets X(1), . . . ,X(nsub) of the original sample X1, . . . ,Xn, where each114

X(k) contains ⌊n/2⌋ sample points.115

Let E(ĜCIG(X(k))) denote the edges from a thresholded ranking based on
X(k), k = 1, . . . , nsub. Stability Selection suggests to construct E(ĜCIG(X)),
the set of all edges in the estimated CIG of X, from all edges that were
“sufficiently stable” across the nsub subsets. More concretely, we choose only
edges i − j which fulfill

1

nsub

nsub

∑
k=1

I{i−j∈E(ĜCIG(X(k)))} ≥ πthr, (1)

where πthr imposes a threshold on the minimum relative frequency of edges116

across the nsub subsets to be included in E(ĜCIG(X)) and I is the indicator117

function.118

In their Theorem 1, Meinshausen and Bühlmann (2010) relate E[V ] to
the maximum number of selected edges q per subset, the number of possible
edges p ⋅ (p − 1)/2 in E(ĜCIG(X)), and the threshold πthr from formula (1)
(requiring πthr ∈ (1

2 ,1)):

E[V ] ≤ q2

(2πthr − 1) ⋅ p ⋅ (p − 1)/2 . (2)
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The expected number of false positives E[V ], which is a type I error119

measure, needs to be specified a priori. The parameters πthr and q are tuning120

parameters that depend on each other. More precisely, to obtain a stable121

graph estimate for a given E[V ], the threshold πthr has to be large if the122

number of selected edges q is large and vice versa. Consequently (and as also123

argued by Meinshausen and Bühlmann, 2010) the actual values of πthr and q124

are of minor importance for a given E[V ] as the graph estimates do not vary125

much for different choices of πthr (results not shown). We thus fix πthr = 0.75126

throughout the paper. Also, we follow the suggestion of Meinshausen and127

Bühlmann (2010) in choosing nsub = 100.128

We can then use formula (2) to derive

q = ⌊
√

(2πthr − 1)E[V ] ⋅ p ⋅ (p − 1)/2⌋

by specifying the value of E[V ] as desired (according to the willingness to129

accept false positives).130

Note that formula (2) is based on two assumptions: 1) the estimation131

procedure is better than random guessing and 2) the probability of a false132

edge to be selected is exchangeable; for details we refer to Meinshausen and133

Bühlmann (2010). Also note that πthr is not to be interpreted as an edge134

probability threshold but solely as a means to assess stability which allows135

control of E[V ]. Finally, be aware that our method does not consider the136

goodness-of-fit of the model but instead leads to an undirected graph whose137

edges are controlled for false positive selections.138

3. Random Forests, Conditional Forests, LASSO Regression, and139

Maximum Likelihood140

3.1. Random Forests141

Random Forests have, to date, not been used to estimate CIGs. They142

perform a series of recursive binary partitions of the data and construct the143

predictions from terminal nodes. Based on classification and regression trees144

(Breiman et al., 1984) they allow convenient inference for mixed-type vari-145

ables, also in the presence of interaction effects. Incorporating bootstrap146

(Efron, 1979; Breiman, 1996) and random feature selection (Amit and Ge-147

man, 1997), random subsets of both the observations and the predictors are148

considered. The relevance of each predictor can be assessed with permuta-149

tion importance (Breiman, 2002), a measure of the error difference between150
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a regular Random Forests fit and a Random Forests fit within which one151

predictor has been permuted at random to purge its relationship with the152

response. An implementation of Random Forests in R (R Development Core153

Team, 2011) is available in the randomForest package (Liaw and Wiener,154

2002). We chose the number of trees and the number of features randomly155

selected per tree according to the package defaults. Further extensions156

(which we did not incorporate) allow to explicitly use the ordinal157

information of a categorical response: see e.g. the R packages party158

(Hothorn et al., 2006) and rpartOrdinal (Archer, 2010).159

Since the goodness-of-fit of continuous and categorical responses is based160

on mean squared errors and majority votes, respectively, the goodness-of-161

fit and importance measures are not directly comparable across mixed-type162

responses. Thus a local ranking is derived, where each edge i − j is assigned163

either the rank of the permutation importance of predictor X
(k)
i for response164

X
(k)
j or of predictor X

(k)
j for response X

(k)
i (whichever is more conservative,165

i.e. assigns a worse rank) and finally aggregated with Stability Selection; the166

upper index (k) denotes the kth subsample in Stability Selection. We refer to167

this procedure as Graphical Random Forests (GRaFo) henceforth.168

3.2. Conditional Forests169

Strobl et al. (2007) criticized Random Forests to favor variables170

with many categories. Furthermore, Random Forests have been171

criticized to favor correlated predictors, even if not all of them are172

influential for the response2 (Strobl et al., 2008).173

To overcome the first limitation, Conditional Forests (Strobl174

et al., 2007) were suggested, which are a modification of the original175

Random Forests implementation. They are based on conditional176

inference trees (Hothorn et al., 2006), an unbiased tree learning177

procedure, to obtain an unbiased ensemble of trees.178

While the regular marginal permutation importance discussed179

in the previous section is also applicable to Conditional Forests,180

a conditional permutation importance, which aims to preserve the181

correlation structure among predictors, has been suggested by Strobl182

et al. (2008) to overcome the latter critique of forest ensembles fa-183

2This aspect though may be considered as both a source of bias and a beneficial effect
as correlated predictors may help to localize relevant structures (Nicodemus et al., 2010)
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voring correlated predictors. An implementation of Conditional184

Forests, including the conditional variable importance, is available185

in the party package (Hothorn et al., 2006) in R. However, we186

found that the computational cost to obtain the conditional vari-187

able importance is a lot higher than for the marginal permutation188

importance. When drastically reducing the number of trees to 10,189

the computations become feasible but the ensemble does hardly190

produce any true positives (likely due to instability of the small191

forest ensemble). As such, all calculations reported further below192

have been performed using the marginal permutation importance.193

To allow a fair comparison, we set the ensemble size to 500 trees194

(as with Random Forests).195

The same ranking rule as for Random Forests can then be used196

to construct a Stable Conditional Forest (StabcForests) algorithm.197

3.3. Least Absolute Shrinkage and Selection Operator (LASSO)198

In the case of linear regression for continuous responses and predictors,199

the LASSO (Tibshirani, 1996) penalizes with the `1-norm and correspond-200

ing penalty parameter λ the coefficients of some less relevant predictors to201

zero. The larger λ is chosen, the more coefficients will be set to zero. This202

concept has also been extended to logistic regression (Lokhorst, 1999) and203

implemented in R in the glmnet package (Friedman et al., 2010). In the case204

of multinomial and mixed-type data, no eligible off-the-shelf implementation205

of the LASSO is available. We hence dichotomize these data according to a206

median split for continuous variables and aggregate categories such that the207

resulting frequency of the -1 and 1 categories was as balanced as possible for208

discrete variables. Consequently, a loss of information is to be expected (cf.,209

MacCallum et al., 2002; Altman and Royston, 2006; Royston et al., 2006).210

CIG estimation via the LASSO with Stability Selection was suggested for211

Gaussian data by Meinshausen and Bühlmann (2010) and can be represented212

as a global ranking. For each response X
(k)
j , we estimate LASSO regressions213

with all remaining X(k)∖{X(k)j } as predictors and with a decreasing sequence214

of penalties λ
(k),max

j , . . . , λ
(k),min

j . Let λ
(k)
ij denote the largest penalty value of215

the sequence for which the coefficient of predictor X
(k)
i for response X

(k)
j is216

non-zero, and if no such penalty exists let λ
(k)
ij = 0. For each edge i − j we217

select the more conservative penalty λ
(k)
i−j = min (λ(k)ij , λ

(k)
ji ) and rank i − j218
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relative to the global rank from the absolute-valued estimated regression219

coefficient corresponding to λ
(k)
i−j . As before, the upper index (k) denotes220

the kth subsample from Stability Selection. We denote this procedure in221

combination with Stability Selection as Stable LASSO (StabLASSO).222

3.4. Maximum Likelihood223

Ordinary maximum likelihood (ML) estimation does neither im-224

pose a penalty (such as the LASSO) nor does it use subsampling to225

reduce the number of predictors to consider in each run (such as226

the Forest-type algorithms). Consequently, ordinary ML inference227

can only be applied in the case, where the number of parameters228

to be estimated is at most as large as the sample size n.229

If the dependent variable is continuous, we use the ordinary230

linear model, otherwise the multinomial log-linear model. Local231

rankings are obtained from the F-Test for each of the predictor232

variables. The calculations were performed with the regr0 package233

(available from R-Forge) in R.234

We could wrap a Stability Selection scheme around ML esti-235

mation which is computationally demanding in the case of mixed236

continuous and categorical variables. Our main goal here, however,237

is to compare with plain ML estimation.238

4. Simulation Study239

4.1. Simulating Data from Directed Acyclic Graphs240

We use a directed acyclic graph (DAG; cf., Whittaker, 1990) to embed241

conditional dependence statements among nodes representing the p random242

variables. The associated CIG follows by moralization, i.e. connecting any243

two parents with a common child that are not already connected and remov-244

ing all arrowheads (Lauritzen and Spiegelhalter, 1988).245

LetA be a (p×p)-dimensional weight matrix with entries aij ∈ {[−1,−0.1]∪
{0} ∪ [0.1,1]} if i < j and aij = 0 otherwise. In addition, we sample A to
be sparse, i.e. we expect only one percent of its entries to deviate from 0.
The non-zeros in A encode the directed edges in a DAG we simulate from
similarly as in Kalisch and Bühlmann (2007); see also Table 1. For the
Gaussian setting with interaction effects, we furthermore sample
bikj ∈ {[−1,−0.1]∪ {0}∪ [0.1,1]} for all indices i, k, j where main effects
between i, j and k, j are present (cf., Table 1). Also, for all i, j ∈
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{1, . . . , p} in the multinomial and mixed setting with aij ≠ 0 let uij and
vij be vectors that we use to impose some additional structure on multinomial
variables: 1) at least one category of a multinomial predictor Xi should have
an effect opposite to the remainder, 2) the (total) effect of the categories
of a multinomial predictor Xi should be positive on some categories of a
multinomial response Xj and negative on others. For this purpose, we restrict

uij = (u(1)ij , . . . , u
(Ci)
ij ) and vij = (v(1)ij , . . . , v

(Cj)
ij ):

u
(l)
ij ∈ {−1,1} ∀l = 1, . . . ,Ci s.t. −Ci <

Ci

∑
l=1

u
(l)
ij < Ci,

v
(s)
ij ∈ {−1,1} ∀s = 1, . . . ,Cj s.t. −Cj <

Cj

∑
s=1

v
(s)
ij < Cj.

With these definitions, we sample data from different distributions us-246

ing the inverse link function to relate the conditional mean to all previously247

sampled predictors. Table 1 describes the settings in detail, covering models248

with purely Gaussian, purely Bernoulli, purely multinomial, and an alternat-249

ing sequence of Gaussian and multinomial variables (“mixed” setting). The250

Gaussian setting can be further distinguished into a main effects251

only setting, a main plus interaction effects setting, and a nonlinear252

effects setting. For the nonlinear setting the signal was amplified253

by a factor of 5 to obtain comparable results to the other Gaussian254

settings. The exact specifications are given in Table 1.255

4.2. Simulating Data from the Ising Model256

A common approach to model pairwise dependencies between a set of
binary variables is the Ising model with probability function

p(x,Θ) = exp (∑ θiixi +∑ θijxixj − Γ(Θ)) (3)

for realizations x ∈ X, normalization constant Γ(Θ), and (p× p)-dimensional257

symmetric parameter matrix Θ = {θij}i,j∈{1,...,p}. From the conditional den-258

sities of equation (3) if follows that θij = 0 (θij ≠ 0) implies the absence259

(presence) of edge i − j in the associated CIG. See also Ravikumar et al.260

(2010).261

We sample the diagonal and the upper-triangular matrix of Θ uniformly262

from {−1,0,1} such that the average neighborhood size for each node equals263

4. The lower-triangular matrix equals its upper counterpart. We use the264

11
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Gibbs sampler (cf., Givens and Hoeting, 2005) to sample realizations from265

equation (3). Höfling and Tibshirani (2009) provide an implementation in266

the BMN package in R.267

4.3. Simulation Results: Gaussian, Binomial, Multinomial, Mixed, and Ising268

For p ∈ {50,100,200} variables and samples of size n = 100, each of the269

5 simulation models3 was averaged over 50 repetitions. More precisely, for270

a given q, the number of observed true and false positives across the 50271

repetitions was averaged. The results are shown in Figures 1-6. Error control272

for small bounds on the expected number of false positives E[V ] could be273

achieved for both GRaFo and StabLASSO in all but the mixed setting with274

p = 200 in Figure 6.275

In the Gaussian, Bernoulli and Ising settings, StabLASSO seems to per-276

form slightly better than GRaFo for small error bounds and rather similar277

across the figures for the true/false positive rates (third column of Figures278

1-3). Note that StabLASSO sets many coefficients to 0. As a consequence,279

a large proportion of edges cannot be selected for false positive rates smaller280

than 1 resulting in some StabLASSO curves not covering the entire range of281

the rates.282

In the multinomial and mixed setting (Figures 4-6), GRaFo returned283

satisfactory results while StabLASSO performed poorly, presumably caused284

by dichotomization. In general, both procedures seem to perform best in the285

Gaussian setting, followed by the mixed, multinomial, Bernoulli, and Ising286

setting, respectively. The latter seems especially hard for both procedures if287

the upper error bound in formula (2) for E[V ] is chosen small. Nevertheless,288

given one’s willingness to expect more errors, the rate figures indicate the289

potential to recover (parts of) the true structure (cf., Ravikumar et al., 2010;290

Höfling and Tibshirani, 2009).291

The “raw” counterparts, Random Forests and LASSO, correspond to esti-292

mations and rankings performed on the full data set without Stability Selec-293

tion. Consequently, these approaches lack any guidance on choosing q. The294

rate figures were obtained by evaluation of the graphs arising from various295

values of q. We provide them as a means to check if introducing Stability296

Selection has any additional (positive or negative) effect on the performance297

3In this section, the Gaussian setting refers to the first model in Table 1, i.e. the
Gaussian setting without interaction effects and without nonlinear effects.
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of the Random Forests and LASSO methods besides enabling us to choose298

q. From the rate figures, we can deduce that the raw methods perform quite299

similar to GRaFo and StabLASSO across all settings. Hence, the use of Sta-300

bility Selection did not introduce any surprising new behavior of Random301

Forests or LASSO.302

A violation of condition (A) of Theorem 1 in the mixed setting could303

explain the failure of both GRaFo and StabLASSO to achieve error control304

for p = 200. However, both the mixed setting with p = 50 and p = 100 returned305

very few observed errors and remained well below the error bounds indicating306

the problematic behavior may be linked to larger values of p. Also, for any307

setting it is unlikely that the exchangeability assumption holds. Meinshausen308

and Bühlmann (2010) argue that Stability Selection appears to be robust to309

violations, but did not study mixed data which may be particularly affected.310

We study this aspect more closely further below.311

The computational cost is growing rather quickly with growing p. The312

runtime of a single of the 50 repetitions per setting is in the order of 15313

minutes for GRaFo and 20 minutes for StabLASSO for p = 50 and increases314

to several hours for GRaFo and 30 minutes for StabLASSO in the case of315

p = 200. Each batch of 50 repetitions was run in parallel on 50 cores of316

the BRUTUS high-performance cluster comprising quad-core AMD Opteron317

8380 2.5 Ghz CPUs with 1 GB of RAM per core using the Rmpi package318

(Yu, 2010) available in R.319

4.4. Simulation Results: Gaussian with Interaction Effects320

For p ∈ {50,100,200} variables and samples of size n = 100, each321

graph in Figure 7 was averaged over 50 repetitions. The results322

appear very similar to our findings for the Gaussian model with-323

out interactions and without nonlinear effects. However, here the324

number of true positives is somewhat lower for both GRaFo and325

StabLASSO with an (arguably) slightly smaller drop for the GRaFo326

procedure. This does not seem too surprising, given that Ran-327

dom Forests have the ability to incorporate interactions naturally,328

whereas they have to be specified explicitly for the LASSO (which329

has not been done here).330

However, overall the total number of interaction terms is rela-331

tively small, ranging from roughly 5% to 10% of all model terms.332

For a larger number of interaction terms, we would thus expect a333

further gain of the GRaFo over the StabLASSO procedure.334
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Gaussian, Bernoulli, and Ising models, p = 50
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(a) Gaussian: GRaFo
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(b) Gaussian: StabLASSO
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(c) Gaussian: Rates
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(d) Bernoulli: GRaFo
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(e) Bernoulli: StabLASSO
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(f) Bernoulli: Rates
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(g) Ising: GRaFo
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(h) Ising: StabLASSO
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(i) Ising: Rates

Figure 1: The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 50.
Their true CIGs have 16, 16 and 89 edges, respectively. The first two columns report
the observed number of true and false positives (“o”) relative to the bound in (2) for the
expected number E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively,
averaged over 50 simulations. The third column reports the averaged true and false positive
rates of GRaFo and StabLASSO relative to the performance of their “raw” counterparts
without Stability Selection.

15



Gaussian, Bernoulli, and Ising models, p = 100
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(a) Gaussian: GRaFo
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(b) Gaussian: StabLASSO
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(c) Gaussian: Rates
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(d) Bernoulli: GRaFo
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(e) Bernoulli: StabLASSO
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(f) Bernoulli: Rates
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(g) Ising: GRaFo
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(h) Ising: StabLASSO
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(i) Ising: Rates

Figure 2: The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 100.
Their true CIGs have 58, 58 and 182 edges, respectively. The first two columns report
the observed number of true and false positives (“o”) relative to the bound in (2) for the
expected number E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively,
averaged over 50 simulations. The third column reports the averaged true and false positive
rates of GRaFo and StabLASSO relative to the performance of their “raw” counterparts
without Stability Selection.
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Gaussian, Bernoulli, and Ising models, p = 200
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(a) Gaussian: GRaFo
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(b) Gaussian: StabLASSO
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(c) Gaussian: Rates
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(d) Bernoulli: GRaFo
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(e) Bernoulli: StabLASSO

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

● ● ●
● ● ●

● ●

●

GRaFo
Random Forests
StabLASSO
LASSO

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

(f) Bernoulli: Rates
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(g) Ising: GRaFo
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(h) Ising: StabLASSO
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(i) Ising: Rates

Figure 3: The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 200.
Their true CIGs have 334, 334 and 369 edges, respectively. The first two columns report
the observed number of true and false positives (“o”) relative to the bound in (2) for the
expected number E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively,
averaged over 50 simulations. The third column reports the averaged true and false positive
rates of GRaFo and StabLASSO relative to the performance of their “raw” counterparts
without Stability Selection.
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Multinomial and mixed-type models, p = 50
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(a) Multinomial: GRaFo
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(b) Multinomial:
(b) StabLASSO (-1/1)
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(c) Multinomial: Rates
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(d) Mixed: GRaFo
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(e) Mixed:
(b) StabLASSO (-1/1)
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(f) Mixed: Rates

Figure 4: The rows correspond to the multinomial and mixed-type model with p = 50.
Their true CIGs both have 16 edges. The first two columns report the observed number
of true and false positives (“o”) relative to the bound in (2) for the expected number
E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively, averaged over 50
simulations. The third column reports the averaged true and false positive rates of GRaFo
and StabLASSO relative to the performance of their “raw” counterparts without Stability
Selection.
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Multinomial and mixed-type models, p = 100
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(a) Multinomial: GRaFo
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(b) Multinomial:
(b) StabLASSO (-1/1)
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(c) Multinomial: Rates
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(d) Mixed: GRaFo
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(e) Mixed:
(b) StabLASSO (-1/1)
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(f) Mixed: Rates

Figure 5: The rows correspond to the multinomial and mixed-type model with p = 100.
Their true CIGs both have 58 edges. The first two columns report the observed number
of true and false positives (“o”) relative to the bound in (2) for the expected number
E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively, averaged over 50
simulations. The third column reports the averaged true and false positive rates of GRaFo
and StabLASSO relative to the performance of their “raw” counterparts without Stability
Selection.
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Multinomial and mixed-type models, p = 200
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(a) Multinomial: GRaFo
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(b) Multinomial:
(b) StabLASSO (-1/1)
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(c) Multinomial: Rates

0 5 10 15

20
40

60
80

10
0

●

●

●

●

●
●

● ● ● ●

]

]

]
]

] ] ] ] ] ]

False positives

Tr
ue

 p
os

iti
ve

s

(d) Mixed: GRaFo
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(e) Mixed:
(b) StabLASSO (-1/1)
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(f) Multinomial: Rates

Figure 6: The rows correspond to the multinomial and mixed-type model with p = 200.
Their true CIGs both have 334 edges. The first two columns report the observed number
of true and false positives (“o”) relative to the bound in (2) for the expected number
E[V ] of false positives (“]”) for GRaFo and StabLASSO, respectively, averaged over 50
simulations. The third column reports the averaged true and false positive rates of GRaFo
and StabLASSO relative to the performance of their “raw” counterparts without Stability
Selection.
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Gaussian with interaction effects p = 50, 100, and 200
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(a) Interaction, p = 50:
(a) GRaFo
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(b) Interaction, p = 50:
(b) StabLASSO
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(c) Interaction, p = 50:
(c) Rates
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(d) Interaction, p = 100:
(d) GRaFo
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(e) Interaction, p = 100:
(e) StabLASSO
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(f) Interaction, p = 100:
(e) Rates
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(g) Interaction, p = 200:
(f) GRaFo
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(h) Interaction, p = 200:
(h) StabLASSO
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(i) Interaction, p = 200:
(i) Rates

Figure 7: Gaussian model with interactions with p = 50, 100, and 200. Their true CIGs
have 16, 58, and 334 edges, respectively, with 1, 6, and 21 first-order interaction terms.
The first two columns report the observed number of true and false positives (“o”) relative
to the bound in (2) for the expected number E[V ] of false positives (“]”), respectively,
averaged over 50 simulations. The third column reports the averaged true and false positive
rates of GRaFo and StabLASSO relative to the performance of their “raw” counterparts
without Stability Selection.
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4.5. Simulation Results: Gaussian with Nonlinear Effects335

For p ∈ {50,100,200} variables and samples of size n = 100, each336

graph in Figure 8 was averaged over 50 repetitions. Here, GRaFo337

clearly outperforms StabLASSO in terms of true positives for all338

considered p. However, for GRaFo the number of false positives is339

not controlled by a small bound on E[V ] anymore for p > 50, which is340

especially apparent in the case where p = 200. For StabLASSO there341

seems to be a similar behavior, but only for p = 200 the number of342

false positives clearly violates E[V ]. The “raw” Random Forests343

and LASSO estimates show very similar results to their Stability344

Selection counterparts. Note that the signal has been amplified by345

a factor of 5 to achieve comparable performance of the estimation346

procedures to the linear Gaussian setting.347

4.6. Simulation Results: Mixed-Setting with ML and StabCForests348

The first row of Figure 9 reports for p = 50 and n = 500 the re-349

sults of ML estimation, GRaFo, and StabLASSO, averaged over 50350

runs. Not surprising, both GRaFo and StabLASSO perform better351

than in the setting where n = 100, though StabLASSO remains at352

a clear disadvantage due to the unfavorable dichotomization. On353

the other hand, the performance of GRaFo (and also its “raw”354

Random Forests counterpart) is on par with the ML estimation.355

Stability Selection was not applied to ML estimation due to the im-356

mense computational burden and thus no bounds on E[V ] could be357

specified. However, for both GRaFo and StabLASSO we find that358

the number of false positives are typically well below the specified359

bounds.360

The second and third row of Figure 9 report the performance of361

StabcForests and GRaFo for p = 50 and p = 100 with n = 100, averaged362

over 50 runs. The GRaFo results from above are reproduced for363

better readability. We find that both GRaFo and StabcForests364

show very similar results. In the first two columns we see that365

GRaFo seems to perform somewhat better for very small bounds366

on E[V ]. The performance of the two “raw” methods is very similar367

to their stable counterparts.368

The computational burden of StabcForests is much larger than369

for GRaFo and amounts to roughly 2 hours for p = 50 and roughly370

6 hours for p = 100. Also note that the reported results within371
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Gaussian with nonlinear effects p = 50, 100, and 200
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(a) Nonlinear, p = 50:
(a) GRaFo
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(b) Nonlinear, p = 50:
(b) StabLASSO
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(c) Nonlinear, p = 50:
(c) Rates
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(d) Nonlinear, p = 100:
(d) GRaFo
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(e) Nonlinear, p = 100:
(e) StabLASSO
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(f) Nonlinear, p = 100:
(f) Rates
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(g) Nonlinear, p = 200:
(g) GRaFo
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(h) Nonlinear, p = 200:
(h) StabLASSO
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(i) Nonlinear, p = 200:
(i) Rates

Figure 8: The rows correspond to the Gaussian with nonlinear associations with p = 50,
100, and 200. Their true CIGs have 16, 58, and 334 edges, respectively. The first two
columns report the observed number of true and false positives (“o”) relative to the bound
in (2) for the expected number E[V ] of false positives (“]”) for GRaFo and StabLASSO,
respectively, averaged over 50 simulations. The third column reports the averaged true
and false positive rates of GRaFo and StabLASSO relative to the performance of their
“raw” counterparts without Stability Selection.
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the Conditional Forests framework use the marginal permutation372

importance due to the very heavy computational burden of the373

conditional variable importance.374

5. Functional Health in the Swiss General Population375

5.1. The Importance of Functional Health376

According to the World Health Organization’s (WHO) new framework of377

the International Classification of Functioning, Disability and Health (ICF;378

cf., WHO, 2001) the lived experience of health (Stucki et al., 2008) can379

be structured in experiences related to body functions and structures as380

well as to activity and participation in society. All of these are, in turn,381

influenced by a variety of so-called personal factors such as gender, income,382

or age and environmental factors including individual social relations and383

supports as well as properties of larger macro social systems such as the384

economy (see Figure 10). Also, the WHO and The World Bank recommend385

in their recent World Report on Disability (2011) that functional health386

state descriptors are analyzed in conjunction with other health outcomes and,387

particularly, that more research is conducted on “[...] the interactions among388

environmental factors, health conditions, and disability [...]” (p. 267 WHO389

and The World Bank, 2011). Under these prerequisites it is of interest which390

variables are conditionally dependent on each other. For instance, “Does the391

income distribution affect participation, conditional on known impairments,392

environmental, and personal factors?”.393

5.2. Study Population394

We use GRaFo for a secondary analysis of cross-sectional observational395

data on functional health from the Swiss Health Survey (SHS) in 2007. Data396

were obtained from the Federal Statistics Office of Switzerland. The original397

study was based on a stratified random sample of all private Swiss households398

with fixed line telephones. Within each household one household member399

aged 15 or older was randomly selected. The survey was completed by a400

total of 18760 persons, corresponding to a participation rate of 66 percent401

(Graf, 2010). The mean age of study participants was 49.6 years (±18.5).402

The data were mostly collected with computer assisted telephone interviews.403

Further information is available elsewhere (Storni, 2011).404
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Mixed setting with ML and StabcForests with p = 50, 100, and 200
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(a) Mixed, p = 50, n = 500:
(a) GRaFo
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(b) Mixed, p = 50, n = 500:
(b) StabLASSO

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
● ● ● ● ● ● ● ● ●

●

Maximum Likelihood
GRaFo
Random Forests
StabLASSO
LASSO

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

(c) Mixed, p = 50, n = 500:
(c) Rates
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(d) Mixed, p = 50, n = 100:
(d) GRaFo
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(e) Mixed, p = 50, n = 100:
(e) StabcForests
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(f) Mixed, p = 50, n = 100:
(f) Rates
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(g) Mix., p = 100, n = 100:
(g) GRaFo
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(h) Mix., p = 100, n = 100:
(h) StabcForests
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(i) Mix., p = 100, n = 100:
(i) Rates

Figure 9: The rows correspond to applications of ML and StabcForests to data from the
mixed model with varying p and n. For p = 50 (p = 100), the true CIG has 16 (58) edges.
The first two columns report the observed number of true and false positives (“o”) relative
to the bound in (2) for the expected number E[V ] of false positives (“]”) for GRaFo and
StabLASSO or StabcForests, respectively, averaged over 50 simulations. The third column
reports the averaged true and false positive rates.25



Health condition

(disorder or disease)
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Figure 10: The International Classification of Functioning, Disability and Health (ICF)
model relates aspects of human functioning and provides a common language for practi-
tioners.
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5.3. Variables405

The SHS included various information on symptoms (in particular pain),406

impairments, and activity limitations. Since the respective items were some-407

times nominal, sometimes ordinal, and sometimes (e.g. body mass index)408

metric, we dichotomized each item so that 1 was indicative of having any409

kind of problem. As overall summary scores on functioning and disability410

were not recommendable (Reinhardt et al., 2010), we followed the framework411

of the WHO’s biopsychosocial model of health, outlined in the ICF (WHO,412

2001, see Figure 10), and other theoretical considerations (WHO and The413

World Bank, 2011; Reinhardt et al., 2010) in constructing sum indices (see414

Table 2). The plausibility of all indices was checked using the Stata 11 con-415

firmatory factor analysis module confa (Kolenikov, 2009). In each case the416

index construction was tested and the null hypothesis of a diagonal structure417

of the covariance matrix rejected.418

We created a dummy variable for labor market participation restrictions419

such that 1 identified persons who gave up work, reduced the number of420

working hours, or changed jobs because of health reasons. We also created a421

dummy variable for participation in leisure physical activity (LPA) differen-422

tiating between people participating in leisure activities leading to sweating423

at least once a week and those who do not. General health perception was424

measured with the following question and answer options: “How would you425

rate your health in general? Very good, good, fair, poor, or very poor?”.426

We further included indicators of socio-economic status (SES) in our anal-427

ysis: equivalence household income, years of formal education, employment428

status, and migration background (foreign origin of at least one parent). On429

the macro- or cantonal-level we obtained information on the Swiss counties’430

(cantons) gross domestic products (GDP), Gini coefficients, and crime rates431

for 2006. Moreover, we considered information on gender, age, marital sta-432

tus (being married), alcohol consumption (in grams per day), and current433

smoking (yes/no).434

Of these, in total, 20 mixed-type variables (see Table 3), income had435

the highest number of missing values with roughly 6 percent. Overall, less436

than 0.85 percent of replies were missing corresponding to 2687 cases with437

one or more missing values. To assess their effect, we estimated the CIG438

once with casewise deletion and once with imputation of missing values with439

the missForest procedure (Stekhoven and Bühlmann, 2011) available in R.440

An alternative would be to use surrogate splits, which may be particularly441
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Figure 11: Conditional independence graph of the p = 20 variables (nodes) remaining after
construction of indices based on the 2007 Swiss Health Survey estimated with GRaFo.
Edges were selected with respect to an upper bound of 5 on the expected number of false
positives, see formula (2). Five nodes (social network utilization, migration background,
smoker, work restriction, and LPA) were isolated (no edges) and thus neglected.

feasible if the speed of the imputation method is of importance (Hapfelmeier442

et al., 2012).443

5.4. Research Hypothesis444

From the WHO’s ICF model (WHO, 2001, see Figure 10), we hypothe-445

sized that all variables on functional and general health perception, and all446

variables on social status, networks, and supports were connected via paths447

within the same component of the CIG.448

5.5. Findings449

Figure 11 shows the resulting graph from our application of GRaFo to the450

(non-imputed) data on functional health from the SHS with casewise deletion451

of missing values regularized for a bound (as in formula (2)) for an expected452

number of false positives E[V ] ≤ 5. The selected edge sets for the imputed453

and casewise deleted data were quite similar for various bounds on E[V ] and454

even identical for E[V ] ≤ 5 (not shown). In the following, we thus focus455
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Construct Variable specification

Impairment Problems with. . .
. . .vision
. . .hearing
. . .speaking
. . .body mass index (i.e. over 30 or under 16)
. . .urinary incontinence
. . .defecation
. . .feeling weak, tired, or a lack of energy
. . .sleeping
. . .tachycardia
Range of sum index: 0-9

Pain Pain in. . .
. . .head
. . .chest
. . .stomach
. . .back
. . .hands
. . .joints
Range of sum index: 0-6

Activity & Problems with independently. . .
participation . . .walking
limitation . . .eating

. . .getting up from bed or chair

. . .dressing

. . .using the toilet

. . .taking a shower or bath

. . .preparing meals

. . .using a telephone

. . .doing the laundry

. . .caring for finances/accounting

. . .using public transport

. . .doing major household tasks

. . .doing shopping
Range of sum index: 0-13

Social support Having. . .
. . .no feelings of loneliness
. . .no desire to turn to someone
. . .at least one supportive family member
. . .someone to turn to
Range of sum index: 0-4

Social network utilization At least weekly. . .
. . .visits from family
. . .phone calls with family
. . .visits from friends
. . .phone calls with friends
. . .participation in clubs/associations/parties
Range of sum index: 0-5

Table 2: Construction rules of sum indices for functioning (pain, impairment, activity
and participation limitation) and social integration (social support and social network
utilization) from 37 dichotomous (yes=1/no=0) variables.
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Type Variable % Missing

> 2 categories Impairment index 5.92
Pain index 0.37
Activity limitation index 0.69
Social support index 5.84
Social network utilization index 2.32
General health perception 0.05

Dichotomous Male 0.00
Married 0.09
Paid work 0.03
Migration background 4.73
Smoker 0.07
Work restriction 0.00
Leisure physical activity 0.00

Continuous Age 0.00
Years of formal education 0.07
Income 5.94
Alcohol consumption (in grams per day) 2.59
Gross domestic product 0.00
Gini coefficient 0.00
Crime rate 0.00

Table 3: List of all 20 variables used in the CIG estimation, their type, and their percentage
of missing values.
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on the CIG derived from the complete observations remaining after casewise456

deletion of missing values. As the data contains mixed-type variables we457

did not perform a similar analysis with the LASSO (clearly non-favorable458

dichotomization was used in the simulations in Section 4.3).459

The resulting edges for E[V ] ≤ 1 depict relatively obvious associations460

known from everyday observations. Interestingly, general health perception461

is conditionally dependent on activity limitation but conditionally indepen-462

dent of impairment and pain. In the larger graph for E[V ] ≤ 5, one sees that463

general health perception, impairments, and pain are connected through a464

path of several environmental and personal factors such as social support,465

being married, age, etc. That implies, for instance, that we do not need466

information on impairment to predict general health perception if we have467

information on activity limitation and the remaining predictors, whereas ac-468

tivity limitation is an essential predictor of general health perception even if469

information on all the remaining predictors is provided. For instance, a per-470

son with a spinal cord injury who has no activity limitation because of social471

and technological supports, could thus still report good health. This finding472

is supported by other sources reporting that many people with disabilities473

do not consider themselves to be unhealthy (WHO and The World Bank,474

2011; Watson, 2002). In the 2007-2008 Australian National Health Survey,475

40 percent of people with a severe or profound impairment rated their health476

as good, very good, or excellent (Australian Bureau of Statistics, 2009).477

As regards our hypothesis derived from the ICF model (WHO, 2001),478

we can confirm that the bulk of individual level variables form one com-479

ponent and support the biopsychosocial model of health: Functional and480

general health influence each other and are connected with a variety of en-481

vironmental and personal factors. However, not all candidate personal and482

environmental factors were related in our study. This may be due to our483

conservative upper bound on the error that is likely to favor false negatives,484

i.e. missing edges. There may also be an issue with our selection of variables485

that was restricted by the choices of the original survey team. In particular,486

macro-level variables pertaining information about the counties, in which the487

individuals are nested, form a second component. It may be that their effect488

is already contained in the individual-level variables, for example paid work.489

Five variables do not appear in the graph entirely: social network utilization,490

migration background, smoker, work restriction, and LPA. If we remove the491

three macro-level variables GDP, Gini, and crime rate from the model, the492

connectivity of the individual-level component does not change. Instead, the493
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two variables migration background and social network utilization are now494

present as a separate component (not shown).495

Unfortunately, lack of information on the directions of relationships is a496

weakness of CIGs. Also, condition (A) of Theorem 1 and the exchangeability497

condition have likely been violated. One disadvantage of the randomForest498

implementation is the inability to model continuous variables with < 6 unique499

values, which may oftentimes be an issue for the sum indices in combination500

with subsampling. Consequently, we chose to model them as categorical501

variables. Regardless, given the high face validity of the findings and the502

achievement of error control in the mixed setting for small p in Section 4.3,503

the results seem satisfactory.504

The runtime of GRaFo depends also on n, even if p is small. Hence,505

estimation of the SHS graph was executed in parallel on 10 cores of the506

BRUTUS cluster with a runtime of roughly 8 hours.507

6. Modeling Neurodevelopment in Children Experiencing Open-508

Heart Surgery509

Here we demonstrate an application of GRaFo to a research510

question, where p is much larger than n. It is thus of particular511

interest, whether GRaFo can suggest meaningful associations or512

tends to produce seemingly spurious associations.513

6.1. Neurodevelopment after Open-Heart Surgery514

In children with complex congenital heart disease (CHD) neurological and515

developmental alterations are common (Bellinger et al., 2003; Snookes et al.,516

2010; Ballweg et al., 2007). The observed cognitive, behavioral, and motor517

deficits can significantly impact daily routine and educational perspectives518

and lead to a high rate of special schooling and supportive therapies in this519

population (von Rhein et al.; Hövels-Gürich et al., 2006, 2008). In severe520

congenital heart disease requiring open-heart surgery, factors can be further521

subdivided into pre-, peri-, and post-operative factors. One of the major522

limitations of studies on patient specific risk-factors (Ballweg et al., 2007;523

Hövels-Gürich et al., 2006, 2008), treatment and bypass protocols (Bellinger524

et al., 2003; Snookes et al., 2010), and post-operative complications (Bellinger525

et al., 2003; Snookes et al., 2010) is the inability to provide a full picture of the526

interplay of all potentially relevant risk-factors available in the data. Thus,527

understanding their common association structure is of large interest.528
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6.2. Study Population529

A group of 221 infants with a congenital heart disease that underwent530

open-heart surgery with full-flow cardiopulmonary bypass prior to their first531

birthday from a study of the Children Hospital Zurich from 2004 to 2008532

(von Rhein et al.). We restricted our sample to a more homogeneous sub-533

population of 34 infants suffering from trisomy 21 of whom 14 were male and534

31 caucasian.535

6.3. Variables536

In total, 133 variables were available for modeling. They can further537

be subdivided into 40 variables describing basic characteristics (e.g. birth538

parameters, family information), 10 variables characterizing a child’s neu-539

rodevelopment prior to surgery, 69 peri-operative factors (i.e. data on pre-540

operative, intra-operative, and post-operative course), 13 variables charac-541

terizing a child’s neurodevelopment 1 year post surgery, and 1 variable sum-542

marizing quality of life based on the TAPQOL questionnaire (TNO, 2004).543

To ease interpretation, we focus in Table 4 on the 29 variables which had544

at least one adjacent node in the resulting graph which we discuss below.545

These variables are of mixed-type, with 23 continuous variables and 6 factors546

with more than 2 levels.547

Outcome-variables of primary interest are the Bayley score for motor548

development and the Bayley score for cognitive development (Bayley, 1993).549

Both scores were assessed at one year of age.550

In total, 3.4 percent of the data were missing, ranging from 87 completely551

observed variables to 3 variables with 11 missing observations (two Apgar552

score variables (see also Apgar, 1953) and the child’s head circumference553

at birth (not in graph)). Case-wise exclusion of children with missing values554

seems infeasible as this would result in the loss of 26 children. Data were thus555

imputed using the missForest procedure (Stekhoven and Bühlmann, 2011).556

6.4. Objective557

To identify risk-factors associated with the cognitive and motor devel-558

opment of infants that have undergone open-heart surgery in the first 12559

months after birth due to a congenital heart disease using GRaFo.560

Due to the large number of variables, many methods of analysis561

(such as bivariate correlations) may be prone to yield various spu-562

rious associations. It is here thus also of interest to demonstrate563

that, whenever GRaFo suggests an association, it tends to have564
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Scale Group Variable Missing

cont birth/family Apgar score 5 mins 11
cont birth/family Apgar score 1 mins 11
cont birth/family Apgar score 10 mins 10
cont birth/family birth weight 1
cont birth/family gestational age 0
cont birth/family birth length 1
cont birth/family father age 1
cont birth/family mother age 0
> 2 birth/family father school education 2
> 2 birth/family father professional education 2
cont birth/family socio economic status 1
> 2 birth/family mother school education 1
> 2 birth/family mother number pregnancies 1
> 2 birth/family mother number births gestational age > 24 weeks 1
cont peri-operative time aorta occlusion 0
> 2 peri-operative operation risk 0
cont peri-operative lactate max during surgery 1
cont peri-operative lactate max 24h post surgery 0
cont peri-operative age at surgery 0
cont peri-operative lowest SO2 during surgery 0
cont peri-operative lowest SO2 24h post surgery 0
cont peri-operative length at surgery 0
cont peri-operative weight at surgery 0
cont peri-operative head circumference at surgery 0
cont 1 year post surgery weight at 1 year 5
cont 1 year post surgery length at 1 year 5
cont 1 year post surgery head circumference at 1 year 5
cont 1 year post surgery Bayley motor score 5
cont 1 year post surgery Bayley cognitive score 6

Table 4: List of all 29 variables which appear in the graph, their scale type (> 2 for
categorical; cont. for continuous) , variable group, and their percentage of missing
values.
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a high face validity (which is judged by the collaborating health565

professionals).566

6.5. Findings567

For an upper bound of 5 on the expected number of false positives E[V ]568

we find that the Balyey scores for motor and cognitive development are only569

associated with each other, but not with any other node in the graph (con-570

ditional the remainder) in Figure 12. We do, however, find 10 small clusters571

of high face-validity. For example, the age of each child’s father and mother572

form a common cluster. Likewise, the children’s Apgar score after 1 minute573

is connected with the Apgar score after 5 minutes. The latter furthermore574

connects with the Apgar score after 10 minutes. It thus seems that GRaFo575

manages to identify many edges which appear intuitively correct, but it fails576

to provide new insights into the association structure of the Bayley scores.577

On the other hand, no apparent “odd” associatons were suggested.578

This result mirrors current knowledge about the neurodevelopment of in-579

fants after open heart surgery: genetic defects (Bellinger et al., 2003; Snookes580

et al., 2010; Ballweg et al., 2007) and ethnicity (Ballweg et al., 2007) have581

been described as relevant risk-factors for adverse neurodevelopment. As we582

mostly worked with caucasian children, all of whom have trisomy 21, these583

factors have already been controlled for by the design. Even if we increase584

the upper bound on E[V ] to 50 we still cannot find any additional variables585

connected to the Bayley scores. The plausibility of the other observed clus-586

ters would thus suggest, that no stable associations with the Bayley scores587

can be identified using GRaFo.588

However, potential bias induced by the imputation method which also589

utilizes Random Forests cannot be excluded. For example, all Apgar scores590

showed a large number of missing values. The identified cluster may thus591

also be an artifact of the missing value imputation. Furthermore, our choice592

of variables was determined by the original study design. Also, we cannot593

guarantee that the exchangeability assumption (Meinshausen and Bühlmann,594

2010) and assumption (A) from Theorem 1 hold.595

The small number of children (n ≪ p) allowed to run this analysis on596

an AMD Athlon 64 X2 5600+ PC with 6 GB of memory in just under 14597

minutes.598
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Figure 12: The figure shows the conditional independence graph of children with trisomy
21 experiencing open-heart surgery. The reported p = 29 variables (nodes) have at least
one adjacent node for an upper bound of 5 on the expected number of false positives E[V ].
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7. Conclusion599

We propose GRaFo (Graphical Random Forests) performed satisfactory,600

mostly on par or superior to StabLASSO, StabcForests, LASSO, Condi-601

tional Forests, Random Forests, and ML estimation. Error control of602

false positive edges could be achieved in all but the mixed-type simulation603

with p = 200 and the nonlinear Gaussian setting with p ≥ 100. Viola-604

tion of assumption (A) in Theorem 1 and of the exchangeability condition605

might be responsible for this behavior. In contrast, in most of the other606

settings GRaFo was very conservative and observed false positive edges were607

well below their expected upper bound. The Ising model, the sole model608

not based on DAGs, was particularly hard for both GRaFo and StabLASSO609

resulting in few true positives if error bounds were chosen very small.610

Results in the Gaussian setting with interactions were very sim-611

ilar to the main effects Gaussian setting, which is likely due to the612

small number of interactions in our simulation model. On the con-613

trary, GRaFo shows a clear gain over StabLASSO in the nonlinear614

setting, where half of the associations were nonlinear in nature.615

Poor results for the LASSO in the multinomial and mixed case, where616

we need dichotomization, may be improved by feasible modifications of the617

LASSO, such as an extension of the group LASSO (Meier et al., 2008) to618

multinomial responses (Dahinden et al., 2010). However, penalization if both619

discrete and continuous variables are included is not a straightforward task620

(including the issue of scaling).621

The ML results indicate that both GRaFo and StabcForests622

perform very well in the mixed setting, though the computational623

cost of StabcForests notably exceeds the cost of GRaFo. Both624

Forests-based algorithms used marginal permutation importance625

as the conditional permutation importance turned out impractical626

due to its high computational cost.627

The Swiss Health Survey graph consists of an individual- and a macro-628

level variable cluster which were highly stable with respect to the way of629

handling missing values. Exclusion of the macro-level cluster did not affect630

the individual-level cluster. For a small error bound, our hypothesis that631

all factors should connect could not be fully confirmed, though a strong632

tendency toward the ICF’s biopsychosocial model of health was evident in633

the individual-level cluster.634

The children hospital graph consists of many clusters of high face-validity.635
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We believe this emphasizes GRaFo’s potential to isolate true and636

stable associations. However, we failed to identify any new potential risk637

factors that may help to explain adverse neurodevelopment (since no edges638

connect to the corresponding outcome measures). The known risk factors639

ethnicity and genetic defects were controlled for by the design. This may640

be a consequence of the available pool of variables. Also, it is641

imaginable, that some associations are only of importance for a642

sub-group of the study. In this case, they would appear to be643

instable to GRaFo and consequently not be reported.644

8. Proof of Theorem 1645

Proof: We know that Xj ⊥⊥Xi∣X ∖ {Xj,Xi} is equivalent to

P[Xj ≤ xj ∣{xh;h ≠ j}] = P[Xj ≤ xj ∣{xh;h ≠ j, i}] (4)

for all realizations xj of Xj and {xh;h ≠ j} of X ∖ {Xj}. Due to assumption
(A) we can rewrite (4):

Fj(xj ∣mj({xh;h ≠ j})) = Fj(xj ∣mj({xh;h ≠ j, i})) (5)

for all xj and all {xh;h ≠ j}. But (5) is equivalent to

mj({xh;h ≠ j}) =mj({xh;h ≠ j, i}) (6)

for all {xh;h ≠ j}. This completes the proof.646

647
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