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Abstract

This work studies the theoretical rules of feature selection in linear dis-
criminant analysis (LDA), and a new feature selection method is proposed
for sparse linear discriminant analysis. An l1 minimization method is used
to select the important features from which the LDA will be constructed.
The asymptotic results of this proposed two-stage LDA (TLDA) are studied,
demonstrating that TLDA is an optimal classification rule whose conver-
gence rate is the best compared to existing methods. The experiments on
simulated and real datasets are consistent with the theoretical results and
show that TLDA performs favorably in comparison with current methods.
Overall, TLDA uses a lower minimum number of features or genes than other
approaches to achieve a better result with a reduced misclassification rate.

Keywords: Feature selection, high dimensional classification, large p small
n, linear discriminant analysis (LDA), misclassification rate, Naive Bayes
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1. Introduction

Classification in high-dimensional data is a common problem which has
created new challenges for traditional statistical methods. For instance,
the classification of leukemia data (Golub et al., 1999) is a classic high-
dimensional example in which there are 7129 genes and 72 samples coming
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from two classes. Due to the small sample size n and large sample dimen-
sion p, which are often referred to as “large p, small n” data, estimators of
the sample mean and covariance matrix are usually unstable. In a seminal
paper by Bickel and Levina (2004), linear discriminant analysis (LDA) was
proved to be no better than a random guess when p/n → ∞. In the litera-
ture, researchers have proposed two classes of independent rules to deal with
high-dimensional classification.

A natural method is to ignore the dependence among the variables and
this leads to the so-called naive Bayes classifier, see Dudoit et al. (2002a)
or Bickel and Levina (2004) for more details. This independent rule has also
been well studied in many works such as Dudoit et al. (2002b), Tibshirani et al.
(2002), and Barry et al. (2005). However, the correlation ignored by the
naive Bayes classifier may be very important for classification. This is par-
tially evidenced by Fan et al. (2012), who comment that the theoretical mis-
classification rate of the naive Bayes classifier is higher than that of Fisher’s
rule unless the true population covariance matrix is diagonal.

An alternative approach involves individual analysis. Fan and Fan (2008)
proposed using the two-sample t-statistic to select features. For every feature,
a t-score is calculated and the features are chosen by their t-scores. Similar
rules can also be found in Zuber and Strimmer (2009), Tibshirani and Wasserman
(2006), and Lai (2008). In Fan and Fan (2008), the authors proved that the
two-sample t-statistic could pick up all the differently expressed features.
However, those differently expressed features may not be the best features
for classification unless the true population covariance matrix is diagonal.
For example, Wu et al. (2009) pointed out that in gene analysis, most genes
are not expressed sufficiently differently that they can be detected by the
t-statistic.

Fan et al. (2012) and Mai et al. (2012) found that the above rules could
result in misleading feature selection and inferior classification based on fea-
ture selection by the t-statistic or the ignorance of correlations among fea-
tures. As also pointed out in Wu et al. (2009), there is often a group of
correlated genes in gene expression analysis in which correlations cannot be
ignored, and the covariance information can help to reduce the misclassi-
fication rate. Assuming that the population covariance matrix and mean
are sparse, a thresholding procedure is used in Shao et al. (2011) to esti-
mate parameters and plug these estimators into the LDA. A constrained l1
minimization method is introduced in Cai and Liu (2011) to estimate the
classification direction, and other methods include those of Wu et al. (2009),
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Tong et al. (2012), Mai et al. (2012), Fan et al. (2012), Li et al. (2001), and
Goeman et al. (2004).

Just as Fan and Fan (2008) commented, the difficulty of high- dimen-
sional classification is intrinsically caused by the existence of many noise
features that do not contribute to the reduction of the misclassification rate.
Thus, if we can select a subset of important features, the high-dimensional
classification will become manageable. In gene expression, especially in di-
agnostic tests, selecting signature genes for accurate classification is essential
(Yeung et al., 2012). In this article, we study a theoretical rule to capture
the discriminant features for classification. Generally, the best s features
for classification are those having the same (or almost the same) theoretical
misclassification rate as all p features. When the true linear discriminant
direction is sparse, we can select a subset of features having the same mis-
classification rate as all p features. For the asymptotic sparsity situation, the
misclassification rate based on our selected features is also close to the theo-
retical misclassification rate. Our results show that the main condition used
in Fan et al. (2012), Cai and Liu (2011), Mai et al. (2012), and Shao et al.
(2011) ensures that such a small subset of important features which can be
selected to derive a more stable and accurate classification result does exist.

In this work, a two-stage LDA (TLDA) is proposed to learn high- dimen-
sional data. TLDA uses l1 minimization, which is a linear program for select-
ing important features; LDA will then be constructed based on these selected
features. Asymptotic results of the proposed TLDA are studied where the
consistency and convergence results are given. Experiments show that, under
the same regularity conditions as in Fan et al. (2012), Cai and Liu (2011),
and Mai et al. (2012), TLDA achieves a better convergence rate. Simulation
studies and experiments on real datasets support our theoretical results and
demonstrate that TLDA outperforms existing methods.

The rest of the paper is organized as follows. In Section 2, we investigate
the theoretical rule of choosing features and the asymptotic results. Evalu-
ations in simulated data are included in Section 3. In Section 4, TLDA is
applied to three real datasets to demonstrate its performance on real data.
Finally, we conclude the article in Section 5. All the proofs are given in
Appendix.
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2. Methods

Let X be a p-dimensional normal random vector belonging to class k
if X ∼ Np(µk,Σ), k = 1, 2, where µ1 6= µ2, and Σ is a positive definite
symmetric matrix. If µ1, µ2, and Σ are known, the optimal classification rule
is Fisher’s linear discriminant rule

δF (X) = I{(X − µa)
TΣ−1µd > 0}, (2.1)

where µa = (µ1 + µ2)/2, µd = (µ1 − µ2)/2, and I denotes the indicator
function with value 1 corresponding to classifying X to class 1 and 0 to class
2. Fisher’s rule is equivalent to the Bayes rule with equal prior probabilities
for two classes. The misclassification rate of the optimal rule is

R = 1− Φ(∆1/2
p ), ∆p = µT

dΣ
−1µd, (2.2)

where Φ is the standard normal distribution function.
In practice, Fisher’s rule is typically not directly applicable because the

parameters are usually unknown and need to be estimated from the sam-
ples. Let {X1,j, j = 1, · · · , n1} and {X2,j, j = 1, · · · , n2} be independent
and identically distributed random samples from Np(µ1,Σ) and Np(µ2,Σ),
respectively. The maximum likelihood estimators of µ1, µ2,Σ are

X̄k =
1

nk

nk
∑

j=1

X1,j, k = 1, 2,

Sn =
1

n

2
∑

k=1

nk
∑

j=1

(Xk,j − X̄k)(Xk,j − X̄k)
T ,

where n = n1 + n2, and setting

µ̂a =
X̄1 + X̄2

2
, µ̂d =

X̄1 − X̄2

2
,

and Σ−1 = S−1
n (or generalized inverse S−

n when S−1
n does not exist), Fisher’s

rule becomes the classic LDA

δLDA(X) = I{(X − µ̂a)
TS−1

n µ̂d > 0},
and the misclassification rate of LDA based on sample {X1,j, j = 1, · · · , n1}
and {X2,j , j = 1, · · · , n2} is

RLDA =
1

2
Φ(

(µ̂a − µ1)S
−1
n µ̂d

(µ̂T
d S

−1
n ΣS−1

n µ̂d)1/2
) +

1

2
Φ(− (µ̂a − µ2)S

−1
n µ̂d

(µ̂T
d S

−1
n ΣS−1

n µ̂d)1/2
),
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which has been well studied when p is fixed; more details can be obtained
from Anderson (2003).

For classification, the best s features are those with the largest ∆s, where
∆s is the counterpart of ∆p. We begin with basic notation and definitions.
For a vector a = (a1, · · · , ap)T , we define |a|0 =

∑p
j=1 I(aj 6= 0), |a|1 =

∑p
j=1 |aj |, and |a|2 =

√

∑p
j=1 a

2
j . For any index set A ⊂ {1, · · · , p}, Ac =

{j ∈ {1, · · · , p} : j 6∈ A} and C is denoted as a constant which varies from
place to place. For any two index sets A and A′ and matrix B, we use BAA′

to denote the matrix with rows and columns of B indexed by A and A′.
For a vector b, bA denotes a new vector with elements of b indexed by A.
In particular, ∆A = (µd)

T
A(Σ

−1)AA(µd)A, which dominates the theoretical
misclassification rate if we only use features corresponding to index set A.

The following propositions give solutions to the feature selection problem.
Here and below we write β0 = 2Σ−1µd.

Proposition 2.1. Let A = {k : (β0)k 6= 0}. We have

∆A = µT
dΣ

−1
p µd = ∆p. (2.3)

Proposition 2.1 means that the best features are indexed by the support of
β0. If β0 is approximately sparse, which means that many entries of β0 are
very small, we have the following result.

Proposition 2.2. Assuming that there is a constant c0 (not dependent on p)
such that 1

c0
≤ all eigenvalues of Σp ≤ c0 and there exists A1 ⊆ {1, 2, · · · , p}

satisfying sp =
∑

k∈Ac
1

|(β0)k|2 → 0, we have

∆p −∆A1
= O(sp). (2.4)

Propositions 2.1 and 2.2 provide the theoretical foundations for choosing
features, and next we will study how to recover the support of β0 from the
samples. In other fields, such as compressed sensing and high-dimensional
linear regression, constrained l1 minimization has been a common method for
reconstructing a sparse signal (Donoho et al., 2006; Candes and Tao, 2007).
In a recent work by Cai and Liu (2011), the authors applied l1 minimization
to estimate β0 directly. However, as Candes and Tao (2007) pointed out,
a two-stage l1 minimization procedure tends to outperform the practical re-
sults; more details can be found in the discussions in Candes and Tao (2007).
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Motivated by this, we use l1 minimization in our work to select features and
construct LDA on those selected features.

First, to ensure the identifiability of the important features, we assume
that there exists A ⊆ {1, 2, · · · , p} satisfying p0 = |A|0 = o(

√

n/ log p),
(β0)Ac = 0, and mink∈A |(β0)k| ≥ cp. Based on the samples, we first consider
the l1 minimization method,

β̂ ∈ arg min
β∈Rp

{|β|1 subject to |Snβ − (X̄1 − X̄2)|∞ ≤ λn}, (2.5)

where λn is a tuning parameter. Second, important features will be selected
as

A∗ = {j : |β̂j|is among the first largest p0 of all}. (2.6)

Before introducing the asymptotic properties of TLDA, we specify the fol-
lowing regularity conditions

c−1
0 ≤ n1/n2 ≤ c0, c−1

0 ≤ λmin(Σp) ≤ λmax(Σp) ≤ c0,

log p ≤ n, ∆p ≥ c−1
0 for some constant c0 > 1, (2.7)

which are commonly used in high-dimensional settings. Our first result is
the consistency of A∗ = A.

Theorem 2.1. Let λn = C
√

∆p log p/n, with C > 0 being a sufficiently

large constant. Suppose that (2.7) holds and that c2p/(∆pp0
√

log p/n) → ∞.
Then

P (A∗ = A) = 1− O(p−1). (2.8)

From (2.8), we know that the truly important feature set A will be indexed
by A∗ with a high probability. If the LDA is constructed on those selected
features, the following results demonstrate the explicit convergence rate of
the misclassification rate based on features A∗.

Theorem 2.2. Under the assumption of Theorem 2.1, and applying LDA to
features A∗, denoting the corresponding misclassification rate as RA∗ , then
the following hold.
(1) RA∗ − R → 0 in probability.
(2) If further assuming ∆pp0

√

log p0/n → 0,

RA∗

R
− 1 = O(p0∆p

√

log p0/n), (2.9)

with probability greater than 1− O(p−1).
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Remark 2.1. According to Definition 1 of Shao et al. (2011), with probability
greater than 1−O(p−1), TLDA is asymptotically optimal when∆pp0

√

log p0/n →
0. Furthermore, the conditions in Theorems 2.1 and 2.2 are similar to those
in Fan et al. (2012), Mai et al. (2012), and Cai and Liu (2011), but our
method has a better convergence rate. For example, Theorem 3 in Cai and Liu
(2011) shows that Rn/R−1 = O(p0∆p

√

log p/n). Noting that p0 ≪ p, there-
fore our results outperform theirs in this case. This means that, compared
with estimating β0 directly, our two-stage method improves the results in the-
ory.

3. Simulations

In practice, the final LDA depends on parameters λn which can be selected
by maximizing the cross-validation (CV) as in Cai and Liu (2011) and p0,
which can also be selected by CV. Our algorithms are outlined below.

Algorithm 1 A Two-stage LDA based on l1 minimization

1: Calculating the sample covariance matrix Sn and mean X̄k, k = 1, 2;
2: β̂λn = argminβ∈Rp

∑p
k=1 |βk| subject to |Snβ − (X̄1 − X̄2)|∞ ≤ λn;

3: Denoting the tuning parameters chosen by five-fold CV as λ̂n and p̂0.
Here we adjust λ̂n as λ =

√

4/5λ̂n;

4: A∗ = {j : |β̂λ
j |is among the first largest p̂0 of all};

5: β∗ = ((Sn)A∗A∗)−1((X̄1)A∗ − (X̄2)A∗);
6: If (Y − (X̄1 + X̄2)/2)

T
A∗β∗ > 0, classifying Y to class 1, else class 2.

The reason for adjusting λ̂n as λ =
√

4/5λ̂n is due to λn = C
√

∆p log p/n,
and the fact that the sample size is 4n/5 but not n in five-fold CV. The simu-
lations reported in Table 4 of Cai and Liu (2011) also support our adjustment
here. Furthermore, the l1 minimization is a linear program which is very at-
tractive for high-dimensional data and can be implemented by many existing
programs, such as the function linprogPD included in the R package “clime”,
which is available at http://cran.r-project.org/web/packages/clime/index.html.

We now present the results of simulation studies which were designed to
evaluate the performance of the proposed TLDA. For the purpose of com-
parison, we also apply several other methods to the data, specifically, linear
programming discriminant (LPD) (Cai and Liu, 2011), regularized optimal
affine discriminant (ROAD) (Fan et al., 2012; Wu et al., 2009), and the ora-
cle Fisher’s oracle rule (Oracle). The oracle rule is included as a benchmark.
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The LPD will be solved by the R package clime and the matlab code for
ROAD is available at http://www.mathworks.com/matlabcentral/fileexchange/40047.

In simulations, we fix the sample size n1 = n2 = 100 and without
loss of generality we set µ2 = 0. For the true classification direction β0,
(β0)[(2k−1)/10] = (−1)k+1(k + 1)/4, k = 1, . . . , 5 and all other elements are
zero. Two kinds of population covariance matrix will be considered.

• Model 1. Σ = (σij)p×p, where σij = 0.8|i−j| for 1 ≤ i, j ≤ p.

• Model 2. Σ = (σij)p×p, where σii = 1 for 1 ≤ i ≤ p and σij = 0.5 for
i 6= j.

The first simulation is to evaluate the performance of our proposed TLDA
method and the two-sample t-statistic (Fan and Fan, 2008). The average
misclassification rates based on 100 simulations are reported in Fig. 1, and
here p = 100. The figure shows that TLDA always selects more useful fea-
tures than the two-sample t-statistic, which ignores the correlation between
features. Specifically, due to correlations, features 30 and 70 cannot be de-
tected by the two-sample t-statistic for Model 2.

In the second simulation, we study the misclassification rate of our TLDA
method. In Cai and Liu (2011) and Fan et al. (2012), the authors have
conducted many numerical investigations to compare their methods with
others, including the oracle features annealed independence rule (OFAIR)
(Fan and Fan, 2008) and nearest shrunken centroid (NSC) method (Tibshirani et al.,
2002), and concluded that their methods perform better. We therefore com-
pare TLDA only with LPD and ROAD and do not consider other classic
methods. Table 1 shows the misclassification rates based on 100 replications
for TLDA, LPD, ROAD, naive Bayes (NB) and Oracle.

From Table 1, we can see that the performance of TLDA is similar to that
of Oracle and is better than that of the other methods. Clearly, due to its
fundamental drawback, the naive Bayes is the worst of all methods although
it is better than random guess (whose misclassification rate is 50%). Overall,
compared with LPD and ROAD, TLDA has the smallest misclassification
rate, and the standard deviation of TLDA is similar to that of LPD but
smaller than that of ROAD. When the dimensionality p increases from 100
to 800, TLDA is quite stable, whereas LPD and ROAD become increasingly
worse. In particular, TLDA always has a smaller misclassification rate and
standard deviation than ROAD. When p is not large, TLDA and LPD have

8
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Figure 1: Plots for TLDA and the t-statistic. Upper: average misclassification rates
versus number of selected features; Middle: average β0 representing the signal of choosing
features by TLDA; Lower: average µ1 −µ2 representing the signal of choosing features by
the t-statistic.
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Table 1: Average misclassification rates in percentage for sparse situations. Standard
deviations are given in parentheses.

p TLDA LPD ROAD NB Oracle
Model 1

100 13.41(2.68) 13.58(2.48) 16.68(5.44) 16.94(2.64) 11.59(2.18)
200 13.31(2.45) 13.62(2.55) 16.19(5.05) 17.18(2.54) 11.66(2.38)
400 13.99(2.56) 14.06(2.69) 17.45(5.49) 18.86(2.67) 11.88(2.39)
800 14.16(2.94) 14.93(2.96) 18.22(5.08) 20.56(2.92) 11.74(2.30)

Model 2
100 20.78(3.01) 21.04(3.14) 25.01(4.47) 35.13(3.02) 18.41(2.66)
200 20.91(3.26) 21.58(3.27) 25.49(3.91) 35.92(2.76) 18.55(2.55)
400 21.49(3.50) 22.49(3.55) 26.04(3.88) 35.87(2.86) 18.60(2.76)
800 21.99(3.70) 23.31(3.75) 26.62(3.71) 36.04(3.03) 18.70(3.13)

similar performance, while TLDA becomes better than LPD as p increases;
in particular when p is sufficiently large (such as p = 800), the difference
between the misclassification rates of TLDA and LPD becomes bigger. In
summary, simulations demonstrate that TLDA is a stable and superior clas-
sification method compared to existing methods.

Next, we will study the estimators β̂TLDA, β̂LPD, and β̂ROAD. Fig. 2 plots
the average estimators of 100 replications. Due to different assumptions, here
we adjust β̂ROAD to |β0|2 ∗ β̂ROAD so that it fits the real situation. From Fig.
2, we can see that TLDA correctly selects most of those five features but
very few noise features. In particular, compared with LPD, which estimates
the true β0 directly, our two-stage estimators are much closer to β0, which is
consistent with the discussions in Candes and Tao (2007).

The above simulations are conducted for scenarios where β0 is sparse.
In practice, it is quite common that there are many weak signals that are
correlated with the main signals. It would be interesting to evaluate the
performance of TLDA for these approximately sparse situations. Specifically,
we will consider two scenarios with respect to µ1, as follows.

• Model 3. µ1 = (15, 0p−5) in Model 1.

• Model 4. β0 = 0.551 ∗ (3, 1.7,−2.2,−2.1, 2.55, (p− 5)−11p−5) and µ1 =
Σ ∗ β0 in Model 2.

Here n1 = n2 = 100 and µ2 = 0. Model 3 is similar to those in Cai and Liu
(2011) and Fan et al. (2012), and Model 4 comes from Mai et al. (2012). The
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Figure 2: Average estimators of TLDA, LPD and ROAD for p = 100. The true β0 and
the estimators are very sparse, which is why there is an almost solid line at zero.
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average misclassification rates based on 100 replications are reported in Table
2. It is again evident that TLDA performs favorably compared to existing
methods.

Table 2: Average misclassification rates in percentage for approximately sparse simula-
tions. Standard deviations are given in parentheses.

p TLDA LPD ROAD NB Oracle
Model 3

100 20.70(3.12) 22.69(3.67) 26.85(5.91) 31.46(4.07) 18.56(2.54)
200 20.89(3.11) 24.03(3.83) 27.52(5.37) 33.74(3.68) 18.98(2.65)
400 20.96(3.18) 25.03(3.77) 28.03(5.36) 36.61(3.69) 18.65(2.59)
800 21.75(4.56) 26.77(4.60) 28.73(5.14) 40.71(3.63) 18.80(2.69)

Model 4
100 11.99(2.68) 12.30(2.59) 14.57(3.33) 21.87(2.68) 9.98(2.07)
200 12.64(2.58) 13.04(2.67) 15.15(3.19) 22.17(2.97) 10.60(2.06)
400 12.70(2.64) 13.52(2.40) 15.56(3.09) 22.28(2.79) 10.03(2.17)
800 12.90(3.01) 13.85(2.94) 15.35(3.75) 22.33(3.11) 10.08(2.21)

4. Real data

In this section, we apply the proposed TLDA to real datasets. Since real
data usually has an ultra-high data dimension p, a sure independence screen-
ing (SIS) method (Fan and Lv, 2008) will be carried out before our proposed
feature selection procedure to further improve the accuracy and control the
computational cost. For brevity, we will apply the two-sample t-test statis-
tic (Tibshirani et al., 2002; Fan and Fan, 2008) to reduce the dimensionality
from ultra-high to a moderate scale. Other screening steps such as that in
Fan et al. (2012) can also be used, but we do not pursue them in detail.

First, TLDA is applied to study leukemia data, which is available at
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. The dataset
contains p = 7129 genes for n1 = 27 acute lymphoblastic leukemia (ALL)
samples and n2 = 11 acute myeloid leukemia (AML) samples in the training
set; the test set consists of 20 ALL samples and 14 AML samples. More de-
tails can be found in Golub et al. (1999). By following similar pre-processing
steps as Dudoit et al. (2002a) and Fan and Fan (2008), we standardize each
sample to zero mean and Sn = 1

n

∑2
k=1

∑nk

j=1(Xk,j − X̄k)(Xk,j − X̄k)
T has

unit diagonal elements.
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Table 3: Classification errors of leukemia data by various methods

TLDA LPD ROAD OFAIR NSC NB
Training Error 0/38 0/38 0/38 1/38 1/38 0/38
Test Error 1/34 1/34 1/34 1/34 3/34 5/34

No. of Selected genes 8 151 40 11 24 7129

For comparison with LPD in Cai and Liu (2011), we use 2867 genes with
the largest absolute values of the two-sample t-statistic (|µ1−µ2| > 0.5). Fig.
3 shows the mean difference and estimator β̂0 (tuning parameter λ = 1.2),
representing the feature selection signals of the two-sample t-statistic and
TLDA, respectively. Clearly, the signal for TLDA is sparse, while the signal
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Figure 3: True mean difference and estimator β̂0 of leukemia data.

for the two-sample t-statistic has no clear clues. The classification results for
TLDA, LPD, ROAD, OFAIR, NSC, and NB are shown in Table 3.

Table 3 shows that TLDA performs competitively in classification error
with LPD and ROAD. However, TLDA only selects 8 genes, in contrast to
40 genes by ROAD and 151 genes by LPD. The 8 selected genes and their
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Table 4: The eight genes of leukemia data selected by TLDA.

Gene position TLDA weights Rank of t-statistic
461 -3.203 7
1779 -4.455 87
1834 -5.039 6
3320 -0.960 1
3525 -3.876 138
4847 -6.389 2
5039 -1.187 4
6539 -7.9933 21

TLDA weights are given in Table 4. For comparison, we also present their
t-statistic rank in the 7129 genes.

We further compare the methods on two more real datasets: the colon
(Srivastava and Kubokawa, 2007) and breast cancer (Hess et al., 2006) datasets.
A leave-one-out cross validation (LOOCV) is performed on the two datasets.
For i = 1, · · · , n , the p× 1 vector xi is treated as the testing set, while the
remaining n − 1 observations form the training set. A subset of 1000 genes
is selected based on the two-sample t-statistic. The classification results for
the TLDA, LPD, ROAD, and NB methods are shown in Table 5. We can see
that, on each dataset, the proposed TLDA has a competitive performance
in terms of classification errors while using the fewest genes. Overall, TLDA
is also applicable in real datasets and performs favorably in comparison to
existing methods.

Table 5: Classification error and number of genes selected by various methods for the
colon and breast cancer datasets

TLDA LPD ROAD NB
Colon Error(%) 9.68 9.68 11.29 14.52

No. of genes 7.42(1.03) 168.95(71.39) 38.10(27.60) 1000(0)
Breast Error(%) 21.80 25.56 31.58 34.59

No. of genes 14.61(2.40) 332.45(103.56) 44.14(47.26) 1000(0)

5. Discussions

In this paper, we have proposed a solution for feature selection in high-
dimensional data. We have derived the optimal feature selection rule for LDA
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and proposed the selection of features based on the sparsity of Σ−1µd. An l1
minimization method is used on the samples to select the important features
and LDA is then applied to those selected features. Our proposed TLDA
performs favorably compared to existing methods in theory and application.
Our analysis shows that the independent rules such as the two-sample t-
statistic and naive Bayes may not be efficient and may even lead to bad
classifiers.

Suppose that there are K > 2 classes (in this article we assume that
K = 2), our TLDA is also applicable. For this, X will be classified to class
k if and only if

(X − (X̄k + X̄l)/2)
T
A∗

kl
β∗
kl > 0 for all k 6= l. (5.10)

Moreover, the procedure can be extended to unequal prior probabilities π1

and π2 in which we classify X to class 1 when

(X − (X̄1 + X̄2)/2)
T
A∗β∗ > log (π2/π1), (5.11)

where the parameters can also be estimated as π̂1 = n1/n and π̂2 = n2/n.
For non-Gaussian distributions, we can also derive similar results under the
moment conditions, as in Cai and Liu (2011).

Finally, we note that the number of selected features is p0 = o(
√

n/ log p)
which is very small compared to p. Setting n = O((log p)β) for β > 1, this
means that only o((log p)(β−1)/2) features can be selected from p variables to
apply LDA. This is due to the fact that LDA is stable only when p0

√

p0/n →
0, and a detailed result can be found in Shao et al. (2011). Our future
research will focus on improving p0.
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Appendix A: Proofs

A.1. Proof of Theorem 2.1
From the proofs of Theorem 2 in Cai and Liu (2011), we know that

(β̂ − β0)
TΣ(β̂ − β0) ≤ C|β0|21

√

log p/n+ 6λn|β0|1, (5.12)
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with probability greater than 1 − O(p−1). Using the Cauchy-Schwartz in-
equality,

|β0|21 ≤ |β0|0|β0|22 ≤ c0p0(β
T
0 Σβ0) = 4c0p0∆p,

(β̂ − β0)
TΣ(β̂ − β0) ≥ c−1

0 (β̂ − β0)
T (β̂ − β0).

Together with (5.12), we have

(β̂ − β0)
T (β̂ − β0) ≤ Cp0∆p

√

log p/n, (5.13)

with probability greater than 1−O(p−1). For j ∈ A,

|β̂j − (β0)j |2 ≤ Cp0∆p

√

log p/n.

Then

|β̂j| ≥ |(β0)j| −
√

Cp0∆p

√

log p/n

≥ cp(1−
√

Cp0∆p

√

log p/n/cp)

> cp/2.

Similarly, for j ∈ Ac,

|β̂j| ≤
√

Cp0∆p

√

log p/n < cp/2.

Hence, we have proved that P (A∗ = A) = 1− O(p−1).

A.2. Proof of Theorem 2.2

Applying the features selector A∗ to the sample {X1,j, j = 1, · · · , n1} and
{X2,j, j = 1, · · · , n2}, we still denote the corresponding data as X, {Xk,j, k =
1, 2} for brevity. It is noted that here the dimension is p0 not p. Setting

X̄k =
1

nk

nk
∑

j=1

X1,j, k = 1, 2,

Sn =
1

n

2
∑

k=1

nk
∑

j=1

(Xk,j − X̄k)(Xk,j − X̄k)
T ,

and

µ̂a =
X̄1 + X̄2

2
, µ̂d =

X̄1 − X̄2

2
.
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The LDA procedure is

δLDA(X) = I{(X − µ̂a)
TS−1

n µ̂d},

and the misclassification rate is

RA∗ =
1

2
Φ(

(µ̂a − µ1)S
−1
n µ̂d

(µ̂T
d S

−1
n ΣS−1

n µ̂d)1/2
) +

1

2
Φ(− (µ̂a − µ2)S

−1
n µ̂d

(µ̂T
d S

−1
n ΣS−1

n µ̂d)1/2
).

By the proofs of Theorem 1 in Shao et al. (2011), we know that

(µ̂a − µ1)S
−1
n µ̂d

(µ̂T
d S

−1
n ΣS−1

n µ̂d)1/2
= −∆1/2

p (1 +O(p0
√

log p0/n)),

and a similar result also holds for Φ( (µ̂a−µ1)S
−1
n µ̂d

(µ̂T
d S−1

n ΣS−1
n µ̂d)1/2

). Then

RA∗ = Φ(−∆1/2
p (1 +O(p0

√

log p0/n))). (5.14)

Noting that p0
√

log p0/n → 0, therefore, in probability,

RA∗ − R → 0. (5.15)

From equation (12) of Cai and Liu (2011), we know that

|
Φ( (µ̂a−µ1)S

−1
n µ̂d

(µ̂T
d S−1

n ΣS−1
n µ̂d)1/2

)

Φ(−∆
1/2
p )

− 1| ≤ O(∆pp0
√

log p0/n)e
O(∆pp0

√
log p0/n).

Then

|RA∗

R
− 1| ≤ O(∆pp0

√

log p0/n)e
O(∆pp0

√
log p0/n).

When ∆pp0
√

log p0/n → 0, we get

|RA∗

R
− 1| = O(∆pp0

√

log p0/n). (5.16)

The proof is completed.
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