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Abstract

Penalized generalized estimating equations with Elastic Net or L2-Smoothly
Clipped Absolute Deviation penalization are proposed to simultaneously select
the most important variables and estimate their effects for longitudinal Gaus-
sian data when multicollinearity is present. The method is able to consistently
select and estimate the main effects even when strong correlations are present.
In addition, the potential pitfall of time-dependent covariates is clarified. Both
asymptotic theory and simulation results reveal the effectiveness of penalization
as a data mining tool for longitudinal data, especially when a large number of
variables is present. The method is illustrated by mining for the main determi-
nants of life expectancy in Europe.

Keywords: Covariate selection, Generalized estimating equations,
Longitudinal data, Multicollinearity, Penalization, Time-dependent covariates

1. Introduction

Longitudinal data appear frequently in biomedical applications. Researchers
are often confronted with the problem of determining the impact of different
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covariates on a response. Correct inference can be obtained by building an
appropriate longitudinal model. Molenberghs and Verbeke (2005) distinguish
three types of model families: marginal models, conditional models and subject-
specific models. After the choice of the model family, an optimal set of predictors
has to be selected. This can be a tedious task due to a large number of potential
covariates. Including irrelevant covariates leads to inefficient inference. There-
fore covariate selection is an important part of longitudinal model building,
which is the main focus of this paper.

Variable selection in both the mixed model as a subject-specific model and
generalized estimating equations as a marginal model will be briefly reviewed
before turning to penalization methods within the generalized estimating equa-
tions framework.

Within the mixed model framework, Wu (2009) advised using significance
testing or information criteria such as the Akaike information criterion or the
Bayesian information criterion for the selection of fixed effects. Information cri-
teria have been further adapted to select both random and fixed effects in Jiang
and Liu (2004) and Vaida and Blanchard (2005). Liu et al. (1999) generalized
the idea of cross-validation to mixed models. When the number of covariates be-
comes large, employing a stepwise search can reduce the computational burden
for the selection techniques above. Recently, Jiang et al. (2008) have suggested
fence methods to put up a barrier between correct and incorrect mixed models.

In this paper we choose generalized estimating equations (GEE, Liang and
Zeger, 1986) as our inference framework instead of generalized linear mixed
models (GLMM). The GEE approach yields population averaged effects by only
specifying the first two moments of the outcome distribution. Its robustness
against variance structure misspecification makes the GEE method well suited
for our purpose of mean structure selection. Additionally, the problem of time-
dependent covariates can be more easily clarified in the GEE context. The
results provided in this paper are generalizable to linear mixed models as well,
however this is not addressed here.

Despite the focus of GEE on mean structure estimation, appropriate covari-
ate selection techniques are not well developed in this context. The standard
practice for GEE model building is stepwise selection based on Wald-type tests
(see for instance Diggle et al., 2002). More recently some general variable se-
lection techniques have been adapted to the GEE framework. Pan (2001a)
generalized the AIC to the GEE context based on the working independence
assumption. Cantoni et al. (2005) suggested selection based on adequacy of
prediction as measured by an adapted version of Mallow’s Cp. In addition to
these direct methods, more computationally intensive methods have been ex-
plored. Cantoni et al. (2007) combined cross-validation with a Markov Chain
Monte Carlo based search. Alternatively, Pan (2001b) proposed minimizing a
bootstrap smoothed cross-validation estimate of the expected predictive bias.

However, all of these methods lack the ability to properly deal with a large
number of covariates. Because of the discrete nature of these selection methods,
the resulting estimator can become instable (Breiman, 1996). Moreover, com-
plete subset comparison becomes computationally unfeasible when too many
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covariates are present, encouraging the use of a stepwise search. The gain in
computation time by stepwise procedures comes at the price of suboptimal pre-
diction performance and even higher instability.

In this paper we revisit the use of penalization within the GEE context to
both reduce the computational burden and tackle the problem of instability.
Indeed in ordinary regression and classification problems, penalization methods
are well suited and often used for the task of variable selection and regulariza-
tion. The Least Adaptive Shrinkage and Selection Operator (LASSO, Tibshi-
rani, 1996), for example, is a penalization method which achieves both subset
selection and parameter shrinkage. The continuous nature of the shrinkage leads
to stable selection. The LASSO transforms the dimensionality of the subset se-
lection problem into the selection of a single continuous tuning parameter. A
major disadvantage of the LASSO is the potentially large bias induced by its
shrinkage effect. The Smoothly Clipped Absolute Deviation penalty (SCAD,
Fan and Li 2001) is an adaptation to the LASSO which avoids unnecessary bias
by using a different rate of penalization depending on the size of the coefficients.
Smaller coefficients are penalized in the same manner as with the LASSO, while
larger coefficients experience approximately no influence of the penalty.

Penalized generalized estimating equations (PGEE) were conceived by Fu
(2003) as a framework in which these penalty methods can be applied in the
longitudinal context. His asymptotic results were concentrated on bridge pe-
nalization (Frank and Friedman, 1993; Fu, 1998). Dziak (2006) and Dziak and
Li (2007) extended this approach by using the SCAD penalty function. Even
though their simulation studies display good performance of SCAD penalization
for binomial data, we argue in Section 3 that their asymptotic results are limited
to the Gaussian setting. Recently, Wang et al. (2011) have properly underpinned
the SCAD penalized GEE with asymptotic theory for a response coming from
the exponential family. Moreover their asymptotic results are constructed in a
high dimensional-framework, allowing for the number of covariates p to diverge
together with the number of clusters n. Assuming only that this divergence is
of the same order as the increase in the number of clusters (p = O(n)), whereas
in other aforementioned work p is assumed fixed.

In spite of the achievements of these authors, we believe that in mining
for important variables in longitudinal data, two issues are commonplace, often
overlooked and could be addressed better: multicollinearity and time-dependent
covariates.

In order to deal with the first issue, multicollinearity, we suggest combining a
sparse penalty function, namely the LASSO or the SCAD with a ridge part. In
ordinary regression the elastic net (EN, Zou and Hastie 2005) has been proposed
as the combination of the LASSO and ridge regression. Recently the SCAD
penalty has also been combined with a ridge part by Zeng (2009), an approach
to which we refer hence as the SCADL2 penalty. The inclusion of a ridge part,
adds the grouping effect to the resulting estimator. This means that highly
correlated variables tend to be selected or omitted as a group.

The second issue, time-dependent covariates is often overlooked in this type
of longitudinal analysis. Time dependence in generalized estimating equations
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will cause bias in the regression coefficients, unless either the cross-sectionallity
assumption is satisfied or the working independence matrix is used (Pepe and
Anderson, 1994; Pan et al., 2000; Diggle et al., 2002).

In this paper we study EN and SCADL2 penalization within the framework of
penalized generalized estimating equations with time-dependent covariates. We
show how these methods deal with selection under multicollinearity using both
asymptotic theory and simulation studies. We limit ourselves to the Gaussian
setting with a fixed number of covariates and present avenues for generalization
to the broader exponential family.

The remainder of the paper is organized as follows. In Section 2 we dis-
cuss the PGEE estimator with EN or SCADL2 penalty functions. As in Dziak
(2006) we establish theory by turning to the equivalent penalized generalized
least squares problem, but in contrast to Dziak (2006) argue that this is only
possible for the Gaussian Case. The SCADL2 penalty function is shown to be
convex under a condition on the tuning parameters. The equivalent penalized
least square problem together with the convexity of the penalty function allows
us to establish the grouping effect. We demonstrate how the local quadratic ap-
proximation algorithm (Fan and Li 2001) can be used to fit such a model. We
also address the problem of tuning parameter selection. In Section 3 we extend
the asymptotic results of Dziak (2006) to EN and SCADL2 penalty functions.
We show selection consistency, estimation consistency and asymptotic normal-
ity. The small sample performance is investigated through simulation studies
in Section 4. Section 5 presents a data example and in Section 6 we discuss our
findings.

2. Methodology

2.1. Penalized GEE

2.1.1. PGEE estimators

Consider a random sample of n subjects. Yit is the measured response for
subject i at time t with t = 1, . . . , Ti. Xit = (X1,it, . . . , Xp,it) is a vector
of p time-dependent covariates measured at the same time as the response.
Observations within a subject are correlated, observations of different subjects
are assumed independent.

Without loss of generality and to facilitate the use of penalization, we assume
the response to be scaled and the covariates to be standardized.

The cross-sectional influence of the covariates Xit on the response Yit is our
main interest. We assume Y is generated from a distribution in the exponential
family with E(Yit|Xit) = g−1(XT

it) , where g is a known link-function.
The regression coefficients β can be estimated by solving the PGEE (Fu,

2003):

SP (β) =

n∑
i=1

DT
i V
−1
i (Y i − µi)−N Ṗ (β) = 0. (1)
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With µi = g−1(XT
it); Di = Di(β) = ∂µi(β)/∂β; Vi = U

1/2
i W (α)U

1/2
i the

working covariance matrix; W (α) is the working correlation matrix, parameter-
ized with parameter vector α, Ui is a diagonal matrix with diagonal elements
Var(Yit|Xit); Ṗ (β) = ∂P (β)/∂β is the vector derivative of the penalty func-
tion. Fu (2003) proposed using the bridge penalty: P (β) = λ

∑
|βj |γ with

λ ≥ 1. The bridge penalty reduces to the LASSO when γ = 1 and to the
ridge penalty when γ = 2. Both have interesting properties. The first possesses
the sparsity property, which implies irrelevant parameters can be set to zero.
The second yields good predictive performance under multicollinearity by the
grouping effect, meaning coefficients of correlated covariates tend to be equal.
When γ is chosen between one and two, the grouping effect holds, the sparsity
property in contrast is lost.

We propose PGEE with a penalty function combining both the sparsity
property and the grouping effect:

P (β) = λ1PL1(β) + λ2PL2(β). (2)

2.1.2. Sparsity

PL1 is the part of the penalty function that provides sparsity to the resulting
estimator. We explore two possibilities. The LASSO, which uses the L1-norm,

PL1(β) =

p∑
j=1

|βj | ,

and the SCAD penalty:

PL1(β) =

p∑
j=1

fSCAD(|βj |);

fSCAD(θ) =

∫ θ

0

{
I (θ ≤ λ1) +

(aλ1 − θ)+
(a− 1)λ1

I(θ > λ1)

}
dθ,

with a > 2, I(·) the indicator function: I(c) = 1 if c is true and 0 if c is false;
x+ = xI(x > 0). Both provide the the sparsity property to the proposed PGEE
estimator, because these penalties are singular at the origin (see discussion on
sparsity in Fan and Li, 2001). The SCAD penalty behaves like the LASSO
for small coefficients, whereas the estimator remains approximately unbiased
for larger coefficients, because the penalty fSCAD(θ) is increasing with θ and
bounded by a constant.

2.1.3. Grouping effect

PL2(β) =
∑p
j=1 β

2
j is the ridge part of the penalty function. This provides

the grouping effect to the resulting estimator, meaning regression coefficients of
highly correlated variables tend to be equal (Zou and Hastie, 2005).

Theorem 1 (Grouping effect). If for all subjects i the observed covariate

vector xi,l = xi,k , with l, k ∈ {1, . . . , p}, then β̂l = β̂k, with β̂ = (β̂1, . . . , β̂p)
the solution of the PGEE (1) with EN or SCADL2 penalty.
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The grouping effect property is a direct consequence of the convexity of the
complete penalty function 2, this is satisfied if for the EN if λ2 > 0; for the
SCADL2 this requires λ2 >

1
2(a−1) . For a proof of the grouping effect we refer

to Appendix A.
In summary, we propose to use the EN (combination of LASSO and RIDGE)

and the SCADL2 (combination of SCAD and RIDGE) as the penalty in equation
(1).

2.1.4. Non-naive estimator

Zou and Hastie (2005) show empirically that the estimator in equation (1)
with penalty function (2) called the naive estimator can be improved by remov-
ing the bias caused by the ridge part. Penalization methods aim at improving
prediction performance at a cost of little extra bias for a lower variance. By do-
ing simulations we also observed, that a more beneficial bias-variance trade-off
can be realized by removing the ridge-shrinkage by multiplying with the ridge
shrinkage factor to get the non-naive PGEE estimator:

β̂non-naive = β̂naive ∗ (1 + λ2).

We will use this non-naive versus in simulation studies hence called the PGEE
estimator.

2.1.5. Time dependence

In Section 3 we will establish asymptotic properties of the PGEE. These
results are only valid if the underlying GEE estimator is consistent. The con-
sistency property of the GEE estimator relies on the estimating equation to
be unbiased: E (S(β)) = 0. Pepe and Anderson (1994) showed that when
time-dependent covariates are present, this is not satisfied unless either the full
covariate conditional mean (FCCM) assumption is satisfied

µit = E(Yit|Xit) = E(Yit|Xit Xij , j 6= t) (3)

or the identity working correlation matrix is used: W (α) = I.
Using the working independence matrix, which we propose, is a correct in-

ference tool to assess cross-sectional associations, if the FCCM-condition is not
met. No additional assumptions are required besides the implied mean structure
being correctly specified: µit = E(Yit|Xit). Nonetheless efficiency can be gained
by using all required correct lagged covariates with another working correlation
matrix.

2.2. Algorithm

Equation (1) can be solved with the local quadratic approximation (LQA)
algorithm of Fan and Li (2001). We start with an initial estimate β0 =
(β1,0, . . . , βp,0) close to the solution. We thereafter iterate the following al-
gorithm, whereby βt = (β1,t, . . . , βp,t) expresses the parameter estimate at each
iteration step t.
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STEP 1 (Remove small values):

If a βj,t is close to zero (closer than a predefined threshold), we set β̂j,t = 0
and remove these variables from the model.

STEP 2 (Quadratic approximation):

We approximate the derivative of the penalty Ṗ (β) =
(
Ṗ (|β1|), . . . , Ṗ (|βp|)

)
as:

Ṗ (|βj |) =
∂P (|βj |)
∂βj

=
∂P (|βj |)
∂ |βj |

sgn (βj) ≈
{
∂P (|βj,t|)
∂ |βj,t|

/
|βj,t|

}
βj . (4)

The penalized generalized estimating equation can hence be approximated
by a Taylor series expansion of the GEE part and the approximate derivative
of the penalty in (4):

SP (β) ≈ S(βt) +
∂S(βt)

∂β
(β − βt)−NU (βt)−NΣ (βt) (β − βt) ,

with

Σ (βt) = diag

{
∂P (|β1,t|)
∂ |β1,t|

, . . . ,
∂P (|βp,t|)
∂ |βp,t|

}
,

U(βt) = Σ(βt)βt.

STEP 3 (Beta update):
We update β as follows:

βt+1 = βt −
{
∂S(βt)

∂β
−NΣ (βt)

}−1
{S(βt)−NU (βt)} , t = 0, . . . (5)

We iterate through steps 1 to 3 until convergence. Convergence is reached
when the L2 norm of the parameter is smaller than a predefined small constant
c: ∥∥βt − βt−1∥∥2 < c.

Notice that omitting variables in this way, has a similar drawback as back-
ward selection: when during the iteration a parameter hits zero, it can no longer
be included into the model in further iterations. The smaller the threshold, the
less important this effect will be. Hunter and Li (2005) propose a class of
minorize-maximize (MM) algorithms of which the LQA algorithm is a special
case. By using a perturbed version of the LQA, the drawback of not escaping
zero can be avoided at the price of requiring more iterations until convergence.

A comparison of different possible algorithms falls outside the scope of this
paper. We have implemented the LQA algorithm for solving PGEE-problems
in the R-software. A version can be obtained from the authors upon request.
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2.3. Tuning parameter selection

Using a sparse penalization technique strongly reduces the dimensionality of
the covariate selection problem. Instead of comparing all subsets of variables,
only a limited number of tuning parameters have to be selected. In the case
of the EN penalty these are λ1 and λ2. In the case of the SCADL2 penalty an
additional tuning parameter a is involved. However, we fix a = 3.7 as proposed
by Fan and Li (2001). To select the remaining tuning parameters, it is useful
to reparametrize the penalty function (2) as follows:

P (β) = λ {αPL1(β) + (1− α)PL2(β)} , (6)

with α ∈ [0, 1] the control between sparsity and grouping effect and λ the amount
of penalization.

Cross-validation (CV) as proposed in Cantoni et al. (2007) can directly be
used to select the tuning parameters. The objective of cross-validation is to se-
lect these parameters such that a specific loss function of prediction is minimized
(PL), for which the prediction loss of cross-validation (PLCV ) is an estimator.

The PLCV is calculated by repeatedly splitting up the sample into a test
and a training set, fitting a model on the training set and calculating the PL on
the test set. We then average the results. Since we are working with repeated
measures, the splits should be taken on the subject level rather than on the
observation level. If the number of subjects is small, leave-one-subject-out-
cross-validation is a suitable choice. We use the approach proposed by Cantoni
et al. (2007):

PLCV =

n∑
i=1

(yi − ŷ
[−i]
i )TV −1i (yi − ŷ

[−i]
i )

Ti
, (7)

with ŷ
[−i]
i the vector of predicted responses of subject i in the model fitted

without this subject, Ti is the number of observations in subject i and Vi the
working covariance matrix. In practice the PLCV can be minimized by a grid
search. For λ it is convenient to work at a log scale. For α it is sufficient to
take a limited number of points within the [0, 1] interval. The standard error of
PLCV can be calculated and used to identify a set of plausible models with a
PLCV within one standard error of the optimal model.

When one wants to avoid the the computational burden of cross-validation,
quasi-generalized cross validation (QGCV) can be used (Fu, 2005). As CV,
QGCV attempts to minimize a PL by using an estimator: PLQGCV ,

PLQGCV =
Wdev(λ, α)

n {1− p(λ, α)/Ndf}
. (8)

The numerator in (8) is the weighted deviance:

Wdev(λ, α) =

n∑
i=1

rTi R
−1
i ri.
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It is based on the vector of deviance residuals ri of subject i. The longitudi-
nal structure is incorporated by the working correlation Ri. The denominator

in (8) is a correction for model complexity, with Ndf =
∑n
i=1

T 2
i

|Ri| the estimated

effective number of observations and |Ri| =
∑
ρij the sum of the elements of

the working correlation matrix Ri. The model complexity is incorporated by
an estimate of the effective number of parameters in the penalty model p(λ, α).
For details see Fu (2005).

Notice that in Fu’s approach a different prediction loss function is estimated,
based on weighted deviance residuals instead of weighted Pearson residuals. In
equation (7) the ordinary difference between observed and predicted response
could be replaced by the deviance residual as well, although this is not proposed
in Cantoni et al. (2007).

Even though cross-validation is computational intensive, we recommend us-
ing this approach instead of the QGCV, because the approximation of the de-
grees of freedom might not be good when using the working independence ma-
trix. Penalization paths provide an additional useful tool to explore variable
importance. The combination of cross-validation and penalization paths is il-
lustrated by a data example in Section 5.

3. Asymptotic theory

In this section, we establish the asymptotic properties for the naive PGEE
estimator, when the number of subjects n goes to infinity. These theorems and
their proofs are adopted from Dziak (2006). Asymptotic properties are derived
by turning to the equivalent penalized generalized least squares (PGLS) prob-
lem. (see Lemma 7 in Appendix B). This is only possible for the Gaussian case.
The reasoning behind the proofs together with a list of regularity conditions
required for these proves to hold, is provided in Appendix B. Collinearity, the
main context in which this type of penalization is useful, exerts no influence
on these asymptotic results, but if condition (3) is not satisfied. the working
independence correlation structure is a necessary condition for consistency to
hold.

Theorem 2 (
√
n-consistency). For the EN-penalty with λ1 = Op(n

−1/2) and
λ2 = Op(n

−1/2), or for the SCADL2-penalty with λ1 = op(1) and λ2 = Op(n
−1/2),

under normality and regularity conditions 1-4 in Appendix B. there exists a

sequence β̂n of solutions to the PGEE equation (1) such that
∥∥∥β̂n − β∥∥∥ =

Op(n
−1/2).

Theorem 2 indicates the asymptotic estimation consistency of the PGEE
estimator with EN or SCADL2 penalty when the number of subjects n goes to
infinity. This result holds if there exists a fixed true underlying vector of regres-
sion coefficients β. The difference in conditions on the tuning parameters for the
SCAD part on the one hand and the LASSO and ridge parts on the other can
be attributed to the difference in the derivative of the penalty function for the
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non-zero regression coefficients. In order to achieve
√
n-consistency this rate of

penalization must fade away at a high enough rate. Since the derivative of the
SCAD is zero for coefficients larger than aλ1, a moderate decrease in penaliza-
tion is sufficient. For asymptotic results of the SCAD penalty under a diverging
number of parameters we refer to Wang et al. (2011). Asymptotic theory in
the broader context of penalized estimating function has also been described
by Johnson et al. (2008), who included results on the EN as an approximate
zero-crossing.

The aim of our proposed PGEE estimator is not only to consistently estimate
the parameters of a regression model, but also to select the variables for that
model. In order to get more insight in the selection properties of this estimator,
we partition our vector of regression coefficients into two subgroups:

β = (βA,βN ),

with A = {j : βj 6= 0} the vector of indicators of non-zero coefficients, which
we want to retain in our model; with N = {j : βj = 0} the vector of indicators
of zero coefficients, which we want to omit from our model. We will establish
selection consistency in two steps. First we show that all active coefficients βA
are retained in Lemma 3. Second we establish conditions under which the zero
coefficients βN will be dropped in Lemma 4.

Lemma 3 (Sensitivity). Under the conditions in Theorem 2 there exists a
sequence β̂n such that the active coefficients are included in the model with

probability approaching one, i.e., Pr(∃j ∈ A : β̂j = 0) = o(1)

This follows directly from Theorem 2. We assume that βj is fixed. And take
some small ε > 0. Then:

Pr(∃j ∈ A : β̂j = 0) ≤ Pr(∃j ∈ A :
∣∣∣β̂j − βj∣∣∣ > ε) ≤ Pr(

∥∥∥β̂ − β∥∥∥2 > ε2) = o(1).

For the asymptotic estimator to be sparse, we need an additional condition
on the strength of tuning parameter λ1:

Nn−1/2λ1 →∞, (9)

as n→∞.
Let us assume the number of observations N grows proportionally with the

number of subjects n. It follows that (9) is in conflict with the conditions of
Theorem 2 for the EN, but not for the SCADL2.

Lemma 4 (Sparsity). For the SCADL2 penalty, under conditions in Theo-
rem 2 and condition (9) there exists a sequence β̂n of solutions such that β̂A is√
n-consistent for βA, and that β̂N = βN = 0.

Theorem 5 (Selection consistency). Under the conditions of Theorem 2 and
condition (9) the SCADL2 is asymptotically able to include the active set (Pr(∃j ∈
A : β̂j = 0) = o(1)) and to omit the non active set (β̂N = βN = 0).
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This follows from Lemma 3 and Lemma 4.

Theorem 6 (Asymptotic normality). Under the conditions of Theorem 2
there exist a sequence β̂ of solutions to equation (1) such that:

√
n
(
β̂A − βA

)
L→ N(0,Φ). (10)

For details on Φ, see Dziak (2006).
We notice this asymptotic normality proof allows us to derive standard er-

rors, and therefore to calculate p-values of Wald tests for parameter coefficients.
However, no standard errors are provided for the parameters put to zero. There-
fore we recommend using the bootstrap to obtain standard errors for all esti-
mates.

4. Simulation studies

4.1. Aims and setting

We compare the effect of penalization on selection and prediction perfor-
mance on simulated longitudinal data with multicollinearity and time-dependent
covariates, using different penalty functions (LASSO, RIDGE, EN, SCAD and
SCADL2). Two main settings will be investigated:

(1) In Section 4.2 we simulate from a cross-sectional longitudinal process
and fit a PGEE model with the same time-dependent covariates. In this setting
the FCCM-assumption (see equation (3)) is satisfied.

(2) In Section 4.3 we simulate from a process which includes lagged covari-
ates. The PGEE estimator is used to assess the implied cross-sectional associa-
tions between response and covariates. In both cases the working independence
matrix will be used. However this requirement could be relaxed in the first
setting.

In each case the selection performance will be expressed as the percentage of
correct and incorrect deletions. The prediction performance will be measured
by the model error (ME, Fan and Li, 2001):

ME(µ̂) = (β̂ − β)TE(XXT )(β̂ − β). (11)

The model error is the part of the prediction error which can be influenced
by the quality of the estimator µ̂. For a perfect estimator, this quantity is zero.
The tuning parameters for the different penalty models will be selected by leave
one subject out cross-validation.

4.2. Cross-sectional model

We simulated longitudinal datasets with n = 20 subjects, Ti = T = 5
observations per subject from the following longitudinal process:

Yit = XT
itβ + eit.
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Table 1: Cross-sectionality assumption satisfied. Comparison prediction error via the ME,
with Standard error (S.E.) and selection performance via ratio of correct deletions (C.D.) and
ratio of Incorrect deletions (I.D.) for 100 simulations. Tuning parameters are selected using
cross-validation, the median tuning parameters are displayed.

Penalty ME (S.E.) (λ, α) C.D. I.D.
GEE 0.098 (0.006) - 0.000 0.000
LASSO 0.095 (0.006) (0.041; 1.000) 0.347 0.000
RIDGE 0.096 (0.005) (0.010; 0.000) 0.013 0.000
EN 0.095 (0.005) (0.041; 0.500) 0.333 0.000
SCAD 0.084 (0.006) (0.079; 1.000) 0.630 0.000
SCADL2 0.081 (0.006) (0.170; 0.643) 0.650 0.002

Yit is the response for subject i at time t, β = (−1,−1, 1, 1, 0.5, 0, 0, 0)T ; ei =
(ei1, . . . , eiT )T multivariate normal with a first order autoregressive correlation
structure with ρ = corr(ej,it, ej,it+1) = 0.7. Xit ∼ N8(0,Σ); Σ is the correlation
structure of the covariates at each time point. We use the following structure:
corr(X1, X2) = 0.6; corr(X3, X4) = 0.3. All other correlations between X-
variables are set to zero.

Table 1 illustrates the impact of penalization on prediction and selection
performance. We notice only a small improvement in the ME by ridge, EN
or LASSO penalization. The selection performance of the LASSO is slightly
better than the EN, but still only removes about 35% of variables which should
be removed.

The SCAD in contrast strongly reduces the ME and achieves a good se-
lection, considering the small sample size. With the inclusion of an additional
ridge component, the SCADL2 accomplishes even a further reduction in the ME
and a better selection, although the convexity condition ((A.2) in Appendix A)
is not satisfied. Also in other settings, we have generally observed SCADL2 pe-
nalization to outperform the ordinary SCAD when collinearity is present, even
if condition (A.2) is not fulfilled.

The large difference in the ME and selection performance for the EN and
the LASSO on the one hand and the SCADL2 and the SCAD on the other, can
likely be attributed to the combination of estimation and selection consistency
(see Theorem 2 and 5) of the SCADL2 and the SCAD, which is lacking for the
EN and the LASSO.

4.3. Implied cross-sectional model

4.3.1. Data generation

We make two adaptations to the simulation study in Diggle et al. (2002).
First we increase the number of time-dependent covariates to twenty. Second
multicollinearity is introduced by imposing a correlation structure between the
covariates at each time point. The data is simulated from following process:{

Yit = XT
itγ1 +XT

it−1γ2 + bi + eit,

Xj,it = ρjXj,it−1 + εj,it, ∀j = 1, . . . , 20.
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Both response and covariates have a time-dependent structure. Where i is
the indicator of the subject, t is the time indicator, and j indicates the covariate.
Here eit ∼ N(0, 1), bi ∼ N(0, 1), εi0 ∼ N(0, 1), εj,it ∼ N(0, 1 − ρ2j ) for t > 0, all
mutually independent. Xit = (X1,it, . . . , X20,it) ∼ N20(0,Σ). The covariance
structure Σ = diag(Σ1,Σ1,Σ1, I11) has a block diagonal structure, with

Σ1 =

 1 0.2 0.5
0.3 1 0.4
0.5 0.4 1

 .
Notice that we consider two different types of dependence between the X-
variables. On the one hand, each covariate for each subject Xj,it follows its
own autoregressive time evolution. On the other hand, within each subject, at
each time point different covariates have a cross-sectional correlation character-
ized by their covariance structure Σ.

We look at two distinct scenarios:

• Scenario 1:{
γ1 = γ2 =

(
(2, 2, 2), (1, 1, 1), (0.1, 0.1, 0.1), 0, 0, . . .

)
,

ρj = 0.5,∀j = 1, . . . , 20.

• Scenario 2:{
γ1 = γ2 =

(
(1, 1, 1), (1, 1, 1), (0, 0, 0), 0, 0, . . .

)
,

ρ = (0.3, 0.3, 0.3, 0.6, 0.6, 0.6, 0.5, 0.5, . . .).

With ρ = (ρ1, . . . , ρ20).
For each scenario, we simulate 100 datasets with 20 subjects and 100 datasets

with 100 subjects.

4.3.2. Cross-sectional model

Suppose the objective is to assess the cross-sectional associations between Yit
and Xit. We therefore estimate the parameters of the implied cross-sectional
model:

E(Yit|Xit) = XT
itβ.

The properties of the multivariate normal distribution allow us to calculate the
coefficients β of this implied model:

β = γ1 + ρTγ1.

4.3.3. Simulation results

Table 2 summarizes different PGEE fits on the 100 simulated datasets for
each scenario. SCADL2 penalization yields for all scenarios the best prediction
performance of all PGEE estimators. The model error is strongly reduced by
using a sparse penalization technique (LASSO, EN, SCAD, SCADL2), especially
when only 20 subjects are available. Ridge penalization in contrast improves
the model error only modestly. For scenario 2 with 20 subjects, we see that the
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EN has a smaller model error than the SCAD. The beneficial grouping effect
more than compensates for the lack of unbiasedness of the EN in this example.
In general we observe the SCADL2 to outperform the SCAD and the EN when
strong multicollinearity is present.

In addition the selection performance of the SCADL2 is superior to that
of the EN or the LASSO. However, a trade-off between correct deletions and
incorrect deletions is observed. In Table 2 we see that ordinary GEE and ridge
penalization have sometimes a small percentage of deletions. This is due to the
algorithm (see Section 2.2), which includes a threshold term.

When we look at the relative bias, we observe the overall sample bias of the
first beta coefficient of the SCAD and SCADL2, not to be larger than that of
ordinary GEE. For the LASSO and the EN we notice a substantial negative
bias.

4.3.4. Extension to binomial data

If we apply the logit transformation to the mean structure of these two sce-
narios, we can use this quantity as a probability to simulate from the Bernoulli
distribution. We simulate data from following longitudinal process, which is a
generalized linear mixed model:

Xj,it = ρjXj,it−1 + εj,it, ∀j = 1, . . . , 20,

logit(pit) = XT
itγ1 +XT

it−1γ2 + bi,

Yit ∼ Bern(pit),

where i indicates the subject, t is the time indicator and j indicates the covariate.
The response Yit is generated from the Bernoulli distribution, where the success
probability pit is linked by the logit transform to a linear mean structure, with a
subject-specific effect bi ∼ N(0, 1). The covariate process is autoregressive, with
εi0 ∼ N(0, 1), Xit = (X1,it, . . . , X20,it) ∼ N20(0,Σ). The same scenarios as for
the Gaussian case were used. For details we refer to the web based supplement.

The results of the PGEE estimator based on the binomial distribution are
very similar to the ones we have displayed for the Gaussian case, indicating
the suitability of these penalties outside the Gaussian context. However the
improvement in the model error, even under optimal tuning are modest in com-
parison to the Gaussian case. For scenario 1 (100 subjects) the ordinary GEE
fit displayed a model error of 0.0877 whereas the best penalization method, the
SCADL2 had a model error of 0.0833. For more details on simulation results in
the non-Gaussian setting we refer to the supplementary material to this paper.

5. Determinants of female life expectancy in Europe

In health economics, identifying the most influential determinants of health-
outcomes is a major research topic. If observations are taken over time, and
the number of potential determinants is large, our proposed PGEE estimator
can facilitate the selection of the most important ones. Beutels et al. (7-10
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Table 2: Cross-sectionality assumption not satisfied. Comparison of the different penalty
functions on the basis of prediction performance (model error), selection performance (ratio
of correct deletions (C.D.) and ratio incorrect deletions(I.D)) and relative bias of the first coef-
ficient. Tuning parameters are selected using cross-validation, the median tuning parameters
are displayed.

Scenario 1, 20 subjects
Penalty ME (S.E.) (λ, α) C.D. I.D. Rel. Bias
GEE 6.489 (0.263) - 0.002 0.000 -0.103
LASSO 4.259 (0.215) (0.405; 1.000) 0.440 0.169 -0.158
RIDGE 5.593 (0.204) (0.092; 0.000) 0.002 0.001 -0.182
EN 4.144 (0.193) (0.405; 0.821) 0.392 0.144 -0.154
SCAD 4.541 (0.287) (0.425; 1.000) 0.549 0.216 -0.089
SCADL2 3.744 (0.198) (0.518; 0.786) 0.500 0.184 -0.088

Scenario 1, 100 subjects
GEE 0.942 (0.027) - 0.004 0.001 -0.021
LASSO 0.663 (0.029) (0.151: 1.000) 0.428 0.099 -0.047
RIDGE 0.934 (0.029) (0.013; 0.000) 0.011 0.001 -0.036
EN 0.681 (0.030) (0.193; 0.929) 0.417 0.097 -0.048
SCAD 0.445 (0.026) (0.287; 1.000) 0.657 0.154 -0.015
SCADL2 0.438 (0.025) (0.349; 0.857) 0.662 0.158 -0.019

Scenario 2, 20 subjects
GEE 3.018 (0.115) - 0.003 0.000 -0.058
LASSO 1.988 (0.100) (0.247; 1.000) 0.446 0.003 -0.274
RIDGE 2.463 (0.086) (0.092; 0.000) 0.006 0.000 -0.246
EN 1.884 (0.086) (0.316; 0.643) 0.383 0.002 -0.261
SCAD 2.280 (0.147) (0.287; 1.000) 0.494 0.023 -0.206
SCADL2 1.626 (0.102) (0.425; 0.643) 0.431 0.010 -0.202

Scenario 2, 100 subjects
GEE 0.456 (0.014) - 0.003 0.000 -0.020
LASSO 0.309 (0.014) (0.118; 1.000) 0.451 0.000 -0.080
RIDGE 0.449 (0.015) (0.021; 0.000) 0.006 0.000 -0.046
EN 0.317 (0.015) (0.151; 0.929) 0.441 0.000 -0.086
SCAD 0.161 (0.010) (0.235; 1.000) 0.736 0.000 -0.011
SCADL2 0.150 (0.009) (0.287; 0.857) 0.722 0.000 -0.029
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May 2011) for instance try to search for determinants of antibiotic consumption
between European countries and over time. We will use a subset of this original
dataset to search for determinants of female life expectancy. All available years
between 1999 and 2005 are used in our analysis, for the following 13 countries:
Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Italy,
the Netherlands, Spain, Sweden and the United Kingdom. The data availability
is summarized in Table C.5 in the Appendix.

The objective of this study is to find the most important determinants, which
could explain observed differences in female life expectancy at birth between
countries and over time. A set of 42 potential determinants, having a potential
direct or indirect effect on life expectancy, are included. These determinants
can be roughly structured into six groups: death rates such as the death rate
due to pneumonia; socio-economics such as GDP per capita and hours in a work
week; culture such as the four dimensions of Hofstede: Power distance index,
Individualism, Masculinity and Uncertainty avoidance; factors that character-
ize infectious disease preventions such vaccination coverage against pertussis;
organization of the health care system such as hospital beds and demographics
such as population density.

These different covariates are correlated, and vary over time. The ordinary
GEE estimator is unable to fit a full model, because of the limited number of
data points (44) compared to the number of covariates (42). We assess the
cross-sectional associations between response and covariates using the PGEE
estimator. Both covariates and response are standardized prior to analysis. We
employ PGEE with the penalty function parametrized as in equation (6). Leave-
one-subject-out-cross-validation is then performed on a grid of α and λ values.
For α the two extremes 0 and 1 are included. On this grid of tuning parameters
the minimum of the PLCV is selected for both the EN and the SCADL2. For the
EN, we find a PLCV = 0.0348 with a standard error of 0.0035. The SCADL2

outperforms the EN with a PLCV = 0.025, with a standard error of 0.0020. For
the EN, this minimum is found for the tuning parameters (α;λ) = (2.857E −
4); 3.393E − 4). The SCADL2 reaches its optimum at (α;λ) = (0.786; 0.0146).
In both cases this minimum was significantly different from the two extreme α
values. In Table 3 and 4 the standardized coefficients of both the EN and the
SCADL2 are reported. The EN selects 27 out of the 42, whereas the SCADL2

reduces this number further to 20. The order of the standardized coefficients
differs only slightly between EN and SCADL2.

For EN penalization, a shrinkage plot gives some insight into the impact of
the different variables on the response. Figure 1 displays the shrinkage paths of
the ten largest standardized coefficients at the selected fit. We keep α fixed and
observe the evolution of standardized coefficients if λ decreases. This shrinkage
plot indicates the sensitivity of the fit with respect to λ. If λ increases we see
that some variables are excluded from the model such as the percentage children
vaccinated against pertussis, whilst others increase their influence such as the
infants death.

The grouping effect implies that correlated variables are pulled towards each
other with increasing penalization. The coefficients of death rates due to is-
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Figure 1: EN plot: Standardized coefficients for the ten largest coefficients at optimal (α, λ)
combination, as a function of lambda. Lambda is indicated in reverse log-scale. The coeffi-
cients are numbered by their ordering of the EN-fit as in table 3
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chaemic heart disease and of death rate due to chronic illness, for instance,
seem to converge when more penalization is performed. Our simulation stud-
ies have shown that this property results in better estimation of the regression
parameters under multicollinearity, however no clear grouping structure can be
identified using these methods. The shrinkage paths can at most be indicative
for any grouping structure in the covariates.

The PGEE fit provided a selection of all main determinants of female life
expectancy in Europe, even in case of high correlation amongst the different
covariates. In this manner, six specific death rates (due to ischaemic hearth
disease; chronic diseases, pneumonia; cancer; bronchitis, asthma or emphysema;
overall infant mortality) turned out to be the ’big fish’ (Zou and Hastie, 2005)
correlated and all predictive for lower average female life expectancy. Besides
these identified death rates vaccination against pertussis, working hours per
week, level of education, relative humidity and birth rate were all predictive
for higher female life expectancy, while alcohol consumption and the percentage
of people who believe that most people can be trusted predicted lower average
female life expectancy. Penalized estimating equations can generally be applied
to identify determinants for health outcomes as illustrated by this case study.

6. Discussion

In this paper we addressed the problem of variable selection in longitudi-
nal data under multicollinearity and time-dependence. We proposed using the
PGEE estimator under working independence to identify the most important
cross-sectional associations in this context. In order to deal with potential mul-
ticollinearity, the use of a penalty function combining both the sparsity and
grouping effect was proposed, namely the EN or the SCADL2. We proved the
grouping effect as a consequence of the convexity of the penalty function and
established the conditions for the SCADL2 to be convex. An additional con-
sequence of this convexity is the avoidance of the multiple roots problem in
penalized GEE with the SCAD penalty, mentioned in Wang et al. (2011).

Asymptotic theory reveals that both the EN and the SCADL2 penalty func-
tions can achieve a consistent fit, however only the SCADL2 has the addi-
tional property of selection consistency. This is also reflected in our simula-
tion studies were the SCADL2 outperformed all other methods (ordinary GEE,
LASSO, ridge, EN, SCAD) with respect to prediction performance. Although
the SCADL2 displayed overall better prediction performance this might not al-
ways be the case. In practice we recommend exploring variable importance
using EN-paths and base final inference on the model selected (EN or SCADL2)
through on cross-validation.

Combining penalty functions has proven beneficial for selection and predic-
tion, however this requires the selection of additional tuning parameters. In our
data example we used cross-validation to select these parameters, which is com-
putationally intensive. Establishing appropriate information criteria is crucial
to the further development of penalty methods within GEE.
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Adaptive versions of the LASSO and the EN (Zou, 2006; Zou and Zhang,
2009) have not been considered as alternatives to the SCAD and the SCADL2

in this paper. In ordinary regression these penalty methods achieve selection
consistency by using adaptive weights to different coefficients within the penalty
function. These weights are the inverse of an initial estimate. In this manner
larger initial coefficients are penalized less. The asymptotic theory in this paper
does not incorporate adaptive versions of the penalty functions with weights
dependent on the data at hand. Moreover in the presence of a large number
of covariates, getting a good initial estimate is not feasible. A small simula-
tion study (not included) suggest that the performance of the PGEE with the
adaptive EN is only slightly better then the PGEE with the EN penalty, when
a small number of potential covariates is present. We have also explored an
adaptive SCADL2, but this performance was generally worse than the ordinary
SCADL2.

In this paper, we limited ourselves to look for cross-sectional associations in
the Gaussian setting with an exploration of the binomial case. The develop-
ment of asymptotic theory for the non-Gaussian setting and adaptations to the
penalty function to incorporate lagged covariates are topics for future research.
Asymptotic theory developed in Dziak (2006) and extended in this work cannot
be employed in the non-Gaussian context because of the absence of an objec-
tive function. Asymptotic theory in the broader context of penalized estimating
functions has also been described by Johnson et al. (2008). This approach might
be fruitful to derive asymptotic properties for the SCADL2.
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Appendix A. Proof of the grouping effect

We consider the PGEE as a penalized generalized least squares problem
(PGLS), (see Lemma 7). It is then sufficient to show that the EN and SCADL2

penalty functions are strictly convex in β. This is satisfied for the EN if λ2 > 0.
For the SCADL2 this is satisfied if λ2 >

1
2(a−1) (see Lemma 8).

Thus choosing λ2 >
1

2(a−1) yields the desired grouping effect for the SCADL2

PGEE estimator. Notice that the grouping effect also holds for the non-Gaussian
case with an identity working correlation matrix, because in that case, solving
the PGEE is equivalent to optimizing a penalized likelihood. And the grouping
effect can be proved using the same logic.

Lemma 7 (PGEE as penalized generalized least squares). In the Gaus-
sian case, solving the PGEE equations is equivalent to minimizing a penalized
generalized least squares problem.
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Table 3: Table with standardized coefficients for the PGEE estimator with both EN and
SCADL2 penalty function. Both response and covariates were standardized before applying
penalization.

EN fit SCADL2 fit
Variable Order Stand Coeff Order Stand Coeff
Death rate due to ischaemic
heart disease

1 -0.343 1 -0.343

Death rate due to chronic dis-
eases

2 -0.320 3 -0.259

Death rate due to pneumonia 3 -0.276 2 -0.284
Death rate due to cancer 4 -0.149 5 -0.144
Death rate due to bronchitis
asthma & emphysema

5 -0.148 8 -0.130

Infant deaths per 1000 live births 6 -0.126 9 -0.128
Percentage of urban population 7 -0.125 4 -0.166
Percentage of infants vaccinated
against pertussis

8 0.112 13 0.117

Uncertainty Avoidance Index 9 0.102 7 0.136
Death rate of AIDS 10 0.098 6 0.140
Relative humidity (average dew
point in degrees Celsius)

11 0.094 16 0.094

Hours worked per week of full
time employment

12 0.084 14 0.097

Expectancy of educational level
in years

13 0.080 10 0.123

Percentage of people who believe
that most people should not be
trusted

14 0.076 17 0.090

How strongly people find having
experts, not government, make
decisions for a country a bad
thing

15 -0.071 12 -0.118

Birth rate 16 0.065 11 0.122
Pure alcohol consumption, liters
per capita

17 -0.057 15 -0.096
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Table 4: Table with standardized coefficients for the PGEE estimator with both EN and
SCADL2 penalty function (continued). Both response and covariates were standardized before
applying penalization.

EN fit SCADL2 fit
Variable Order Stand Coeff Order Stand Coeff
Women to men ratio 23 0.016 27 0
Private households’ out-of-
pocket payment on health as %
of total health expenditure

24 0.012 36 0

% of people attaining the edu-
cational level of upper secondary
school

25 -0.006 28 0

Practicing physicians per 100 000 26 -0.004 34 0
Individualism 27 0.000 22 0
Masculinity 28 0 21 0
Power Distance Index 29 0 23 0
Total health expenditure, pur-
chasing power parity in dollar
per capita

30 0 24 0

Average number of people per
room in an occupied housing unit

31 0 25 0

Death rate due to accidents 32 0 26 0
Standard deviation of absolute
humidity

33 0 29 0

How strongly respect for a au-
thority is percieved as a bad
thing

34 0 30 0

How strongly atheist versus reli-
gious people describe themselves

35 0 31 0

Poverty rate 36 0 32 0
Average Population Density per
km2

37 0 33 0

Public sector expenditure on
health as % of total government
expenditure.

38 0 35 0

Hospital beds per 100 000 inhab-
itants

39 0 37 0

Death rate due to chronic liver
disease

40 0 40 0

Death rate due to diabetes Mel-
litis

41 0 41 0

Death rate due to alcohol abuse 42 0 42 0
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Proof. Consider the following penalized generalized least squares problem:

QP (β) = Q(β) +NP (β), (A.1)

with:

Q(β) =
1

2n
STK−1S,

K =
1

n

i=1∑
n

DT
i V
−1
i Di = − 1

n

∂S(β)

∂β
.

This is only valid for the Gaussian case, because otherwise Di is a function
of β.

∂Qp(β)

∂β
= −S +N Ṗ (β)

Solving the PGEE in equation (1) is hence equivalent to minimizing the
objective function QP (β) in equation (A.1).

Proof (Theorem 1). Suppose β̂l 6= β̂k, let us consider β̂∗ as:{
β̂j = β̂k, if j 6= k and j 6= l

β̂∗j = 1
2 (β̂k + β̂l), if j = k or j = l

Suppose xi,l = xi,k for all subjects i, then Q(β̂) = Q(β̂∗), because Xiβ̂ =

Xiβ̂∗ = Di,∀ subjects i, with Xi = (xi,1, . . . ,xi,p). Since P (β) is strictly
convex, P (β) > P (β∗). Therefore β cannot be the minimizer of Qp(β), which

is a contradiction. Therefore β̂l = β̂k.

Lemma 8 (Convexity of the penalty function). If λ2 >
1

2(a−1) , the SCADL2-

penalty is strictly convex.

Proof. Given

P (θ) = λ1

∫ θ

0

{
I(θ ≤ λ1) +

(aλ1 − θ)+
(a− 1)λ1

I(θ > λ1)

}
dθ + λ2θ

2,

we calculate the second derivative of P (θ):

P̈ (θ) =


2λ2, if θ ≤ λ1,
−1
a−1 + 2λ2, if λ1 < θ ≤ aλ1,
2λ2, if aλ1 < θ.

This second derivative is always positive if:

λ2 >
1

2(a− 1)
. (A.2)

Under condition (A.2) the SCADL2 penalty function is strictly convex in the
parameter vector β.
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Appendix B. Background Asymptotic theory

For the asymptotic properties to hold, following regularity conditions are
required, which are taken over from Dziak (2006).

Regularity condition 1: S(β) and K(β) = 1
n

∑i=1
n DT

i V
−1
i Di have con-

tinuous third derivatives in β.

Regularity condition 2: K(β) is positive definite with probability ap-

proaching one. there exist a non-random functionK0(β) such that ‖K(β)−K0(β)‖ p→
0 uniformly, and K0(β) > 0 for all β.

Regularity condition 3: The Si = DT
i V
−1
i (Y i−µi) have finite covariance

for all β.

Regularity condition 4: The derivatives of K0(β) in β are Op(1) for all
β.

Proof (Theorem 2:
√
n-consistency). For 0 ≤ ε ≤ 1, it is sufficient to

show that with probability at least 1−ε, ∃ some large constant Cε, such that a lo-
cal solution β̂n ofQP (β) exist in the interior of the ball

{
β + n−1/2u : ‖u‖ ≤ Cε

}
,

such that
∥∥∥β̂n − β∥∥∥ = Op(n

−1/2) will be Op(n
−1/2), (Fan and Li, 2001;

Dziak, 2006). The conditions on the tuning parameters make sure, that Q(β)
asymptotically dominates the penalty part.

Proof (Lemma 2: Sparsity). Condition (9) provides that in a neighborhood
where the non-active coefficients are close tho zero, the sparse part has asymp-
totically still enough influence to put the estimates of the non-active coefficients
exactly equal to zero:

QP (βA, 0) = argmin
{
QP (βA,βB)

}
Appendix C. Data availability determinants of life expectancy
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