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1. Introduction

Kriging models (Matheron, 1970; Stein, 1999; Rasmussen and Williams,
2006) consist in interpolating the values of a Gaussian random field given ob-
servations at a finite set of observation points. They have become a popular
method for a large range of applications, such as numerical code approximation
(Sacks et al., 1989; Santner et al., 2003) and calibration (Paulo et al., 2012) or
global optimization (Jones et al., 1998).

One of the main issues regarding Kriging is the choice of the covariance
function. A Kriging model yields an unbiased predictor, with minimal variance
and a correct predictive variance, if the covariance function used in the model
coincides with that of the random field from which the observations stem. Sig-
nificant results concerning the influence of a misspecified covariance function
on Kriging predictions are available (Stein, 1988, 1990a,c). These results are
based on the fixed-domain asymptotics (Stein, 1999, p.62), that is to say the
case when the infinite sequence of observation points is dense in a bounded
domain. In this setting, the results in (Stein, 1988, 1990a,c) state that if the
true and assumed covariance functions yield equivalent Gaussian measures (see
e.g Stein (1999, p.110) and Ibragimov and Rozanov (1978, p.63)), then there is
asymptotically no loss using the incorrect covariance function. The asymptotic
optimality holds for both the predictive means and variances.

Hence, in the fixed-domain asymptotics framework, it is sufficient to esti-
mate a covariance function equivalent to the true one. Usually, it is assumed
that the covariance function belongs to a given parametric family. In this case,
the estimation boils down to estimating the corresponding parameters, that are
called ”hyper-parameters”. Because of the above theoretical results, it is useful
to distinguish between microergodic and non-microergodic hyper-parameters.
Following the definition in Stein (1999), an hyper-parameter is microergodic if
two covariance functions are orthogonal whenever they differ for it (as in Stein
(1999), we say that two covariance functions are orthogonal if the two under-
lying Gaussian measures are orthogonal). Non-microergodic hyper-parameters
cannot be consistently estimated but have no asymptotic influence on Kriging
predictions, as shown in Zhang (2004) in the Matérn case. There is a fair amount
of literature on the consistent estimation of microergodic hyper-parameters, par-
ticularly using the Maximum Likelihood (ML) method. Concerning the isotropic
Matérn model, with fixed regularity parameter ν and free variance σ2 and corre-

lation length `, the microergodic ratio σ2

`2ν can be consistently estimated by ML
for dimension d ≤ 3 (Zhang, 2004), with asymptotic normality for d = 1 (Du
et al., 2009). Both σ2 and ` can be consistently estimated for d > 4 (Anderes,
2010). For the multiplicative Matérn model with ν = 3

2 , both σ2 and the d
correlation length hyper-parameters `1, ..., `d are consistently estimated by ML
for d ≥ 3 (Loh, 2005). For the Gaussian model, the d correlation lengths are
consistently estimated by ML (Loh and Lam, 2000). Finally for the multiplica-

tive exponential model, the microergodic ratio σ2

` is consistently estimated by
ML with asymptotic normality for d = 1 (Ying, 1991). All hyper-parameters
σ2, `1, ..., `d are consistently estimated by ML with asymptotic normality for
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d > 1 (Ying, 1993).
We believe that the fixed-domain asymptotics does not solve completely the

issue of the estimation of the covariance function. The first point is that the
above theoretical results are asymptotic, while one could be interested in finite-
sample studies, such as the numerical experiments performed in Stein (1999,
ch.6.9), and the detailed study of the exponential covariance in Zhang and Zim-
merman (2005). The second point is that one may not be able to asymptotically
estimate a covariance function equivalent to the true one. Indeed, for instance,
for two covariance functions of the isotropic Matérn class to be equivalent, it
is necessary that their regularity parameters are equal (see the one-dimensional
example in Stein (1999, p.136)). Yet, it is common practice, especially for the
analysis of computer experiment data, to enforce the regularity parameter to
an arbitrary value (see e.g Martin and Simpson (2004)). The interplay between
the misspecification of the regularity parameter and the prediction mean square
error is not trivial. The numerical experiments in Vazquez (2005, ch.5.3.3) show
that a misspecified regularity parameter can have dramatic consequences.

The elements pointed out above justify addressing the case when a para-
metric estimation is carried out, within a covariance function set, and when the
true underlying covariance function does not belong to this set. We call this
the model misspecification case. In this context, we study the Cross Validation
(CV) estimation method (Sundararajan and Keerthi, 2001; Zhang and Wang,
2010), and compare it with ML. This comparison has been an area of active
research. Concerning theoretical results, Stein (1990b) showed that for the es-
timation of a signal-to-noise ratio parameter of a Brownian motion, CV has
twice the asymptotic variance of ML in a well-specified case. Several numerical
results are also available, coming either from Monte Carlo studies as in Santner
et al. (2003, ch.3) or deterministic studies as in Martin and Simpson (2004). In
both the above studies, the interpolated functions are smooth, and the covari-
ance structures are adapted, being Gaussian in Martin and Simpson (2004) and
having a free smoothness parameter in Santner et al. (2003).

We use a two-step approach. In the first step, we consider a parametric fam-
ily of stationary covariance functions in which only the global variance hyper-
parameter is free. In this framework, we carry out a detailed and quantitative
finite-sample comparison, using the closed-form expressions for the estimated
variances for both the ML and CV methods. For the second step we study
the general case in which the global variance hyper-parameter and the correla-
tion hyper-parameters are free and estimated from data. We perform extensive
numerical experiments on analytical functions, with various misspecifications,
and we compare the Kriging models obtained with the ML and CV estimated
hyper-parameters.

The paper is organized as follows. In Section 2, we detail the statistical
framework for the estimation of a single variance hyper-parameter, we introduce
an original quality criterion for a variance estimator, and we give a closed-
form formula of this criterion for a large family of estimators. In Section 3
we introduce the ML and Leave-One-Out (LOO) estimators of the variance
hyper-parameter. In Section 4 we numerically apply the closed-form formulas of
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Section 2 and we study their dependences with respect to model misspecification
and number of observation points. We highlight our main result that when the
correlation model is misspecified, the CV does better compared to ML. Finally
in Section 5 we illustrate this result on the Ishigami analytical function and
then generalize it, on the Ishigami and Morris analytical functions, to the case
where the correlation hyper-parameters are estimated as well.

2. Framework for the variance hyper-parameter estimation

We consider a Gaussian process Y , indexed by a set X . Y is stationary, with
unit variance, and its correlation function is denoted by R1. A Kriging model
is built for Y , for which it is assumed that Y is centered and that its covariance
function belongs to the set C, with

C =
{
σ2R2, σ

2 ∈ R+
}
, (1)

with R2(x) a given stationary correlation function. Throughout this paper,
Ei, vari, covi and ∼i, i ∈ {1, 2}, denote means, variances, covariances and
probability laws taken with respect to the distribution of Y with mean zero,
variance one, and the correlation function Ri. We observe Y on the points
x1, ..., xn ∈ X . In this framework, the hyper-parameter σ2 is estimated from
the data y = (y1, ..., yn)t = (Y (x1), ..., Y (xn))t using an estimator σ̂2. This
estimation does not affect the Kriging prediction of y0 = Y (x0), for a new point
x0, which we denote by ŷ0:

ŷ0 := E2(y0|y) = γt2Γ
−1
2 y, (2)

where (γi)j = Ri(xj − x0) and (Γi)j,k = Ri(xj − xk), i ∈ {1, 2}, 1 ≤ j, k ≤ n.
The conditional mean square error of this non-optimal prediction is, after a
simple calculation,

E1

[
(ŷ0 − y0)2|y

]
= (γt1Γ

−1
1 y − γt2Γ−1

2 y)2 + 1− γt1Γ−1
1 γ1. (3)

However, using the covariance family C, we use the classical Kriging predictive
variance expression σ̂2c2x0

, with

c2x0
:= var2(y0|y) = 1− γt2Γ−1

2 γ2. (4)

As we are interested in the accuracy of the predictive variances obtained from
an estimator σ̂2, the following notion of Risk can be formulated.

Definition 2.1. For an estimator σ̂2 of σ2, we call Risk at x0 and denote by
Rσ̂2,x0

the quantity

Rσ̂2,x0
= E1

[(
E1

[
(ŷ0 − y0)2|y

]
− σ̂2c2x0

)2]
.
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If Rσ̂2,x0
is small, then this means that the predictive variance σ̂2c2x0

is a
correct prediction of the conditional mean square error (3) of the prediction ŷ0.
Note that when R1 = R2 the minimizer of the Risk at every x0 is σ̂2 = 1. When
R1 6= R2, an estimate of σ2 different from 1 can improve the predictive variance,
partly compensating for the correlation function error.
To complete this section, we give the closed-form expression of the Risk of an
estimator that can be written as a quadratic form of the observations, which
is the case for all classical estimators, including the ML and CV estimators of
Section 3.

Proposition 2.2. Let σ̂2 be an estimator of σ2 of the form ytMy with M an
n × n matrix. Denoting f(A,B) = tr(A)tr(B) + 2tr(AB), for A, B n × n
real matrices, M0 = (Γ−1

2 γ2 − Γ−1
1 γ1)(γt2Γ

−1
2 − γt1Γ−1

1 )Γ1, M1 = MΓ1, c1 =
1− γt1Γ−1

1 γ1 and c2 = 1− γt2Γ−1
2 γ2, we have:

Rσ̂2,x0
= f(M0,M0) + 2c1tr(M0)− 2c2f(M0,M1)

+c21 − 2c1c2tr(M1) + c22f(M1,M1).

It seems difficult at first sight to conclude from Proposition 2.2 whether one
estimator is better than another given a correlation function error and a set of
observation points. Therefore, in Section 4, we numerically analyze the Risk for
the ML and CV estimators of the variance for several designs of experiments.
Before that, we introduce the ML and CV estimators of σ2.

3. ML and CV estimation of the variance hyper-parameter

In the framework of Section 2, the ML estimator σ̂2
ML of σ2 (see e.g Santner

et al. (2003, p.66)) is

σ̂2
ML =

1

n
ytΓ−1

2 y. (5)

Let us now consider the CV estimator of σ2. The principle is that, given
a value σ2 specifying the covariance function used among the set C, we can,
for 1 ≤ i ≤ n, compute ŷi,−i := E2(yi|y1, ..., yi−1, yi+1, ..., yn) and σ2c2i,−i :=

σ2var2(yi|y1, ..., yi−1, yi+1, ..., yn). The Cross Validation estimate of σ2 is based
on the criterion

CLOO =
1

n

n∑
i=1

(yi − ŷi,−i)2

σ2c2i,−i
. (6)

It is noted in Cressie (1993, p.102) that if σ2R2 is a correct estimate of the true
covariance function, then we should expect this criterion to be close to 1. In
Appendix C, we show that if the observation points expand in a regular way,
then for most classical correlation functions (the Matérn family for example), if
σ2R2 is the true covariance function, then (6) converges toward 1 in the mean
square sense.

Based on this rigorous result about the case of an infinite regular grid, we
can conjecture that (6) should be close to 1 in a general context when the value
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of σ2 is correct. Hence the idea of the CV estimation of σ2 is to seek the value
of σ2 so that this criterion is equal to 1, which yields the estimator

σ̂2
CV =

1

n

n∑
i=1

(yi − ŷi,−i)2

c2i,−i
. (7)

By means of the well-known virtual LOO formulas of Proposition 3.1 (see
e.g Ripley (1981, ch.5.2)), we obtain the following vector-matrix closed-form
expression of (7),

σ̂2
CV =

1

n
ytΓ−1

2

[
diag(Γ−1

2 )
]−1

Γ−1
2 y,

with diag(Γ−1
2 ) the matrix obtained by setting to 0 all non-diagonal terms of

Γ−1
2 . In the supplementary material, we give a short reminder, with proofs, of

the virtual LOO formulas given in proposition 3.1.

Proposition 3.1. For 1 ≤ i ≤ n:

c2i,−i =
1

(Γ−1
2 )i,i

and

yi − ŷi,−i =
1

(Γ−1
2 )i,i

(Γ−1
2 y)i.

When R1 = R2, we see that ML is more efficient than CV. Indeed

Rσ̂2,x0
= E1

(
(1− γt1Γ−1

1 γ1)− σ̂2(1− γt1Γ−1
1 γ1)

)2
= (1−γt1Γ−1

1 γ1)2E1((σ̂2−1)2),
(8)

so that the Risk of definition 2.1 is proportional to the quadratic error in es-
timating the true σ2 = 1. We calculate E1(σ̂2

ML) = E1(σ̂2
CV ) = 1, hence both

estimators are unbiased. Concerning their variances, on the one hand we recall
in Appendix B that var1(σ̂2

ML) = 2
n , the Cramér-Rao bound for the estimation

of σ2, in the case when the true σ2 is 1 and the model for Y is C. On the other
hand:

var1(σ̂2
CV ) =

2

n2
tr(Γ−1

1

[
diag(Γ−1

1 )
]−1

Γ−1
1

[
diag(Γ−1

1 )
]−1

)

=
2

n2

n∑
i=1

n∑
j=1

(Γ−1
1 )2

i,j

(Γ−1
1 )i,i(Γ

−1
1 )j,j

.

Hence var1(σ̂2
CV ) ≥ 2

n2

∑n
i=1

(Γ−1
1 )2i,i

(Γ−1
1 )i,i(Γ

−1
1 )i,i

= 2
n , the Cramér-Rao bound.

However var1(σ̂2
CV ) is only upper-bounded by 2 (because Γ−1

1 is a covariance
matrix). Furthermore var1(σ̂2

CV ) can be arbitrarily close to 2. Indeed, with

Γ1 = Γ2 =
n− 1 + ε

n− 1
I− ε

n− 1
J,
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where J is the n× n matrix with all coefficients being 1, we obtain

var1(σ̂2
CV ) =

2

n
+

2(n− 1)

n

ε2

(ε+ (n− 1)(1− ε))2
.

Hence, when R1 = R2, ML is more efficient to estimate the variance parameter.
The object of the next section is to study the case R1 6= R2 numerically.

4. Numerical results for the variance hyper-parameter estimation

All the numerical experiments are carried out with the numerical software
Scilab (Gomez et al., 1999). We use the Mersenne Twister pseudo random
number generator of M. Matsumoto and T. Nishimura, which is the default
pseudo random number generator in Scilab for large-size random simulations.

4.1. Criteria for comparison

Pointwise criteria. We define two quantitative criteria that will be used to
compare the ML and CV assessments of the predictive variance at prediction
point x0.

The first criterion is the Risk on Target Ratio (RTR),

RTR(x0) =

√
Rσ̂2,x0

E1 [(ŷ0 − y0)2]
, (9)

with σ̂2 being either σ̂2
ML or σ̂2

CV .
From Definition 2.1 we obtain

RTR(x0) =

√
E1

[(
E1 [(ŷ0 − y0)2|y]− σ̂2c2x0

)2]
E1 [(ŷ0 − y0)2]

. (10)

The numerator of (10) is the mean square error in predicting the random quan-
tity E1

[
(ŷ0 − y0)2|y

]
(the target in the RTR acronym) with the predictor σ̂2c2x0

.
The denominator of (10) is, by the law of total expectation, the mean of the
predictand E1

[
(ŷ0 − y0)2|y

]
. Hence, the RTR in (9) is a relative prediction

error, which is easily interpreted.
We have the following bias-variance decomposition of the Risk,

Rσ̂2,x0
=

E1

[
(ŷ0 − y0)2

]
− E1

[
σ̂2c2x0

]︸ ︷︷ ︸
bias


2

+ var1

(
E1

[
(ŷ0 − y0)2|y

]
− σ̂2c2x0

)︸ ︷︷ ︸
variance

.

(11)
Hence the second criterion is the Bias on Target Ratio (BTR) and is the relative
bias

BTR(x0) =
|E1

[
(ŷ0 − y0)2

]
− E1

(
σ̂2c2x0

)
|

E1 [(ŷ0 − y0)2]
. (12)
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The following equation summarizes the link between RTR and BTR: RTR︸ ︷︷ ︸
relative error

2

=

 BTR︸ ︷︷ ︸
relative bias

2

+
var1

(
E1

[
(ŷ0 − y0)2|y

]
− σ̂2c2x0

)
E1 [(ŷ0 − y0)2]

2︸ ︷︷ ︸
relative variance

.

(13)

Pointwise criteria when R1 = R2. When R1 = R2, E1

[
(ŷ0 − y0)2|y

]
does

not depend on y. Therefore, the RTR and BTR simplify into RTR(x0) =√
E1 [(σ̂2 − 1)2] and BTR(x0) = |1 − E1(σ̂2)|. Hence, the RTR and BTR are

the mean square error and the bias in the estimation of the true variance σ2 = 1,
and RTR2 = BTR2 + var1(σ̂2).

Integrated criteria. In this paragraph, we define the two integrated versions of
RTR and BTR over the prediction space X . Assume X is equipped with a
probability measure µ. Then we define

IRTR =

√∫
X
RTR2(x0)dµ(x0) (14)

and

IBTR =

√∫
X
BTR2(x0)dµ(x0). (15)

Hence we have the equivalent of (13) for IRTR and IBTR:

IRTR2 = IBTR2 +

∫
X

var1

(
E1

[
(ŷ0 − y0)2|y

]
− σ̂2c2x0

)
E1 [(ŷ0 − y0)2]

2 dµ(x0). (16)

4.2. Designs of experiments studied

We consider three different kinds of Designs Of Experiments (DOEs) of n
observation points on the prediction space X = [0, 1]d.

The first DOE is the Simple Random Sampling (SRS) design and consists
of n independent observation points with uniform distributions on [0, 1]d. This
design may not be optimal for a Kriging prediction point of view, as it is likely
to contain relatively large areas without observation points. However it is a
convenient design for the estimation of covariance hyper-parameters because it
may contain some points with small spacing. It is noted in Stein (1999, ch.6.9)
that such points can dramatically improve the estimation of the covariance
hyper-parameters.

The second DOE is the Latin Hypercube Sampling Maximin (LHS-Maximin)
design (see e.g Santner et al. (2003)). This design is one of the most widespread
non-iterative designs in Kriging. To generate a LHS-Maximin design, we gener-
ate 1000 LHS designs, and keep the one that maximizes the min criterion (i.e.
the minimum distance between two different observation points). Let us notice
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that this is the method used by the Matlab function lhsdesign(...,’maximin’,k)
which generates k LHS designs with default k = 5.

The third DOE is a deterministic sparse regular grid. It is built according
to the Smolyak (1963) sparse tensorization construction of the one-dimensional

regular grid G = { 1
2l
, ..., 2l−1

2l
} of level l.

The three DOEs are representative of the classical DOEs that can be used
for interpolation of functions, going from the most irregular ones (SRS) to the
most regular ones (sparse grid).

4.3. Families of correlation functions studied

We consider two classical families of stationary correlation functions.

• The power-exponential correlation function family, parameterized by the
vector of correlation lengths ` = (`1, ..., `d) and the power p. R is power-
exponential (`, p) when

R(h) = exp

(
−

d∑
i=1

(
|hi|
`i

)p)
. (17)

• The Matérn correlation function family, parameterized by the vector of
correlation lengths ` = (`1, ..., `d) and the regularity parameter ν. R is
Matérn (`, ν) when

R(h) =
1

Γ(ν)2ν−1

(
2
√
ν|h|`

)ν
Kν

(
2
√
ν|h|`

)
, (18)

with |h|` =
√∑d

i=1
h2
i

`2i
, Γ the Gamma function and Kν the modified Bessel

function of second order. See e.g Stein (1999, p.31) for a presentation of
the Matérn correlation function.

4.4. Influence of the model error

We study the influence of the model error, i.e. the difference between R1

and R2. For different pairs R1, R2, we generate np = 50 SRS and LHS learning
samples, and the deterministic sparse grid (see Section 4.2). We compare the
empirical means of the two integrated criteria IRTR and IBTR (see Section 4.1)
for the different DOEs and for ML and CV. IRTR and IBTR are calculated on
a large test sample of size 5000. We take n = 70 for the learning sample size
(actually n = 71 for the regular grid) and d = 5 for the dimension.

For the pairs R1, R2, we consider the three following cases. First, R1 is
power-exponential ((1.2, ..., 1.2), 1.5) andR2 is power-exponential ((1.2, ..., 1.2), p2)
with varying p2. Second, R1 is Matérn ((1.2, ..., 1.2), 1.5) and R2 is Matérn
((1.2, ..., 1.2), ν2) with varying ν2. Finally, R1 is Matérn ((1.2, ..., 1.2), 1.5) and
R2 is Matérn ((`2, ..., `2), 1.5) with varying `2.

On Figure 1, we plot the results for the SRS DOE. We clearly see that when
the model error becomes large, CV becomes more efficient than ML in the sense
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Figure 1: Influence of the model error for the SRS DOE (see Section 4.2). Plot of the IRTR and
IBTR integrated criteria (see Section 4.1) for ML and CV. Left: power-exponential correlation
function with error on the exponent, the true exponent is p1 = 1.5 and the model exponent p2
varies in [1.2, 1.9]. Middle: Matérn correlation function with error on the regularity parameter,
the true regularity parameter is ν1 = 1.5 and the model regularity parameter ν2 varies in
[0.5, 2.5]. Right: Matérn correlation function with error on the correlation length, the true
correlation length is `1 = 1.2 and the model correlation length `2 varies in [0.6, 1.8]. ML is
optimal when there is no model error while CV is more robust to model misspecifications.
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Figure 2: Same setting as in Figure 1, but with the LHS-Maximin DOE (see Section 4.2). ML
is optimal when there is no model error while CV is more robust to model misspecifications.

of IRTR. Looking at (16), one can see that the IRTR is composed of IBTR
and of an integrated relative variance term. When R2 becomes different from
R1, the IBTR contribution increases faster than the integrated relative variance
contribution, especially for ML. Hence, the main reason why CV is more robust
than ML to model misspecification is that its bias increases more slowly with
the model misspecification.

On Figure 2 we plot the results for the LHS-Maximin DOE. The results
are similar to these of the SRS DOE. They also appear to be slightly more
pronounced, the IRTR of CV being smaller than the IRTR of ML for a smaller
model error.

On Figure 3, we plot the results for the regular grid DOE. The results
are radically different from the ones obtained with the SRS and LHS-Maximin
designs. The first comment is that the assessment of predictive variances is much
more difficult in case of model misspecification (compare the min, between ML
and CV, of IRTR for the SRS and LHS-Maximin designs against the regular
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Figure 3: Same setting as in Figure 1 but with the regular sparse grid DOE (see Section 4.2).
The results are radically different from the ones obtained with the SRS and LHS-Maximin
DOEs. This time CV is less robust to misspecifications of the correlation function.

grid). This is especially true for misspecifications on the exponent for the power-
exponential correlation function and on the regularity parameter for the Matérn
function. The second comment is that this time CV appears to be less robust
than ML to model misspecification. In particular, its bias increases faster than
ML bias with model misspecification and can be very large. Indeed, having
observation points that are on a regular grid, CV estimates a σ2 hyper-parameter
adapted only to predictions on the regular grid. Because of the correlation
function misspecification, this does not generalize at all to predictions outside
the regular grid. Hence, CV is efficient to assess predictive variances at the
points of the regular grid but not to assess predictive variances outside the
regular grid. This is less accentuated for ML because ML estimates a general-
purpose σ2 and not a σ2 for the purpose of assessing predictive variances at
particular points. Furthermore, it is noted in Iooss et al. (2010) that removing
a point from a highly structured DOE breaks its structure, which may yield
overpessimistic CV results.

We conclude from these numerical results that, for the SRS and LHS-Maximin
designs of experiments, CV is more robust to model misspecification. It is the
contrary for the regular grid, for the structural reasons presented above. This
being said, we do not consider the regular grid anymore in the following numer-
ical results and only consider the SRS and LHS-Maximin designs. Let us finally
notice that the regular grid is not particularly a Kriging-oriented DOE. Indeed,
for instance, for n = 71, it remains only 17 distinct points when projecting on
the first two base vectors.

4.5. Influence of the number of points

Using the same procedure as in Section 4.4, we still set d = 5 and we vary
the learning sample size n. The pair R1, R2 is fixed in the three following dif-
ferent cases. First, R1 is power-exponential ((1.2, ..., 1.2), 1.5) and R2 is power-
exponential ((1.2, ..., 1.2), 1.7). Second, R1 is Matérn ((1.2, ..., 1.2), 1.5) and R2

is Matérn ((1.2, ..., 1.2), 1.8). Finally, R1 is Matérn ((1.2, ..., 1.2), 1.5) and R2 is
Matérn ((1.8, ..., 1.8), 1.5). This time, we do not consider integrated quantities
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Figure 4: Influence of the number n of observation points for the SRS DOE (see Section
4.2). Plot of the RTR and BTR criteria (see Section 4.1) for prediction at the center of the
domain and for ML and CV. Left: power-exponential correlation function with error on the
exponent, the true exponent is p1 = 1.5 and the model exponent is p2 = 1.7. Middle: Matérn
correlation function with error on the regularity parameter, the true regularity parameter is
ν1 = 1.5 and the model regularity parameter is ν2 = 1.8. Right: Matérn correlation function
(ν = 3

2
) with error on the correlation length, the true correlation length is `1 = 1.2 and the

model correlation length is `2 = 1.8.

of interest and focus on the prediction on the point x0 having all its components
set to 1

2 (center of domain).
On Figure 4 we plot the results for the SRS DOE. The first comment is that,

as n increases, the BTR does not vanish, but seems to reach a limit value. This
limit value is smaller for CV for the three pairs R1, R2. Recalling from (13) that
RTR is the sum of BTR and of a relative variance term, we observe that this
relative variance term decreases and seems to vanish when n increases (because
BTR becomes closer to RTR). The decrease is much slower for the error on
the correlation length than for the two other errors on the correlation function.
Furthermore, the relative variance term decreases more slowly for CV than for
ML. Finally, because CV is better than ML for the BTR and worse than ML for
the relative variance, and because the contribution of BTR to RTR increases
with n, the ratio of the RTR of ML over the RTR of CV increases with n. This
ratio can be smaller than 1 for very small n and eventually becomes larger than
1 as n increases (meaning that CV does better than ML).

On Figure 5 we plot the results for the LHS-Maximin DOE. The results are
similar to these of the SRS DOE. The RTR of CV is smaller than the RTR of
ML for a slightly smaller n. This confirms the results of Section 4.4 where the
model error for which the IRTR of ML reaches the IRTR of CV is smaller for
LHS-Maximin than for SRS.

12
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Figure 5: Same setting as in Figure 4, but with the LHS-Maximin DOE (see Section 4.2).

5. Study on analytical functions

In this section, we compare ML and CV on analytical functions, instead
of realizations of Gaussian processes, as was the case in Section 4. The first
goal is to illustrate the results of Section 4 on the estimation of the variance
hyper-parameter. Indeed, the study of Section 4 is more related to the theory
of Kriging (we work on Gaussian processes) while this section is more related to
the application of Kriging (modeling of deterministic functions as realizations
of Gaussian processes). The second goal is to generalize Section 4 to the case
where correlation hyper-parameters are estimated from data.

5.1. ML and CV estimations of covariance hyper-parameters

We consider a set of observations (x1, y1), ..., (xn, yn) as in Section 2, and
the family

{
σ2Rθ, σ

2 > 0, θ ∈ Θ
}

of stationary covariance functions, with Rθ
a stationary correlation function, and Θ a finite-dimensional set. We denote
by Eθ and varθ the means and variances with respect to the distribution of
a stationary Gaussian process with mean zero, variance one and correlation
function Rθ.

The ML estimate of (σ2, θ) is θ̂ML ∈ argminθ∈Θ |Γθ|1/nσ̂2
ML(Γθ) (see e.g

Marrel et al. (2008)), with Γθ the correlation matrix of the training sample with
correlation function Rθ, and σ̂2

ML(Γθ) as in (5). σ̂2
ML(Γθ̂ML) is the estimate of

σ2.
For CV we choose to use the following estimator for the hyper-parameter θ:

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷi,θ(y−i))2, (19)

with ŷi,θ(y−i) = Eθ(yi|y1, ..., yi−1, yi+1, ..., yn). This is the Leave-One-Out mean
square error criterion that is used, for instance, in Santner et al. (2003) when

the ML and CV estimations of θ are compared. Given θ̂CV and hence Γθ̂CV , σ2

is estimated by (7).
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After elementary transformations for the estimator θ̂ML and the use of
Proposition 3.1 for the estimator θ̂CV , the functions to minimize are

fML(θ) =
1

n
log det(Γθ) + log

(
ytΓ−1

θ y
)

(20)

and
fCV (θ) = ytΓ−1

θ diag(Γ−1
θ )−2Γ−1

θ y. (21)

In the supplementary material, we recall the closed-form expressions of the gra-
dients of fML and fCV , as functions of the first-order derivatives of the correla-
tion function. These expressions are available in the literature, see e.g Mardia
and Marshall (1984) for ML and Sundararajan and Keerthi (2001) for CV. The
evaluations of the two functions and their gradients have similar computational
complexities of the order of O(n3).

Once we have the closed-form expressions of the gradients at hand, our opti-
mization procedure is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton optimization method, implemented in the Scilab function optim.
Since the functions fML and fCV may have multiple local minima, the BFGS
method is run several times, by taking the initial points in a LHS-Maximin
design. The presence of multiple local minima is discussed e.g in Martin and
Simpson (2004). An important point is that, when θ is a correlation length, we
recommend to use its logarithm to run the optimization. Indeed a correlation
length acts as a multiplier in the correlation, so that using its log ensures that
a given perturbation has the same importance, whether applied to a large or a
small correlation length. Furthermore, when one wants to explore uniformly the
space of correlation lengths, as is the case with a LHS design, using directly the
correlation lengths may give too much emphasis on large correlation lengths,
which is avoided by using their log.

Another important issue is the numerical inversion of the correlation matrix.
This issue is even more significant when the correlation matrix is ill-conditioned,
which happens when the correlation function is smooth (Gaussian or Matérn
with a large regularity parameter). To tackle this issue we recommend to use
the Nugget effect. More specifically, for a given correlation matrix Γθ, we actu-
ally compute Γθ + τ2In, with τ2 = 10−8 in our simulations. A detailed analysis
of the influence of the Nugget effect on the hyper-parameter estimation and
on the Kriging prediction is carried out in Andrianakis and Challenor (2012).
However, for the CV estimation of θ, when the correlation function belongs to
the Gaussian family, or the Matérn family with large regularity parameter, an-
other structural problem appears. For σ̂2

CV very large, as the overall predictive
variance term σ̂2

CV (1 − γθΓ−1
θ γθ) has the same order of magnitude as the ob-

servations, the term 1 − γθΓ−1
θ γθ is very small. Hence, a fixed numerical error

on the inversion of Γθ, however small it is, may cause the term 1 − γθΓ−1
θ γθ

to be negative. This is what we observe for the CV case when fitting e.g the
correlation lengths of a Gaussian correlation function. The heuristic scheme
is that large correlation lengths are estimated, which yields large σ̂2

CV , which
yields small (1− γθΓ−1

θ γθ), so possibly negative ones. Notice however that the
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relative errors of the Kriging prediction terms γtθΓ
−1
θ y are correct. It is noted in

Martin and Simpson (2004, p.7) that CV may overestimate correlation lengths.
Hence, to have appropriate predictive variances, one has to ensure that the es-
timated correlation lengths are not too large. Two possible solutions are to
penalize either too large correlation lengths or too large σ̂2

CV in the minimiza-
tion of fCV . We choose here the second solution because our experience is that
the ideal penalty on the correlation lengths, both ensuring reliable predictive
variance computation and having a minimal effect on the θ estimation, depends
on the DOE substantially. In practice, we use a penalty for σ̂2

CV starting at 1000
times the empirical variance 1

ny
ty. This penalty is needed only for CV when

the correlation function is Gaussian or Matérn with free regularity parameter.

5.2. Procedure

We consider a deterministic function f on [0, 1]d. We generate np = 100
LHS-Maximin training samples of the form xa,1, f(xa,1), ..., xa,n, f(xa,n). We
denote ya,i = f(xa,i). From each training sample, we estimate σ2 and θ with
the ML and CV methods presented in Section 5.1.

We are interested in two criteria on a large Monte Carlo test sample xt,1, f(xt,1), ..., xt,nt , f(xt,nt)
on [0, 1]d (nt = 10000). We denote yt,i = f(xt,i), ŷt,i(ya) = Eθ̂(yt,i|ya) and

σ̂2c2t,i(ya) = σ2varθ̂(yt,i|ya), where θ̂ comes from either the ML or CV method.
The first criterion is the Mean Square Error (MSE) and evaluates the pre-

diction capability of the estimated correlation function Rθ̂:

1

nt

nt∑
i=1

(yt,i − ŷt,i(ya))2. (22)

The second criterion is the Predictive Variance Adequation (PVA):∣∣∣∣∣log

(
1

nt

nt∑
i=1

(yt,i − ŷt,i(ya))2

σ̂2c2t,i(ya)

)∣∣∣∣∣ . (23)

This criterion evaluates the quality of the predictive variances given by the es-
timated covariance hyper-parameters σ̂2, θ̂. The smaller the PVA is, the better
it is because the predictive variances are globally of the same order than the
prediction errors, so that the confidence intervals are reliable. We use the loga-
rithm in order to give the same weight to relative overestimation and to relative
underestimation of the prediction errors.

We finally average the two criteria over the np training samples.

5.3. Analytical functions studied

We study the two following analytical functions. The first one, for d = 3, is
the Ishigami function:

f(x1, x2, x3) = sin(−π+2πx1)+7 sin((−π+2πx2))2+0.1(−π+2πx3)4 sin(−π+2πx1).
(24)
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The second one, for d = 10, is a simplified version of the Morris function
(Morris, 1991),

f(x) =

10∑
i=1

wi(x) +
∑

1≤i<j≤6

wi(x)wj(x) +
∑

1≤i<j<k≤5

wi(x)wj(x)wk(x)

+w1(x)w2(x)w3(x)w4(x),

with wi(x) =

{
2
(

1.1xi
xi+0.1 − 0.5

)
, if i = 3, 5, 7

2(xi − 0.5) otherwise.

5.4. Results with enforced correlation lengths

We work with the Ishigami function, with n = 100 observation points. For
the correlation function family, we study the exponential and Gaussian families
(power-exponential family of (17) with enforced p = 1 for exponential and p = 2
for Gaussian).

For each of these two correlation models, we enforce three vectors ` of cor-
relation lengths for R: an arbitrary isotropic correlation length, a well-chosen
isotropic correlation length and three well-chosen correlation lengths along the
three dimensions. To obtain a well-chosen isotropic correlation length, we gen-
erate np = 100 LHS-Maximin DOEs, for which we estimate the correlation
length by ML and CV as in Section 5.1. We calculate each time the MSE on
a test sample of size 10000 and the well-chosen correlation length is the one
with the smallest MSE among the 2np estimated correlation lengths. The three
well-chosen correlation lengths are obtained similarly. The three vectors of cor-
relation lengths yield an increasing prediction quality.

The results are presented in Table 1. The first comment is that, comparing
line 1, 2 and 3 against line 4, 5 and 6, the Gaussian family is more appropriate
than the exponential one for the Ishigami function. Indeed, it yields the smallest
MSE among the cases when one uses three different correlation lengths, and the
PVA is quite small as well. This could be anticipated since the Ishigami func-
tion is smooth, so a Gaussian correlation model (smooth trajectories) is more
adapted than an exponential one (rough trajectories). The second comment is
that the benefit obtained by replacing an isotropic correlation length by differ-
ent correlation lengths is smaller for the exponential class than for the Gaussian
one. Finally, we see that CV yields much smaller PVAs than ML in line 1, 2, 3
and 4, in the cases when the correlation function is not appropriate. For line 6,
which is the most appropriate correlation function, ML yields a PVA compara-
ble to CV and for line 5, ML PVA is smaller than CV PVA. All these comments
are in agreement with the main result of Section 4: The ML estimation of σ2 is
more appropriate when the correlation function is well-specified while the CV
estimation is more appropriate when the correlation function is misspecified.
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Correlation model Enforced hyper-parameters MSE PVA
exponential [1, 1, 1] 2.01 ML : 0.50 CV : 0.20
exponential [1.3, 1.3, 1.3] 1.94 ML : 0.46 CV : 0.23
exponential [1.20, 5.03, 2.60] 1.70 ML : 0.54 CV : 0.19
Gaussian [0.5, 0.5, 0.5] 4.19 ML : 0.98 CV : 0.35
Gaussian [0.31, 0.31, 0.31] 2.03 ML : 0.16 CV : 0.23
Gaussian [0.38, 0.32, 0.42] 1.32 ML : 0.28 CV : 0.29

Table 1: Mean of the MSE and PVA criteria for the Ishigami function for different fixed
correlation models. The MSE is the same between ML and CV as the same correlation
function is used. When the correlation model is misspecified, the MSE is large and CV does
better than ML for the PVA criterion.

5.5. Results with estimated correlation lengths

We work with the Ishigami and Morris functions, with n = 100 observation
points. We use the exponential and Gaussian models as in Section 5.4, as well
as the Matérn model of (18). We distinguish two subcases for the vector ` of
correlation lengths. In Case i we estimate a single isotropic correlation length,
while in Case a we estimate d correlation lengths for the d dimensions.

In Table 2, we present the results. For both the Ishigami and Morris func-
tions, the Gaussian model yields smaller MSEs than the exponential model.
Indeed, both functions are smooth. Over the different DOEs, we observe that
the estimated Matérn regularity hyper-parameters are large, so that the MSEs
and the PVAs for the Matérn model are similar to the ones of the Gaussian
model. Let us notice that for the Ishigami function, the relatively large number
n = 100 of observation points is required for the Gaussian correlation model
to be more adapted than the exponential one. Indeed, in Table 3, we show
the same results with n = 70 where the Gaussian model yields relatively larger
MSEs and substantially larger PVAs. Our interpretation is that the linear in-
terpolation that the exponential correlation function yields can be sufficient,
even for a smooth function, if there are not enough observation points. We also
notice that, generally, estimating different correlation lengths (Case a) yields a
smaller MSE than estimating one isotropic correlation length (Case i). In our
simulations this is always true except for the Ishigami function with the expo-
nential model. Indeed, we see in Table 1 that we get a relatively small benefit
for the Ishigami function from using different correlation lengths. Here, this
benefit is compensated by an error in the estimation of the 3 correlation lengths
with n = 100 observation points. The overall conclusion is that the Gaussian
and Matérn correlation models are more adapted than the exponential one, and
that using different correlation lengths is more adapted than using an isotropic
one, provided that there are enough data to estimate these correlation lengths.

In the exponential case, for both Cases i and a, CV always yields a smaller
PVA than ML and yields a MSE that is smaller or similar. In Case a, for the
Gaussian and Matérn correlation functions, the most adapted ones, ML always
yields MSEs and PVAs smaller than CV or similar. Furthermore, for the Morris
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Function Correlation model MSE PVA
Ishigami exponential Case i ML: 1.99 CV: 1.97 ML: 0.35 CV: 0.23
Ishigami exponential Case a ML: 2.01 CV: 1.77 ML: 0.36 CV: 0.24
Ishigami Gaussian Case i ML: 2.06 CV: 2.11 ML: 0.18 CV: 0.22
Ishigami Gaussian Case a ML: 1.50 CV: 1.53 ML: 0.53 CV: 0.50
Ishigami Matérn Case i ML: 2.19 CV: 2.29 ML: 0.18 CV: 0.23
Ishigami Matérn Case a ML: 1.69 CV: 1.67 ML: 0.38 CV: 0.41
Morris exponential Case i ML: 3.07 CV: 2.99 ML: 0.31 CV: 0.24
Morris exponential Case a ML: 2.03 CV: 1.99 ML: 0.29 CV: 0.21
Morris Gaussian Case i ML: 1.33 CV: 1.36 ML: 0.26 CV: 0.26
Morris Gaussian Case a ML: 0.86 CV: 1.21 ML: 0.79 CV: 1.56
Morris Matérn Case i ML: 1.26 CV: 1.28 ML: 0.24 CV: 0.25
Morris Matérn Case a ML: 0.75 CV: 1.06 ML: 0.65 CV: 1.43

Table 2: n = 100 observation points. Mean of the MSE and PVA criteria over np = 100
LHS-Maximin DOEs for the Ishigami (d = 3) and Morris (d = 10) functions for different fixed
correlation models. When the model is misspecified, the MSE is large and the CV does better
compared to ML for the MSE and PVA criterion.

Function Correlation model MSE PVA
Ishigami exponential Case a ML: 3.23 CV: 2.91 ML: 0.27 CV: 0.26
Ishigami Gaussian Case a ML: 3.15 CV: 4.13 ML: 0.72 CV: 0.76

Table 3: n = 70 observation points. Mean of the MSE and PVA criteria over np = 100 LHS-
Maximin DOEs for the Ishigami (d = 3) and Morris (d = 10) functions for the exponential
correlation model. Contrary to the case n = 100 of Table 2, the Gaussian correlation model
does not yield smaller MSEs than the exponential one.

function with Matérn and Gaussian correlation functions, going from Case i to
Case a enhances the advantage of ML over CV.

From the discussion above, we conclude that the numerical experiments yield
results, for the deterministic functions considered here, that are in agreement
with the conclusion of Section 4: ML is optimal for the best adapted correlation
models, while CV is more robust to cases of model misspecification.

5.6. Case of universal Kriging

So far, the case of simple Kriging has been considered, for which the un-
derlying Gaussian process is considered centered. The case of universal Kriging
can equally be studied, for which this process is considered to have a mean at
location x of the form

∑p
i=1 βigi(x), with known functions gi and unknown co-

efficients βi. For instance a closed-form formula similar to that of Proposition
2.2 can be obtained in the same fashion, and virtual LOO formulas are also
available (Dubrule, 1983). We have chosen to focus on the simple Kriging case
because we are able to address as precisely as possible the issue of the covari-
ance function class misspecification, the Kriging model depending only on the
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Function Mean function model Correlation model MSE PVA
Ishigami constant exponential Case a ML: 1.96 CV: 1.74 ML: 0.39 CV: 0.24
Ishigami affine exponential Case a ML: 1.98 CV: 1.75 ML: 0.40 CV: 0.24
Ishigami constant Gaussian Case a ML: 1.54 CV: 1.63 ML: 0.54 CV: 0.54
Ishigami affine Gaussian Case a ML: 1.58 CV: 1.78 ML: 0.57 CV: 0.57

Table 4: n = 100 observation points. Mean of the MSE and PVA criteria over np = 100
LHS-Maximin DOEs for the Ishigami (d = 3) function and the exponential and Gaussian
correlation models. The incorporation of the mean function does not change the conclusions
of Table 2.

covariance function choice. Furthermore it is shown in Stein (1999, p.138) that
the issue of the mean function choice for the Kriging model is much less crucial
than that of the covariance function choice.

Nevertheless, in Table 4 we study, for the Ishigami function, the influence of
using a universal Kriging model with either a constant or affine mean function.
The process is the same as for Table 2. We first see that using a non-zero mean
does not improve significantly the Kriging model. It is possible to observe a
slight improvement only with the exponential covariance structure, which we
can interpret because a smooth mean function makes the Kriging model more
adapted to the smooth Ishigami function. On the contrary, for the Gaussian
covariance structure, the mean function over-parameterizes the Kriging model
and slightly damages its performances. Let us also notice that CV appears
to be more sensitive to this over-parameterization, its MSE increasing with the
complexity of the mean function. This can be observed similarly in the numerical
experiments in Martin and Simpson (2004). The second overall conclusion is
that the main finding of Section 4 and of Table 2 is confirmed: CV has smaller
MSE and PVA for the misspecified exponential structure, while ML is optimal
for the Gaussian covariance structure which is the most adapted and yields the
smallest MSE.

6. Conclusion

In this paper, we have carried out a detailed analysis of ML and CV for the
estimation of the covariance hyper-parameters of a Gaussian process, with a
misspecified parametric family of covariance functions. This analysis has been
carried out using a two-step approach. We have first studied the estimation of a
global variance hyper-parameter, for which the correlation function is misspeci-
fied. In this framework, we can control precisely the degree of model misspecifi-
cation and we obtain closed-form expressions for the mismatch indices that we
have introduced. We conclude from the numerical study of these formulas that
when the model is misspecified, CV performs better than ML. Second, we have
studied the general case when the correlation hyper-parameters are estimated
from data via numerical experiments on analytical functions. We confirm the
results of the first step, and generalize them.
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Because CV is more robust to model misspecification, it is less likely than
ML to yield substantially incorrect predictions. However, ML is more likely
to yield the best predictions, under the condition that the correlation function
family is ideally specified. Hence, CV is a suitable method for problems when
one gives priority to robustness over best possible performance. Studying data-
driven methods, to choose between ML and CV according to a specific objective,
may motivate further research.

We also pointed out in Section 4.4 that some DOEs that are too regular are
not suitable for CV. Investigating this further and studying numerical criteria
for quantifying the suitability of a DOE for CV could motivate further research.
One could be also interested in CV-oriented adaptative improvement of a DOE.
Finally, we emphasized the need, in some cases, for a penalization of large
correlation lengths for CV. We enforced this penalization via a penalization of
too large estimated global variance hyper-parameters. The motivation here was
purely numerical, but there could be a statistical motivation for doing so. The
statistical analysis of penalization methods, similar to the one proposed here, for
CV may motivate further research. In the ML case, there exist penalizations of
correlation hyper-parameters that both reduce the small sample variance, and
recover the asymptotic distribution of the non-penalized case, as shown in Li
and Sudjianto (2005).
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Appendix A. Proof of Proposition 2.2

Using the definition of the Risk, the expression of σ̂2, (3) and (4), we get:

Rσ̂2,x0
= E1

[
(γt1Γ

−1
1 y − γt2Γ−1

2 y)2 + 1− γt1Γ−1
1 γ1

−ytMy(1− γt2Γ−1
2 γ2)

]2
= E1

[
yt(Γ−1

2 γ2 − Γ−1
1 γ1)(γt2Γ

−1
2 − γt1Γ

−1
1 )y

+1− γt1Γ−1
1 γ1 − ytMy(1− γt2Γ−1

2 γ2)
]2
.

Then, writing y = Γ
1
2
1 z with z ∼1 N (0, In), we get:

Rσ̂2,x0
= E1

(
ztM̃0z + c1 − c2ztM̃1z

)2

, (A.1)

with
M̃0 = Γ

1
2
1 (Γ−1

2 γ2 − Γ−1
1 γ1)(γt2Γ

−1
2 − γt1Γ

−1
1 )Γ

1
2
1

and
M̃1 = Γ

1
2
1 MΓ

1
2
1 .

To compute this expression, we use the following lemma. The proof relies only
on 4th moment calculation for Gaussian variables and is omitted.

Lemma Appendix A.1. Let z ∼1 N (0, In), and A and B be n × n real
symmetric matrices. Then:

E1(ztAzztBz) = f(A,B).

Using the lemma and expanding (A.1) yields

Rσ̂2,x0
= f(M̃0, M̃0) + 2c1tr(M̃0)− 2c2f(M̃0, M̃1) (A.2)

+c21 − 2c1c2tr(M̃1) + c22f(M̃1, M̃1).

Finally, based on tr(AB) = tr(BA), we can replace M̃0 and M̃1 by M0 and
M1 in (A.2), which completes the proof.

Appendix B. On the optimality of σ̂2
ML when R1 = R2

Here, we consider the case R2 = R1. We first recall the Cramér-Rao inequal-
ity, which states that when σ2 = 1, for an unbiased estimator σ̂2 of σ2:

var1(σ̂2) ≥ E−1
1

[(
∂

∂σ2

(
lnL(y, σ2)

)
σ2=1

)2
]
,
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with, L(y, σ2) ∝ 1

(σ2)
n
2

exp
(
−y

tΓ−1
1 y

2σ2

)
, the likelihood of the observations. We

then calculate the Cramér-Rao bound:

E−1
1

[(
∂

∂σ2

(
lnL(y, σ2)

)
σ2=1

)2
]

= E−1
1

[(
∂

∂σ2

(
−n

2
lnσ2 − ytΓ−1

1 y

2σ2

)
σ2=1

)2
]

= E−1
1

[
n2

4
+

1

4
(ytΓ−1

1 y)2 − n

2
ytΓ−1

1 y

]
=

(
n2

4
+
n2 + 2n

4
− n2

2

)−1

=
2

n
,

where we used Lemma Appendix A.1 with A = B = In to show E1

(
(ytΓ−1

1 y)2
)

=
n2 + 2n. Hence, the Cramér-Rao bound of the statistical model C is 2

n when
σ2 = 1.

Finally, var1(σ̂2
ML) = var1( 1

ny
tΓ−1

1 y) = 1
n2 var1(

∑n
i=1 z

2
i ) = 2

n , with z =

Γ
− 1

2
1 y ∼1 N (0, In).

Appendix C. Convergence of (6)

Proposition Appendix C.1. Assume X = Rd and that the observation points
are distinct and located on the infinite regular grid {(i1δ, ..., idδ), (i1, ..., id) ∈ Zd}
for fixed δ > 0. When σ2R2 is the covariance function of the Gaussian process
Y , is summable on the regular grid, and has a strictly positive continuous Fourier
transform, then the criterion CLOO has mean one and converges in mean square
to one as n→ +∞.

Proof. Consider, for simplicity, σ2 = 1. Using the formulas of Proposition 3.1

and introducing z = Γ
− 1

2
2 y ∼2 N (0, In) yields:

CLOO =
1

n

n∑
i=1

(yi − ŷi,−i)2

c2i,−i
=

1

n
ztΓ
− 1

2
2

[
diag(Γ−1

2 )
]−1

Γ
− 1

2
2 z,

with diag(Γ−1
2 ) the matrix obtained by setting to 0 all non-diagonal terms of

Γ−1
2 . Then,

E2(CLOO) =
1

n
tr
(
Γ
− 1

2
2

[
diag(Γ−1

2 )
]−1

Γ
− 1

2
2

)
=

1

n

n∑
i=1

(Γ−1
2 )i,i

(Γ−1
2 )i,i

= 1.

Furthermore,

var2(CLOO) =
2

n2
tr
(
Γ−1

2

[
diag(Γ−1

2 )
]−1

Γ−1
2

[
diag(Γ−1

2 )
]−1
)
. (C.1)
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Then, with λmin(Γ) and λmax(Γ) the smallest and largest eigenvalues of a
symmetric, strictly positive, matrix Γ,

λmax(
[
diag(Γ−1

2 )
]−1

) = max
1≤i≤n

1

(Γ−1
2 )i,i

≤ 1

λmin(Γ−1
2 )

= λmax(Γ2). (C.2)

Hence, from (C.1) and (C.2),

2

n

(
λmin(Γ2)

λmax(Γ2)

)2

≤ var2(CLOO) ≤ 2

n

(
λmax(Γ2)

λmin(Γ2)

)2

.

Hence 0 < inf
n
λmin(Γ2) ≤ sup

n
λmax(Γ2) < +∞ implies the proposition.

First, for all n, λmax(Γ2) is smaller than the largest l1 norm of the rows of
Γ2 and hence is smaller than the absolute sum of R2 over the infinite regular
grid. Hence we have sup

n
λmax(Γ2) < +∞.

Then, let R̂2 be the Fourier transform of R2, and let Rmin > 0 be its infimum
over [−πδ ,

π
δ ]d. For all n, x1, ..., xn in the infinite regular grid, and for all ε ∈ Rn:

εtΓ2ε =

n∑
k,l=1

R2(xk − xl)εkεl =

n∑
k,l=1

εkεl

∫
Rd
eit(xk−xl)R̂2(t)dt =

∫
Rd
R̂2(t)

∣∣∣∣∣
n∑
k=1

εke
itxk

∣∣∣∣∣
2

dt

≥ Rmin

∫
[−πδ ,

π
δ ]d

∣∣∣∣∣
n∑
k=1

εke
itxk

∣∣∣∣∣
2

dt = Rmin

∫
[−πδ ,

π
δ ]d

n∑
k,l=1

εkεle
it(xk−xl)dt.

Then, because
∫

[−πδ ,
π
δ ]
eitpδdt = 0 for a non-zero integer p, and because the xk,

1 ≤ k ≤ n, are distinct and located on the regular grid, we have
∫

[−πδ ,
π
δ ]d

eit(xk−xl)dt =

0 for k 6= l. Hence:

εtΓ2ε ≥ Rmin
∫

[−πδ ,
π
δ ]d

n∑
k=1

ε2kdt = Rmin

(
2π

δ

)d
||ε||2,

which in turn implies 0 < inf
n
λmin(Γ2) and thus completes the proof.

23



References

Anderes, E., 2010. On the consistent separation of scale and variance for Gaus-
sian random fields. The Annals of Statistics 38, 870–893.

Andrianakis, I., Challenor, P.G., 2012. The effect of the nugget on Gaussian
process emulators of computer models. Computational Statistics and Data
Analysis 56, 4215–4228.

Cressie, N., 1993. Statistics for Spatial Data. Wiley, New York.

Du, J., Zhang, H., Mandrekar, V., 2009. Fixed domain asymptotics properties
of tapered maximum likelihood estimators. The Annals of Statistics 37, 3330–
3361.

Dubrule, O., 1983. Cross validation of Kriging in a unique neighborhood. Math-
ematical Geology 15, 687–699.

Gomez, C., Bunks, C., Chancelier, J., Delebecque, F., Goursat, M., Nikoukhah,
R., Steer, S., 1999. Engineering and Scientific Computing with Scilab.
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