
A fluctuation test for constant Spearman’s rho

with nuisance-free limit distribution

by

Dominik Wied *

Fakultät Statistik, TU Dortmund
44221 Dortmund, Germany

wied@statistik.tu-dortmund.de

Herold Dehling

Fakultät für Mathematik, Ruhr-Universität Bochum
44780 Bochum, Germany

herold.dehling@rub.de

Maarten van Kampen

Ruhr Graduate School in Economics and Fakultät Statistik, TU Dortmund
44221 Dortmund, Germany

maarten.vankampen@tu-dortmund.de

and

Daniel Vogel

Fakultät für Mathematik, Ruhr-Universität Bochum
44780 Bochum, Germany

vogeldts@rub.de

This version: November 1, 2018

*Corresponding author. Phone: +49/231/755 5419, Fax: +49/231/755 5284.

1

ar
X

iv
:1

20
6.

50
70

v2
  [

st
at

.M
E

] 
 3

0 
Ja

n 
20

14



Abstract

A CUSUM type test for constant correlation that goes beyond a previously

suggested correlation constancy test by considering Spearman’s rho in arbitrary

dimensions is proposed. Since the new test does not require the existence of any

moments, the applicability on usually heavy-tailed financial data is greatly im-

proved. The asymptotic null distribution is calculated using an invariance principle

for the sequential empirical copula process. The limit distribution is free of nui-

sance parameters and critical values can be obtained without bootstrap techniques.

A local power result and an analysis of the behavior of the test in small samples is

provided.

Keywords: Copula, Mixing, Multivariate sequential rank order process, Robustness,

Structural break
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1. Introduction

Recently, Wied, Krämer and Dehling (2012) proposed a fluctuation test for constant

correlation based on the Bravais-Pearson correlation coefficient. The test, which will be

referred to as BPC test in the following, is for example useful in financial econometrics

to examine changes in the correlation between asset returns over time. Longin and

Solnik (1995) and Krishan et al. (2009) discuss the relevance of this question. The

test complements former approaches by e.g. Galeano and Peña (2007) and Aue et al.

(2009). However, one major drawback of this test is the fact that the limit distribution

is derived under the condition of finite fourth moments (similar to Aue et al., 2009).

This is a critical assumption because the existence of fourth moments in usually heavy-

tailed financial returns is doubtful, see e.g. Grabchak and Samorodnitsky (2010), Krämer

(2002) and Amaral et al. (2000).

This paper presents a fluctuation test for constant correlation based on Spearman’s rho

which imposes no conditions on the existence of moments.

There are several advantages of Spearman’s rho compared to the Bravais-Pearson correla-

tion: In many situations, e.g. if the data is non-elliptical, the Bravais-Pearson correlation

may not be an appropriate measure for dependence. It is confined to measuring linear

dependence, while the rank-based dependence measure Spearman’s rho quantifies mono-

tone dependence. If the second moments do not exist, the Bravais-Pearson correlation is

not even defined, while Spearman’s rho does not require any moments.

Spearman’s rho is probably the most common rank-based dependence measure in eco-

nomic and social sciences, see e.g. Gaißler and Schmid (2010), who propose tests for

equality of rank correlations, and the references herein. In addition, Spearman’s rho

often performs better in terms of robustness than the Bravais-Pearson correlation. Em-

brechts et al. (2002) discuss several other pitfalls and possible problems for a risk manager

who simply applies the Bravais-Pearson correlation.

Therefore, it is natural in the context of testing for changes in the dependence structure of

random vectors to extend the BPC test to a test for constant Spearman’s rho. As expected
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from the theory of dependence measures, this test is applicable in more situations: It has

a much better behavior in the presence of outliers and there are no conditions on the

existence of moments. In addition, the test is applicable in arbitrary dimensions, while

the BPC test is designed for bivariate random vectors. Similarly to the BPC test, the test

bases on successively calculated empirical correlation coefficients in the style of Ploberger

et al. (1989), Lee et al. (2003) or Galeano (2007).

The limit distribution of our test statistic is the supremum of the absolute value of

a Brownian bridge. This immediately provides critical values without any bootstrap

techniques. We impose a strong mixing assumption for the dependence structure. The

proof relies on an invariance principle for multivariate sequential empirical processes from

Bücher and Volgushev (2011).

By using the copula-based expression for Spearman’s rho from Schmid and Schmidt (2007)

or Nelsen (2006), we get quite another contribution with our test, i.e. an extension of

the copula constancy tests proposed by Busetti and Harvey (2011) and Krämer and van

Kampen (2011). Since copula models are frequently used in financial econometrics (see

e.g. Manner and Reznikova, 2011 and Giacomini et al., 2009), such tests for structural

change are important in this area. However, they are restricted to the case of testing for

copula constancy in one particular quantile, e.g. the 0.95-quantile. This might be an im-

portant null hypothesis as well, but our test now (indirectly) allows for testing constancy

of the whole copula by integrating over it. We therefore reject the null hypothesis of

constant Spearman’s rho (which is closely connected to the null hypothesis of an overall

constant copula) if the integral over it fluctuates too much over time. The problem of

testing constancy of the whole copula has recently been dealt with in the literature (see

Kojadinovic and Rohmer, 2012, Bücher and Ruppert, 2012, van Kampen and Wied, 2012

and Rémillard, 2010). All these approaches, however, need the computationally intensive

bootstrap for approximating the limit distribution. With our approach, we need much

less computational time for calculating the critical values.

The paper is organized as follows: Section 2 presents our test statistic and the asymp-
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totic null distribution, Section 3 considers local power, Section 4 presents Monte Carlo

evidence about the behavior of the test in small samples. Section 5 compares our new

test with the BPC test in terms of robustness by a simulation study and an empirical

application. Finally, Section 6 concludes. All proofs are in the appendix.

2. Test statistic and its asymptotic null distribution

In this section, we present the test statistic and the limit distribution of our test under the

null. First, we introduce some notation: (X1, . . . ,Xn) are d-dimensional random vectors

on the probability space (Ω,A,P) with Xj = (X1,j, . . . , Xd,j), j = 1, . . . , n. Regarding the

dependence structure, we impose the following assumption:

(A1) X1, . . . ,Xn are α-mixing with mixing coefficients αj satisfying

∞∑
j=1

j2α
γ/(4+γ)
j <∞

for some γ ∈ (0, 2).

This dependence assumption is similar to the assumption made in Inoue (2001) and holds

in most econometric models relevant in practice, e.g. for ARMA- and GARCH-processes

under mild additional conditions, see e.g. Carrasco and Chen (2002).

The vectors Xj, j = 1, . . . , n, have joint distribution functions F j with

F j(x) = P(X1,j ≤ x1, . . . , Xd,j ≤ xd),x = (x1, . . . , xd) ∈ Rd,

and marginal distribution functions Fi,j(x) = P(Xi,j ≤ x) for x ∈ R and i = 1, . . . , d

which are assumed to be continuous.

According to Sklar’s (1959) theorem, there exists a unique copula function Cj : [0, 1]d →

[0, 1] of Xj with

F j(x) = Cj(F1,j(x1), . . . , Fd,j(xd))
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and

Cj(u) = Fj(F
−1
1,j (u1), . . . , F−1

d,j (ud)),u = (u1, . . . , ud) ∈ [0, 1]d,

where F−1 is the generalized inverse function, see e.g. Schmid and Schmidt (2007).

In terms of the copula, Spearman’s rho is defined as

ρj = h(d) ·
(

2d
∫

[0,1]d
Cj(u)du− 1

)

with h(d) = d+1
2d−(d+1)

, see Schmid and Schmidt (2007) or Nelsen (2006). There are

also other possibilities to define Spearman’s rho in higher dimensions (see Schmid and

Schmidt, 2007 and Quessy, 2009), but we focus on this expression for ease of exposition

and because this measure performs well in terms of the asymptotic relative efficiency

compared with other multivariate extensions, see Quessy (2009, p. 328).

We test

H0 : ρj = ρ0, j = 1, . . . , n vs. H1 : ∃j ∈ {1, . . . , n− 1} : ρj 6= ρj+1.

Let

F̂i;n(x) =
1

n

n∑
j=1

1{Xi,j≤x}, i = 1, . . . , d, x ∈ R,

Ui,j = Fi,j(Xi,j) and

Ûi,j;n := F̂i;n(Xi,j) =
1

n
· (rank of Xi,j in Xi,1, . . . , Xi,n) , i = 1, . . . , d, j = 1, . . . , n.
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Let Rj(u) = 1{U1,j≤u1,...,Ud,j≤ud} and R̂j(u) = 1{Û1,j;n≤u1,...,Ûd,j;n≤ud}. The copula C is

estimated by the empirical copula, defined as

Ĉn(u) =
1

n

n∑
j=1

R̂j(u) =
1

n

n∑
j=1

d∏
i=1

1{Ûi,j;n≤ui},u = (u1, . . . , ud) ∈ [0, 1]d.

The estimator based on the first k observations is

Ĉk(u) =
1

k

k∑
j=1

R̂j(u) =
1

k

k∑
j=1

d∏
i=1

1{Ûi,j;n≤ui},u = (u1, . . . , ud) ∈ [0, 1]d. (1)

Note that the application of the limit theorem from Bücher and Volgushev (2011) requires

that we use Ûi,j;n and not Ûi,j;k in (1).

The estimator for the copula immediately yields an estimator for Spearman’s rho:

ρ̂k = h(d) ·
(

2d
∫

[0,1]d
Ĉk(u)du− 1

)
= h(d) ·

(
2d

k

k∑
j=1

d∏
i=1

(1− Ûi,j;n)− 1

)
.

We use the test statistic W , defined as

W = D̂ max
1≤k≤n

∣∣∣∣ k√n (ρ̂k − ρ̂n)

∣∣∣∣ =: D̂ sup
s∈[0,1]

|Pn(s)|

with Pn(s) = [ns]√
n

(
ρ̂[ns] − ρ̂n

)
and with a deviation estimator D̂ = 1√

D̂′
, where

D̂′ = h(d)222d

 1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)2 −

(
1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)

)2

+2

n−1∑
m=1

k

(
m

γn

)n−m∑
j=1

1

n

d∏
i=1

(1− Ûi,j;n)(1− Ûi,j+m;n)−

(
1

n

n∑
j=1

d∏
i=1

(1− Ûi,j;n)

)2
 .

The kernel k(·) is selected from the class K2 of Andrews (1991), and the bandwidth γn is

chosen such that γn = o(n
1
2 ), see Appendix A for details. The estimator D̂ is a scaling

factor which takes serial dependence and fluctuations of the estimators for Spearman’s

rho into account. The weighting factor k√
n

compensates for the fact that Spearman’s rho
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can be estimated more precisely for larger k.

For our main theorem, we need two additional assumptions:

(B1) (X1, . . . ,Xn) is strictly stationary.

(B2) The copula C and the marginal distribution functions Fi,j = Fi, i = 1, . . . , d are

continuous.

Note that Assumption (B1) is in line with other tests for structural change, see e.g. Inoue

(2001).

Theorem 1. Under H0 and Assumptions (A1), (B1), (B2),

W →d sup
s∈[0,1]

|B(s)|,

where B(s) is a one-dimensional Brownian bridge.

Theorem 1 allows for constructing an asymptotic test. The main tool for the proof is

an invariance principle from Bücher and Volgushev (2011) for the multivariate sequential

rank order process

An(s,u) :=
1√
n

[ns]∑
j=1

(R̂j(u)− Ĉn(u))

=
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− Ĉn(u)

 ,

which was introduced by Rüschendorf (1976). This limit condition does not require any

smoothness assumption on the derivatives of the copula, see Segers (2012) for a detailed

discussion of this issue.

There exists an interesting relationship between our test for constancy of Spearman’s rho

and the copula constancy tests proposed by Busetti and Harvey (2011) and by Krämer

and van Kampen (2011): One can show (see Appendix B) that (if n · ui is an integer

for all i = 1, . . . , d) our test is as a functional of the multivariate τ - (or u-)quantics on
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which these copula constancy tests base. But, in fact, while the other tests examine if

the copula in a particular quantile is constant, we can test for constancy of the whole

copula by integrating over it. Although this is not the null hypothesis we consider, our

test complements the literature on copula constancy tests.

Note that the integral of the copula (or more precisely, of the multivariate sequential rank

order process) is a particular functional which has nice properties. For example, it leads

to a simple limit distribution which is free of nuisance parameters, and therefore needs

no bootstrap approximations. The limit distributions are more involved and/or difficult

to derive with other functionals such as used in Kojadinovic and Rohmer (2012), Bücher

and Ruppert (2012), van Kampen and Wied (2012) and Rémillard (2010). (van Kampen

and Wied, 2012 use a slightly different definition of the multivariate sequential rank order

process in that they consider the empirical quantile function F̂−1
n and not the empirical

distribution function F̂n.)

3. Local power

This section considers the local power of our test. Since the copula function of the

random vectors under consideration changes with n, we now work with a triangular array

(Xn
1 , . . . ,X

n
n), but we suppress the index n for ease of exposition. Let C(u) be a copula

and let C
′
(s,u) be another copula with an additional index parameter s. We consider

local alternatives of the form

Cj(u) =

(
1− δ√

n

)
C(u) +

δ√
n
C
′
(
j

n
,u

)
. (2)

By choosing, say, C
′
(s,u) = [1− g(s)]C (u)+g(s)C

′′
(u) for some copula C

′′
(·) and some

function g(·) bounded by 1 we obtain the sequence of correlations

ρj =

[
1− δ√

n
g

(
j

n

)]
ρ0 +

δ√
n
g

(
j

n

)
ρA.
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Choosing e.g. g(s) = 1{s≥1/2} would lead to local alternatives in which the copula changes

after the middle of the sample. A continuous function g would lead to continuously

changing copulas against which our test has power as well.

To deduce limit results for the sequence of local alternatives (2), we need some more

assumptions:

(C1) The analogue of mixing condition (A1) holds for the triangular array.

(C2) The marginal distribution functions of (X1, . . . ,Xn) do not depend on j and are

continuous.

(C3) The joint copula for the random vectors (X1, . . . ,Xn) with lag l,

Cj,l(u1,u2) := P(X1,j ≤ F−1
1,j (u1

1), . . . , Xd,j ≤ F−1
d,j (ud1),

X1,j+l ≤ F−1
1,j+l(u

1
2), . . . , Xd,j+l ≤ F−1

d,j+l(u
d
2)),

is specified to

Cj,l(u1,u2) =

(
1− δ√

n

)2

Cl(u1,u2) +
δ2

n
C
′

l

(
j

n
,
j + l

n
,u1,u2

)
+

δ√
n

(
1− δ√

n

)[
C(u1)C

′
(
j + l

n
,u2

)
+ C(u2)C

′
(
j

n
,u1

)]

with a constant δ ∈ (0, 1]. Here, Cl(·, ·) is the joint copula of some sequence of

stationary random vectors ξi with lag l, C(·) is the copula of ξi. Both Cl(·, cdot)

and C(·) are assumed to be continuous. Analogously, C
′

l (·, ·, ·, ·) is the copula of

some sequence of stationary random functions ηi(·) with lag l, C
′
(·, ·) is the copula

of ηi(·). The term C ′(r, t) is continuous in t for all r and there is (r, r′, t) such that

C ′(r, t) 6= C ′(r′, t).

The slightly cumbersome Assumption (C3) is similar to Assumption B in Inoue (2001)

and is required for applying the limit theorem for the sequential empirical process under
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local alternatives and mixing conditions from Inoue (2001). Passing each element of u2

to 1 yields equation (2).

With these assumptions, we get

Theorem 2. Under Assumptions (C1) and (C3),

W →d sup
s∈[0,1]

∣∣∣∣B(s) + δDh(d)2d
[∫

[0,1]d

∫ s

0

C∗ (t,u) dtdu− s
∫

[0,1]d

∫ 1

0

C∗ (t,u) dtdu

]∣∣∣∣ ,
where D is the probability limit of D̂ under the null hypothesis.

With this theorem and Anderson’s Lemma we can deduce that the asymptotic level is

always larger than or equal to α, see Andrews (1997) or Rothe and Wied (2012).

4. Finite sample behavior

We investigate the test’s finite sample behavior and compare it to the BPC test by

simulating the empirical size under the null hypothesis and the empirical power under

various alternatives in different settings. Some complementary simulation results are

provided in Dehling et al. (2012) who propose a bivariate test for constant Kendall’s tau.

In order to make the simulation study not too lengthy, we always use the Bartlett kernel

and bandwidth [log(n)] in the deviation estimator D̂ of our test and the deviation esti-

mator D̃ of the BPC test (which is described and denoted as D̂ in Wied et al., 2012).

Moreover, we restrict ourselves to the Student copula which is one of the most com-

mon copulas for modeling financial returns according to Cherubini et al. (2004, p. 181).

These choices are made in Wied et al. (2012) as well. We consider three sample sizes

n = 500, 1000, 2000, the significance level α = 0.05 and 50000 repetitions in each setting.

Moreover, we assume a bivariate MA(1)-process

Xt = εt + θεt−1 with θ =

θ1 0

0 θ2

 , t = 1, . . . , n,
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with, on the one hand, (θ1, θ2) = (0, 0) which corresponds to serial independence and,

on the other hand, (θ1, θ2) = (0.3, 0.2) which corresponds to serial dependence. The

εt, t = 0, 1, . . . , n, are independent and identically distributed, following a bivariate tν-

distribution with shape matrix

S =

1 q

q 1

 , |q| < 1. (3)

We consider three different degrees of freedom, ν = 1, 3, 5. In the case of ν = 1, we do not

have finite fourth moments (even no finite first moment), which are required for the BPC

test. Note that, in this case, the Bravais-Pearson correlation is not even defined. However,

also in such a situation, it might be interesting to know if there is a structural change in the

dependence structure. The null hypothesis is that Xt has constant correlation of ρ0 = 0.4.

Additionally, we consider seven alternatives, in which the correlation jumps after the

middle of the sample from ρ0 = 0.4 to ρ1 = 0.6, 0.8, 0.2, 0.0,−0.2,−0.4,−0.6, respectively.

We simulate realizations ε0, ε1, . . . , εn/2 and εn/2+1, . . . , εn with qi = ρi

√
(θ21+1)(θ22+1)

θ1θ2+1
, i =

0, 1. The choice of the qi is due to the fact that with this, the Pearson correlation would

be equal to ρ0 resp. ρ1 if it existed. Spearman’s rho lies then closely to these values as

numerical approximations suggest.

Table 1 reports rejection frequencies for serial independence and Table 2 for serial depen-

dence.

-Table 1 here -

-Table 2 here -

At first, we discuss the case of ν = 1. We see that the size of our test is kept and that

the empirical power increases with the magnitude of the break and sample size n. It

is slightly higher for increasing than for decreasing correlations. The BPC test is not

applicable, because it cannot distinguish between the null and alternative hypothesis.

This is partially due to the fact that the asymptotic variance of the empirical correlation
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coefficient is an unbounded function of the fourth moments of the population distribution

and that Spearman’s correlation coefficient is invariant under monotonely increasing,

componentwise transformations and hence little effected by heavy tails.

For the t3- and t5-distribution, the power of our copula-based test is rather low compared

to the BPC test. The efficiency becomes lower when the distribution comes “closer” to

the Gaussian distribution. This is not surprising as for Gaussian data, the usual empirical

correlation coefficient is the maximum likelihood, i.e. the most efficient estimator of the

correlation. Note however that there is compelling empirical evidence that financial

returns are not Gaussian distributed.

Interestingly, the power of our test is considerably lower (up to 15 percentage points) in

the case of serial dependence as compared to independence, which is not true for the BPC

test. This indicates the potential drawback that the Spearman test is more sensitive with

respect to serial dependence.

While the BPC test generally detects increasing correlations better than decreasing cor-

relations, this does not hold for the Spearman test.

Repeating the experiments from Table 2 with the t2-distribution under serial dependence

and independence yields a better behavior for the BPC test as compared to the case of

ν = 1, but the test still does not keep its size. Our test keeps its size, and its power is

generally higher than the BPC power for decreasing correlations (especially for high shifts

and large sample sizes). For increasing correlations, this is true for serial independence,

large sample sizes and high shifts. Detailed results are available upon request. It is an

interesting task for further research to discover the area of degrees of freedom and of

serial dependence in which the application of the Spearman test can be recommended.

Next, we consider an outlier scenario by using the setup from Table 2 with the t5-

distribution, constant correlation 0.4 and by adding one heavy outlier of size, say,

(40,−100) to the sample at time c · 500, c = 0.05, 0.1, . . . , 1. If the outlier comes late,

the BPC test almost always rejects the null hypothesis; if it comes early, the test almost

never rejects it. This is an odd behavior and makes the test unsuitable for this outlier

13



scenario. Our new test always keeps the size, see Figure 1, whose message is basically

the same in the presence of serial dependence.

-Figure 1 here -

The power of our new test becomes higher when testing for a correlation change in more

than two dimensions, and when there is an equal change in every component; see Table

3 for exemplary results for the trivariate t3-distribution under serial independence. Here,

it seems that decreasing correlations are better detected. Also in the trivariate case, the

power decreases in the presence of serial dependence. With more than two dimensions, a

direct comparison with the BPC test is not possible because this test is restricted to two

dimensions.

-Table 3 here -

5. Robustness

5.1. Simulation evidence The two major advantages of our test compared to the

BPC test proposed by Wied et al. (2012) are its applicability without any moment con-

ditions at all (as compared to the existence of fourth moments for the BPC test) and its

appealing robustness properties. The latter shall be visualized by an instructive example.

Both fluctuation tests proposed here mainly derive their robustness properties from the

respective properties of the underlying correlation measure. The robustness properties of

Spearman’s rho, along with several other correlation estimators, are studied in detail in

Croux and Dehon (2010).

Similarly to the scenario of Figure 1, we sample a path (xt)t=1,...,n of length n = 500 of

the bivariate MA(1) process Xt = εt + θεt−1, where the εt, t = 0, . . . , n, are i.i.d. with a

centered bivariate Gaussian distribution and covariance matrix S. We choose

θ =

0.3 0

0 0.2


14



and S as in equation (3) with q such that ρ0 = 0.4.

We add one mild outlier to the sample by setting, say, x288 to (20,−50). We denote the

resulting contaminated example by (xwt )t=1,...,n, where w indicates weak contamination.

Figure 2 visualizes the process

bk = D̃
k√
n

(r̂k − r̂n), k = 1, ..., n,

where r̂k denotes the Bravais-Pearson correlation coefficient based on X1, ...,Xk, and

where D̃ is the deviation estimator mentioned in the beginning of Section 4 that scales

the process such that (b[ns])s∈[0,1] converges to a Brownian bridge.

-Figure 2 here -

-Figure 3 here -

The BPC test statistic is then sup1≤k≤n |bk|. The grey line in Figure 2 corresponds to

the uncontaminated sample (xt)t=1,...,n, the black line to (xwt )t=1,...,n. The single outlier

has a dramatic effect on the Bravais-Pearson test statistic and, in this example, causes

the null hypothesis to be rejected at the significance level 0.05. While the position of the

outlier influences the decision of the test (see Figure 1), it has no big influence on the

basic character of the shape of the black line.

Alternatively, we create a strongly contaminated sample (xst)t=1,...,n by randomly placing

10 outliers in the second half of the sample. Each outlier is of the form (yt,−yt), where

yt is drawn from the uniform distribution on [−1000,−100] ∪ [100, 1000]. Both, fraction

and size of the outliers in (xst)t=1,...,n are about 10 times as large as in (xwt )t=1,...,n. Figure

3 depicts the process

ψk = D̂
k√
n

(ρ̂k − ρ̂n), k = 1, ..., n,

once being computed from the uncontaminated sample (grey line) and once from the heav-

ily corrupted sample (xst)t=1,...,n (black line). We witness a slight distortion of (ψk)k=1,...,n
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as a result of the contamination, but the location of the maximizing point as well as the

decision of the test are unaffected. Note that the main observations from Figure 2 and 3

basically could also be replicated under the t5-distribution and/or serial indepedence as

used in the previous section.

5.2. Empirical relevance This subsection shows that the outlier scenario described

in the previous subsection might indeed be relevant for a practitioner who analyzes struc-

tural changes in the dependence of assets. This can be exemplarily seen in the time period

around the Black Monday, 19th October 1987, i.e. in the time period from the beginning

of January 1985 to the end of December 1989, using daily return data from Datastream

(yielding n = 1262). Both the Dow Jones Industrial Average and the Nasdaq Composite

daily returns are extremely negative at this day, and the absolute values of these returns

are much higher than the other ones at this time. The next day, the Dow Jones return is

positive again, while the Nasdaq return remains negative - both on a high level compared

to the means and standard deviations of all days. Table 4 shows the exact values.

-Table 4 here -

These outliers are reflected in the BPC test statistic, see Figure 4, part (a), for a visu-

alization of the process (bk)k=1,...,1262 and the peak around the Black Monday. On 19th

October, the successively estimated correlations become very high, but fall down on the

next day. Both phenomena together lead to the peak. Note that this is not exactly the

same situation as in Figure 2. However, by similar simulations with two outliers as in this

application, we can reproduce the peak of Figure 4, part (a), as well. Thus, the figures

give two different examples of a bizarre behavior of the test statistic which are both due

to the construction of the Pearson correlation coefficient.

Applying the BPC test gives a test statistic of 1.447 (p-value of 0.030) such that the null

hypothesis of constant correlation is rejected at the 5%-level. However, the test statistic

would be much lower without this peak and the null would not be rejected.

Our Spearman test statistic is not affected by this peak - see Figure 4, part (b) for a
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visualization of the process (ψk)k=1,...,1262 - and the test statistic is equal to 0.886 (p-value

of 0.412). Therefore, one should probably conclude that the dependence structure did

not change seriously after the Black Monday. Similar results were obtained for other time

periods around 19th October 1987 and have been confirmed in Dehling et al. (2012) who

perform a related analysis.

-Figure 4 here -

6. Discussion

We propose a new test for constancy of Spearman’s rho which is much more robust against

outliers than the BPC test previously suggested by Wied et al. (2012).

Indirectly, our test also allows for testing if the whole copula of multivariate random

vectors is constant, and thus it extends formerly suggested pointwise copula constancy

tests. It is an interesting task for further research to compare the performance of our test

with the performance of constancy tests for the whole copula, based on other functionals

of the multivariate sequential rank order process, such as proposed in Kojadinovic and

Rohmer (2012), Bücher and Ruppert (2012), van Kampen and Wied (2012) and Rémillard

(2010), especially in higher dimensions. Some limited evidence for the bivariate case

(Spearman and maximum functional) can be found in van Kampen and Wied (2012)

and van Kampen (2012). In general, it is not obvious how to compare both tests as

one needs to specify a bandwidth for the Spearman test and a block length for the

maximum test. However, there is evidence that the Spearman test is typically (but not

always) outperformed by the maximum test in terms of power. The Spearman test is

computationally less intensive as no bootstrap approximations are required.

Another worthwile research approach would be an extension of the considered dependence

structure to functionals of iid- or even of mixing processes in order to enlarge the class

of models in which our test can operate.
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A. Appendix section

Proof of Theorem 1

Denote with l∞(Rk) the function space of all bounded functions from Rk to R.

Consider first Pn(s):

Pn(s) =
[ns]√
n

(
h(d) ·

(
2d
∫

[0,1]d
Ĉ[ns](u)du− 1

)
− h(d) ·

(
2d
∫

[0,1]d
Ĉn(u)du− 1

))

=
[ns]√
n
· h(d) · 2d

∫
[0,1]d

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)

 du

= h(d) · 2d
∫

[0,1]d
An(s,u)du

with

An(s,u) =
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)

 . (4)

With an invariance principle for

1√
n

[ns]∑
j=1

(Rj(u)− C(u)), (5)

which is presented in Theorem 2.1 in Inoue (2001) (setting δ from Inoue, 2001 to 0 and

defining xni from Inoue, 2001 as (Fi(Xi,j))1≤i≤d), Condition 3.1 in Bücher and Volgushev

(2011) is satisfied with G∗n(s,u) := 1
n

∑[ns]
j=1Rj(u) and C∗(s,u) := sC(u) which lies in the

space DΨ defined in Bücher and Volgushev (2011). So we obtain with Corollary 3.3.a in

Bücher and Volgushev (2011)

An(·, ·)→d A0(·, ·) in l∞(Rd+1)
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with

A0(s,u) = V0(s,u)− sV0(1,u).

V0(s,u) is a P-almost surely continuous, centered Gaussian process with covariance func-

tion

K0((s1,u1), (s2,u2)) := Cov(V0(s1,u1), V0(s2,u2)) = (s1 ∧ s2)K ′(u1,u2),

where

K ′(u1,u2) = C(u1 ∧ u2)− C(u1)C(u2)

+
∞∑
m=2

(
E(1{X1,1≤F−1

1 (u11);...;Xd,1≤F−1
d (ud1)}1{X1,m≤F−1

1 (u12);...;Xd,m≤F−1
d (ud2)})

−E(1{X1,1≤F−1
1 (u11);...;Xd,1≤F−1

d (ud1)}) · E(1{X1,m≤F−1
1 (u12);...;Xd,m≤F−1

d (ud2)})
)

+
∞∑
m=2

(
E(1{X1,1≤F−1

1 (u12);...;Xd,1≤F−1
d (ud2)}1{X1,m≤F−1

1 (u11);...;Xd,m≤F−1
d (ud1)})

−E(1{X1,1≤F−1
1 (u12);...;Xd,1≤F−1

d (ud2)}) · E(1{X1,m≤F−1
1 (u11);...;Xd,m≤F−1

d (ud1)})
)
.

This covariance function is the limit of the covariance function of

Vn(s,u) =
1√
n

[ns]∑
j=1

(Rj(u)− C(u)),

i.e.

K0((s1,u1), (s2,u2)) = lim
n→∞

Cov(Vn(s1,u1), Vn(s2,u2)),

see Inoue (2001). Now, with the continuous mapping theorem,

Pn(·)→d P0(·) in l∞(R),
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where

P0(s) = h(d)2d
∫

[0,1]d
A0(s,u)du

is a P-almost surely continuous, centered Gaussian process. With Fubini’s theorem, the

covariance function is

Cov(P0(s1), P0(s2))

= h(d)222d

∫
[0,1]d

∫
[0,1]d

Cov(V0(s1,u1)− s1V0(1,u1), V0(s2,u2)− s2V0(1,u2))du1du2

= h(d)222d(s1 ∧ s2 − s1s2 − s1s2 + s1s2)

∫
[0,1]d

∫
[0,1]d

Cov(V0(1,u1), V0(1,u2))du1du2

= (s1 ∧ s2 − s1s2)D′

with

D′ = h(d)222d

∫
[0,1]d

∫
[0,1]d

K ′(u1,u2)du1du2

= h(d)222d

E

(
d∏
i=1

(1− Ui,j)2

)
−

[
E

(
d∏
i=1

(1− Ui,j)

)]2

+2

 ∞∑
m=1

E

(
d∏
i=1

(1− Ui,j)(1− Ui,j+m)

)
−

(
E

(
d∏
i=1

(1− Ui,j)

))2


= h(d)22d

[
Var

(
d∏
i=1

(1− Ui,j)

)
+ 2

∞∑
m=1

Cov

(
d∏
i=1

(1− Ui,j),
d∏
i=1

(1− Ui,j+m)

)]
.
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This holds because, again with Fubini,

∫
[0,1]d

∫
[0,1]d

C(u1 ∧ u2)du1du2

=

∫
[0,1]d

∫
[0,1]d

E(1{X1,j≤F−1
1 (u11);...;Xd,j≤F−1

d (ud1)}1{X1,j≤F−1
1 (u12);...;Xd,j≤F−1

d (ud2)})du1du2

= E

(∫
[0,1]d

∫
[0,1]d

1{X1,j≤F−1
1 (u11);...;Xd,j≤F−1

d (ud1)}1{X1,j≤F−1
1 (u12);...;Xd,j≤F−1

d (ud2)}du1du2

)
= E

(∫
[0,1]d

∫
[0,1]d

1{U1,j≤u11;...;Ud,j≤ud1}1{U1,j≤u12;...;Ud,j≤ud2}du1du2

)
= E

(
d∏
i=1

(1− Ui,j)
d∏
i=1

(1− Ui,j)

)
.

The other summands of K ′(u1,u2) are integrated analoguesly.

We get a consistent estimator for D′ from de Jong and Davidson (2000),

D̃′ = h(d)222d

 1

n

n∑
j=1

d∏
i=1

(1− Ui,j)2 −

(
1

n

n∑
j=1

d∏
i=1

(1− Ui,j)

)2

+2

n−1∑
m=1

k

(
m

γn

)n−m∑
j=1

1

n

d∏
i=1

(1− Ui,j)(1− Ui,j+m)−

(
1

n

n∑
j=1

d∏
i=1

(1− Ui,j)

)2
 ,

with a kernel k that is contained in the class K2 of Andrews (1991) which guarantees

positive semi-definiteness of D̃′. Next, we show that D̂′ − D̃′ →p 0. By the invariance

principle (5) (this time applied on the components of Xj) we get a Glivenko-Cantelli-like

theorem (in probability) with rate n−
1
2 for the marginal empirical distribution functions,

that means,

Bn := max
i=1,...,d

sup
j∈N
|Ûi,j;n − Ui,j| = OP

(
n−

1
2

)
.

Since 0 ≤ Ui,j, Ûi,j;n ≤ 1, we obtain

∣∣∣∣∣
d∏
i=1

(1− Ûi,j;n)(1− Ûi,j+m;n)−
d∏
i=1

(1− Ui,j)(1− Ui,j+m)

∣∣∣∣∣ ≤ 2dBn.
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Thus we get

|D̂′ − D̃′| ≤ C
n−1∑
m=1

k

(
m

γn

)
Bn = OP

(
γnn

− 1
2

)
= oP(1),

as γn = o(n
1
2 ), compare the argument in Andrews (1991, p. 852). Therefore D̂′ is a

consistent estimator of D′.

The theorem follows then with the continuous mapping theorem, because the process

P ∗0 (s) :=
1√
D′
P0(s)

is a P-almost surely continuous, centered Gaussian process with the same covariance

function as the Brownian bridge, i.e.

Cov(P ∗0 (s1), P ∗0 (s2)) = s1 ∧ s2 − s1s2.

Since a Gaussian process is uniquely determined by the first two moments, the limit pro-

cess is in fact a Brownian bridge. �

Proof of Theorem 2

The proof is basically similar to the proof of Theorem 1. We consider An(s,u) from

(4) and use a minor modification of Corollary 3.3.a in Bücher and Volgushev (2011).

Condition 3.1 is modified in that sense that we formulate the condition for triangular

arrays. The invariance principle from Theorem 2.1 in Inoue (2001) (defining again xni

from Inoue, 2001 as (Fi(Xi,j))1≤i≤d with the stationarity of the marginal distribution

functions) yields that

1√
n

[ns]∑
j=1

(Rj(u)− Cj(u)) (6)
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converges in distribution to the process V0(s,u) such that

1√
n

[ns]∑
j=1

(Rj(u)− C(u)) =
1√
n

[ns]∑
j=1

(Rj(u)− Cj(u)) +
1√
n

[ns]∑
j=1

(Cj(u)− C(u)) (7)

=
1√
n

[ns]∑
j=1

(Rj(u)− Cj(u)) +
δ

n

[ns]∑
j=1

(
C
′
(
j

n
,u

)
− C(u)

)
(8)

converges in distribution to the process V0(s,u) + δ
∫ s

0
C
′
(t,u) dt− δsC(u). This process

fulfills Condition 3.1 in Bücher and Volgushev (2011) with G∗n(s,u) = 1
n

∑[ns]
j=1Rj(u) and

C∗(s,u) = sC(u) which lies in the space DΨ defined in Bücher and Volgushev (2011).

Thus the proof of Corollary 3.3.a goes through in the same way as in the stationarity

case. Thus, An(s,u) converges to

A0(s,u) + δ

[∫ s

0

C
′
(t,u) dt− s

∫ 1

0

C
′
(t,u) dt

]
.

In addition, the probability limit of D̂ under the sequence of local alternatives is the

quantity D from the proof of Theorem 1, i.e. the probability limit of D̂ under the null

hypothesis. This holds because

lim
n→∞

Cov(Vn(s1,u1), Vn(s2,u2))

is the same under the null hypothesis as well as under the sequence of local alternatives.

Thus, the theorem is proved. �
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B. Connection to copula constancy tests

Let F̂−1
i,n (ui), 0 < ui < 1, i = 1, . . . , d, denote the empirical quantile function and consider

the case that n · ui is an integer for all i = 1, . . . , d. Write

An(s, u) =
[ns]√
n

 1

[ns]

[ns]∑
j=1

R̂j(u)− 1

n

n∑
j=1

R̂j(u)


= − [ns]√

n

 1

[ns]

[ns]∑
j=1

(
Ĉn(u)− R̂j(u)

)+
[ns]√
n

(
1

n

n∑
j=1

(
Ĉn(u)− R̂j(u)

))

= − 1√
n

[ns]∑
j=1

(
Ĉn(u)− R̂j(u)

)
+

1√
n

[ns]∑
k=1

(
1

n

n∑
j=1

(
Ĉn(u)− R̂j(u)

))

= − 1√
n

[ns]∑
j=1

[(
Ĉn(u)− R̂j(u)

)
− 1

n

n∑
m=1

(
Ĉn(u)− R̂m(u)

)]

= − 1√
n

[ns]∑
j=1

[
Ĉn(u)− 1{X1j≤F̂−1

1,n(u1),...,Xdj≤F̂−1
d,n(ud)}

]
,

where the last step uses that 1/n
∑n

m=1 R̂m(u) = Ĉn(u) and

R̂j(u) := 1{Û1j;n≤u1,...,Ûdj;n≤ud}

= 1{F̂−1
1,n(Û1j;n)≤F̂−1

1,n(u1),...,F̂−1
d,n(Ûdj;n)≤F̂−1

d,n(ud)}

= 1{X1j≤F̂−1
1,n(u1),...,Xdj≤F̂−1

d,n(ud)}.

Note that Ĉn(u)−1{X1j≤F̂−1
1,n(u1),...,Xdj≤F̂−1

d,n(ud)} are the bivariate τ - or u-quantics in Busetti

and Harvey (2011) if d = 2. Hence, our test bases on similar quantities.
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Figure 1: Empirical rejection frequencies in an outlier scenario
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Figure 2: Process (bk)k=1,...,500 computed from weakly contaminated (black) and uncontami-
nated (grey) sample
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Figure 3: Process (ψk)k=1,...,500 computed from strongly contaminated (black) and uncontami-
nated (grey) sample
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Figure 4: Processes (bk)k=1,...,1262 and (ψk)k=1,...,1262 for the Dow Jones and Nasdaq Index
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Table 1: Empirical power in different settings with serial independence, ρ0 = 0.4, results of the
Pearson-test in brackets

n Values of ρ1

0.4 0.6 0.8 0.2 0 −0.2 −0.4 −0.6
a) bivariate t1 distribution

500 0.045 0.081 0.205 0.079 0.199 0.418 0.702 0.917
(0.478) (0.507) (0.550) (0.474) (0.476) (0.490) (0.513) (0.533)

1000 0.046 0.121 0.383 0.120 0.370 0.730 0.953 0.998
(0.477) (0.505) (0.553) (0.469) (0.479) (0.490) (0.511) (0.539)

2000 0.048 0.205 0.662 0.204 0.656 0.960 1.000 1.000
(0.477) (0.500) (0.550) (0.471) (0.475) (0.489) (0.514) (0.538)

b) bivariate t3 distribution
500 0.045 0.085 0.217 0.088 0.230 0.495 0.786 0.958

(0.050) (0.260) (0.725) (0.125) (0.412) (0.699) (0.843) (0.907)
1000 0.045 0.129 0.404 0.134 0.426 0.804 0.978 1.000

(0.040) (0.352) (0.845) (0.195) (0.602) (0.831) (0.916) (0.950)
2000 0.048 0.222 0.699 0.230 0.732 0.983 1.000 1.000

(0.035) (0.479) (0.910) (0.310) (0.756) (0.906) (0.951) (0.968)
c) bivariate t5 distribution

500 0.047 0.085 0.215 0.089 0.240 0.515 0.804 0.966
(0.038) (0.435) (0.958) (0.261) (0.778) (0.962) (0.990) (0.995)

1000 0.047 0.129 0.404 0.136 0.446 0.824 0.984 1.000
(0.038) (0.693) (0.992) (0.506) (0.955) (0.993) (0.998) (0.999)

2000 0.048 0.226 0.698 0.237 0.753 0.987 1.000 1.000
(0.037) (0.913) (0.998) (0.806) (0.992) (0.998) (0.999) (1.000)
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Table 2: Empirical power in different settings with serial dependence, ρ0 = 0.4, results of the
Pearson-test in brackets

n Values of ρ1

0.4 0.6 0.8 0.2 0 −0.2 −0.4 −0.6
a) bivariate t1 distribution

500 0.053 0.077 0.165 0.078 0.157 0.313 0.545 0.790
(0.481) (0.513) (0.563) (0.478) (0.479) (0.495) (0.519) (0.539)

1000 0.056 0.108 0.294 0.107 0.282 0.573 0.850 0.980
(0.480) (0.510) (0.565) (0.472) (0.483) (0.494) (0.517) (0.546)

2000 0.056 0.165 0.513 0.164 0.504 0.861 0.990 1.000
(0.480) (0.506) (0.561) (0.473) (0.478) (0.492) (0.518) (0.544)

b) bivariate t3 distribution
500 0.051 0.082 0.183 0.084 0.191 0.401 0.671 0.895

(0.054) (0.286) (0.760) (0.136) (0.438) (0.722) (0.857) (0.915)
1000 0.053 0.119 0.327 0.122 0.347 0.693 0.933 0.996

(0.044) (0.385) (0.868) (0.213) (0.630) (0.848) (0.923) (0.954)
2000 0.055 0.188 0.573 0.193 0.610 0.941 0.999 1.000

(0.037) (0.520) (0.924) (0.337) (0.777) (0.915) (0.955) (0.970)
c) bivariate t5 distribution

500 0.053 0.083 0.182 0.087 0.200 0.423 0.696 0.911
(0.042) (0.465) (0.968) (0.273) (0.792) (0.967) (0.991) (0.995)

1000 0.054 0.118 0.331 0.124 0.366 0.719 0.947 0.998
(0.041) (0.725) (0.994) (0.529) (0.961) (0.994) (0.998) (0.999)

2000 0.055 0.192 0.581 0.199 0.640 0.953 0.999 1.000
(0.040) (0.929) (0.998) (0.822) (0.993) (0.998) (0.999) (1.000)

Table 3: Empirical power in different settings for the trivariate t3-distribution with serial inde-
pendence, ρ0 = 0.4 (for ρ1 = −0.6, the shape matrix would not be positively definite)

n Values of ρ1

0.4 0.6 0.8 0.2 0 −0.2 −0.4
500 0.042 0.169 0.534 0.195 0.695 0.988 1.000
1000 0.043 0.311 0.850 0.368 0.955 1.000 1.000
2000 0.046 0.570 0.992 0.660 1.000 1.000 1.000

Table 4: Dow Jones and Nasdaq Returns around the Black Monday and empirical moments of
the whole time span

Day 16.10. 19.10. 20.10. 21.10. 22.10. µ̂ σ̂
Dow Jones −0.047 −0.256 0.057 0.097 −0.039 0.001 0.013

Nasdaq −0.039 −0.120 −0.094 0.071 −0.046 0.001 0.009
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