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Abstract

Model averaging (MA) estimators in the linear instrumental variables regression framework

are considered. The obtaining of weights for averaging across individual estimates by direct

smoothing of selection criteria arising from the estimation stage is proposed. This is par-

ticularly relevant in applications in which there is a large number of candidate instruments

and, therefore, a considerable number of instrument sets arising from different combinations of

the available instruments. The asymptotic properties of the estimator are derived under ho-

moskedastic and heteroskedastic errors. A simple Monte Carlo study contrasts the performance

of MA procedures with existing instrument selection procedures, showing that MA estimators

compare very favourably in many relevant setups. Finally, this method is illustrated with an

empirical application to returns to education.

Keywords: Instrumental Variables; Model Selection; Model Averaging; Model Screening; Re-

turns to Education.

1 Introduction

In this paper, we consider model averaging (MA) estimation methods in the linear instrumental

variables (IV) regression context. The model averaging estimator is a weighted average of individ-

ual estimates obtained using different lists of valid instruments. We propose obtaining empirical

weights based on existing and well-established instrument selection criteria for IV models. This
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can be achieved by direct smoothing of information criteria arising from the estimation stage,

as in Buckland, Burnham, and Augustin (1997), Burnham and Anderson (2002) and Hjort and

Claeskens (2003). We show that the MA estimator is consistent and normally distributed with a

specific closed-form expression for its asymptotic variance-covariance matrix. The proposed MA

estimator and its first-order asymptotic properties are defined under the case of homoskedasticity

and for general forms of heteroskedastic errors.

In many applications of IV estimation, there is often a large set of candidate variables that can

be used as instruments. However, the properties of IV estimators are very sensitive to the choice

(and the characteristics) of the instrument set. Indeed, instruments might be poorly correlated with

the endogenous variables, which invalidates conventional inference procedures (Staiger and Stock,

1997 and Stock and Wright, 2000). On the other hand, using many (potentially weak) instruments

can improve efficiency and precision, but it can also lead to substantial deviations from the usual

Gaussian asymptotic approximation (see Chao and Swanson, 2005, Han and Phillips, 2006, Hansen,

Hausman and Newey, 2008 and Newey and Windmeijer, 2009).

Thus, much of the literature has focused on procedures for the selection of the appropriate

number and list of instruments. Donald and Newey (2001) propose a selection procedure such that

an approximate mean-square error is minimized over all existing instruments deemed to be valid.

It includes Two-Stage Least Squares (TSLS) limited information maximum likelihood and a bias

adjusted version of the TSLS. On the other hand, Andrews (1999) developed GMM analogues of

model selection criteria (MSC) based on the J-statistic in order to consistently select the largest

set of valid moment conditions. Hall, Inoue, Jana and Shin (2007) suggest selecting instruments

according to the relevant moment selection criterion (RMSC), based on the entropy of the limiting

distribution of the estimator, while Hall and Peixe (2003) propose a canonical correlations informa-

tion criteria (CCIC) for instrument selection (see also Lo and Ronchetti (2012) for an information

and entropy-based approach to moment conditions estimation). As an alternative, Pesaran and

Smith (1994) define a measure of the goodness of fit for IV regressions. They call it generalized

R-squared, GR2, and show that it ought to be computed based on the prediction errors.

Model selection entails choosing one of the estimated competing models under consideration.

Testing competing, non-nested formulations, in which the outcome may not be the selection of

one particular model, can be carried out using the tests of Smith (1992) and Smith and Ramalho

(2002). Shrinkage methods, on the other hand, are an alternative to model selection. Caner

(2009) proposes a LASSO-type GMM estimator, while Canay (2010) and Okui (2011) propose

shrinkage-type estimators for linear models with many instruments. In fact, shrinkage estimators

can be viewed as a special case of ‘instrument averaging’, in which some instruments receive weights

approaching zero.

Here, we pursue the alternative approach of model averaging, in which parameter estimates are

constructed based on a weighted average of estimates from a number of possible specifications. By

making use of the information conveyed by otherwise discarded alternative specifications, model
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averaging as an estimation strategy may yield some gains in terms of bias and efficiency when

compared to procedures that make use of a single set of instruments. Furthermore, our approach can

cope with high-dimensional problems arising from large numbers of combinations of instruments,

particularly when there is no clear indication as to which instruments should be discarded.

Our work is a natural extension of the literature, in which model averaging usually involve

weights obtained from functions of model selection criteria, such as the BIC, AIC, etc. Indeed,

there is a large literature on model averaging, both in the Bayesian tradition and in a frequentist

context (see Claeskens and Hjort, 2008 for a review). In the latter framework, Hansen (2007)

proposed a Mallows criterion for the selection of weights for averaging across least squares estimates

obtained from a set of approximating models, in which regressors (or groups of regressors) are added

sequentially. Liang, Zou, Wan and Zhang (2011), in turn, discuss optimal weight choice based on

an unbiased estimator of the MA estimator’s mean squared error (MSE), thus attaining good

finite sample properties. On the other hand, Hansen and Racine (2012) consider a jackknife MA

estimator, with weights based on a cross-validation criterion, which is asymptotically optimal under

bounded heteroskedasticity of unknown form.

Model averaging in the linear IV context has seen some very recent developments. Kuersteiner

and Okui (2010) suggest using Hansen’s (2007) method as a first step to construct optimal in-

struments IV estimation with TSLS, LIML and Fuller estimators. The weights are chosen to

minimize the approximate mean squared error (AMSE), as in Donald and Newey (2001). Koop,

Leon-Gonzalez and Strachan (2012), on the other hand, use a Bayesian model averaging approach

to address different sources of uncertainty, such as the set of instruments, exogeneity restrictions,

the validity of identifying restrictions and the set of exogenous regressors.

Nevertheless, our approach is distinct in that it averages estimates of the parameters of interest

(rather than first-stage results as in Kuersteiner and Okui, 2010) and, in our case, the list of

candidate models does not depend on ordered instruments from the full-instrument matrix. Indeed,

with m instruments we can consider m models (each model including an extra instrument as in

Hansen, 2007), but also any possible combination of these. This makes our approach more general

and not restricted by how the instruments are ordered. Also, unlike TSLS kernel-based weighting as

proposed by Canay (2010) and Okui (2011), our procedure does not depend on the choice of kernels

or arbitrarily user-chosen smoothing parameters. Thus, we are able to combine the estimation of

general moment conditions models with one-step and information criteria-based model averaging

estimation.

In fact, our paper is related to recent (and parallel) contributions. Lee and Zhou (2012) consider

a different ‘feasible’ weighting scheme based on the strength of subsets of instruments (measured by

the ratio of the first-stage R2 and the Sargan statistic). Similarly, Chen, Jacho-Chàvez and Linton

(2012) consider averaging moment condition estimators in a more general conditional estimation

setup.

To study the properties of our estimators, we conduct a small-scale Monte Carlo experiment in
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which we contrast the performance of an averaging approach and that of an instrument selection

strategy, showing that, in several setups, our model averaging estimation procedure outperforms

the selection method of Donald and Newey (2001) in terms of median bias, absolute deviation and

dispersion. Moreover, we illustrate empirically the use of MA procedures by examining returns to

education, in which we show that even when both the sample and the number of instruments is

quite large, our methods are flexible enough to cope with high-dimensional problems in an efficient

way.

Next, section 2 introduces the linear IV regression model and defines the instrument selection

criteria. In section 3, we introduce our model averaging approach, we discuss different procedures

to obtain empirical weights and model screening as a strategy to narrow down the list of candidate

specifications, thus reducing the computational burden. In section 4, we derive the asymptotic

properties of the model averaging estimator. A Monte Carlo simulation study providing evidence

in support of our MA procedures is discussed in Section 5. An application to returns to schooling

is considered in Section 6 and, finally, Section 7 concludes.

2 Definitions

Following the notation in Staiger and Stock (1997), the linear IV regression model is specified by

a structural equation of interest

y = Y β +Xγ + u, (1)

where y is a T × 1 vector, Y is a T × n matrix of endogenous regressors, X is a T ×K1 matrix of

exogenous regressors, and by a reduced form equation for the endogenous Y

Y = ZΠ +XΦ + V, (2)

where Z is a T × K2 matrix of instruments, with Y,X and Z full ranked and K2 ≥ n. For the

sake of simplicity (and in accordance to the application we study in this paper), we let n = 1 and

assume independent and identically distributed data. The error structure wi = (ui, Vi)
′ satisfies

the moment conditions

E (wi|Xi, Zi) = 0 (3)

and

E
(
wiw

′
i|Xi, Zi

)
=

 σ2u σuv

σuv σ2v

 . (4)

Define the parameter of interest θ = (β′, γ′)′ and let Z = [X,Z] be a T × K matrix where K =

K1 + K2 and X = [Y,X] is T × (1 +K1), so that endogeneity arises if E (Yiui) 6= 0. Throughout

the paper we assume that β is identified, i.e. that E(ZiX
′
i) is of full column rank for any choice of

instruments such that K2 ≥ n. Also, define π = (Φ′,Π′)′ .
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Although Staiger and Stock (1997) define a general k-class of estimators, we simply focus on

TSLS. In this case, it can be shown that

θ̂ =

(
X
′
Z
(
Z
′
Z
)−1

Z
′
X

)−1(
X
′
Z
(
Z
′
Z
)−1

Z
′
y

)
(5)

and, in particular, the scalar

β̂ =
(
Y ⊥′ (I −MZ⊥)Y ⊥

)−1 (
Y ⊥′ (I −MZ⊥) y⊥

)
, (6)

where

Y ⊥ = MXY ; y⊥ = MXy; Z⊥ = MXZ (7)

MX = I −X
(
X ′X

)−1
X ′;MZ⊥ = I − Z⊥

(
Z⊥′Z⊥

)−1
Z⊥′, (8)

(see Staiger and Stock, 1997, for details). This estimator ignores the presence of heteroskedas-

ticity and is a GMM-type of estimator under the population unconditional moment condition

E
(
Ziui (θ)

)
= 0. In the general case,

θ̂ =

(
X
′
Z
(
Z
′
Σ̂uZ

)−1
Z
′
X

)−1(
X
′
Z
(
Z
′
Σ̂uZ

)−1
Z
′
y

)
, (9)

where Σ̂u = diag
(
û21

(
θ̂
)
, ..., û2T

(
θ̂
))

with the residuals evaluated at θ̂ in the absence of het-

eroskedasticity (5). Various tests for functional form and heteroskedasticity for linear IV regressions

can be found in Pesaran and Taylor (1999).

Under some mild regularity conditions, θ̂ in (9) is
√
T−consistent and asymptotically normal,

with asymptotic variance

V =
(
QX,ZQ̃

−1
Z,Z

QZ,X

)−1
, (10)

where QX,Z = E
(
XiZ

′
i

)
, QZ,X = Q′

X,Z
and Q̃Z,Z = E

(
u2iZiZ

′
i

)
, whereas, under homoskedastic-

ity, θ̂ in (5) has asymptotic variance

V = σ2u

(
QX,ZQ

−1
Z,Z

QZ,X

)−1
, (11)

with QZ,Z = E
(
ZiZ

′
i

)
, QX,Z is finite and full ranked, for the purpose of identification (see Hall,

2005, inter alia). These are efficient GMM-type estimators.

Given that the rejection of the Sargan J-statistic is an indicator that some instruments are

invalid, and acknowledging the usual trade-off between bias and efficiency when picking a particular

list of instruments, we take all possible combinations of instruments when estimating the structural

equation. Let M be the collection of candidate instruments. Here, M is a countable/finite set,

such that model Mi belongs to the family of models M : Mi ∈ M. For now, take any particular

model, Mi, which is characterized by a particular set of instruments. Then, following Andrews

(1999), one can define a selection vector c ∈ <K that represents a list of “selected” instruments.

Defining the unit-simplex set

C =
{
c ∈ <K\{0} : cj = 0 or 1,∀1 ≤ j ≤ K, where c = (c1, ..., cK)′

}
, (12)
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c is a vector of zeros (excluded instruments) and ones (included instruments) and |c| =
∑K

j cj ≤ K
for c ∈ C denotes the number of the selected instruments c. Also, define c = ιK , a vector of ones,

which implies using the whole set of instruments. Thus, quantities such as Zc, Zc, θ̂c, β̂c, Z
⊥
c , MZ⊥c

,

Σ̂uc , Vc, QX,Zc
, Q̃Z,Zc

and QZ,Zc
are obtained after deleting the instruments j corresponding to

cj = 0. Take, for the sake of simplicity, the homoskedastic case (5). Then,

θ̂c =

(
X
′
Zc

(
Z
′
cZc

)−1
Z
′
cX

)−1(
X
′
Zc

(
Z
′
cZc

)−1
Z
′
cy

)
, (13)

with Zc = [X,Zc] where Zc is a T × |c| matrix, |c| ≤ K2, that only includes instruments associated

with 1′s at vector c. To make it clear, we are selecting only over the available K2 instruments and

therefore keeping all K1 exogenous regressors (X) in the estimation procedure.

There are several procedures for the selection of the appropriate instruments c0 over the full list

of candidate models c ∈ C, where C ⊂ C, with {0} ∈ C, is some parameter space for the instrument

selection vector. Donald and Newey (2001) propose a selection procedure such that an approximate

mean-square error, AMSE, is minimized over all existing instruments deemed to be valid. The

AMSE criterion is defined as

ĉAMSE = argmin
c∈C

AMSET (c) = argmin
c∈C

(
σ̂2au
|c|2

T
+ σ̃2u

(
R̂ (c)− σ̂2 |c|

T

))
, (14)

where σ̂2au = T−1ã′ũ, ã = ẽ[π̃Z
′
cZcπ̃/T ]−1λ̃, ẽ = [IT − Zc(Z

′
cZc)

−1Z
′
c]X, ũ = u(θ̃), σ̃2u = ũ′ũ/T ,

σ̂2 = ã′ã/T , π̃ and θ̃ are preliminary estimators of π and θ, respectively, (say, those for which

c = c), λ̃ is some vector of linear combination coefficients θ̃ (i.e., λ̃′θ̃) and R̂ (c) is a measure of

the goodness of fit of the reduced form model (for instance, based on cross-validation or Mallows

criteria).

Andrews (1999) developed GMM analogues of model selection criteria based on the overidentify-

ing restrictions J statistic in order to consistently select the largest set of valid moment conditions.

The model selection criteria is defined as MSCT (c) = JT (c) − κT (|c| − p) , where JT (c) is com-

puted with the relevant selection vector c, |c| − p is the number of over-identifying restrictions and

κT = o (T ) is a sequence that defines the selection criterion (κT = 2 for the AIC; κT = log T for the

BIC; and κT = Q log log T for some Q > 2 for the HQ-type criterion). In our setup, p = 1+K1 and,

whenever all K1 exogenous variables are used as instruments, |c|− p will be equal to the number of

instruments Z in model c minus one. In the context of linear models, we consider Sargan’s statistic:

ĉMSC = argmin
c∈C

T
(
Q̂Zc,y

− Q̂Zc,X
θ̂c

)′
Q̂−1
Zc,Zc

(
Q̂Zc,y

− Q̂Zc,X
θ̂c

)
σ̂2u,c

− κT (|c| − p)

 , (15)

where

Q̂Zc,y
=
Z
′
cy

T
; Q̂Zc,X

=
Z
′
cX

T
; Q̂Zc,Zc

=
Z
′
cZc
T

; σ̂2u,c =
u(θ̂c)

′u(θ̂c)

T
. (16)

Alternative procedures have been developed in the literature. Hall et al. (2007) proposed a

criterion based on the entropy of the limiting distribution of the GMM estimator, in which the
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focus is the relevance of instruments. The relevant moment selection criterion RMSC is defined as

ĉRMSC = argmin
c∈C

(
ln
(∣∣∣V̂c∣∣∣)+ κT (|c| − p)

)
, (17)

where

V̂c = σ̂2u,c

(
Q̂X,Zc

Q̂−1
Zc,Zc

Q̂Zc,X

)−1
. (18)

On the other hand, Hall and Peixe (2003), consider the problem of instrument selection based on

a combination of the efficiency and non-redundancy conditions

ĉCCIC = argmin
c∈C

T p∑
j=1

ln
[
1− r2j,T (c)

]
+ κT (|c| − p)

 , (19)

where rj,T (c) is the jth sample canonical correlation between di(θ̃) and Zic , with di(θ) = ∂ui(θ)
∂θ =

−Xi and θ̃ is a
√
T− consistent preliminary estimator. That is, rT (c) is a correlation between X

and Zc. See Eryuruk et al. (2009) for a Monte Carlo comparative study of the AMSE, RMSC

and CCIC data-based methods of instrument selection.

In addition, a measure of the goodness of fit for IV regressions was proposed by Pesaran and

Smith (1994). According to these authors, model selection follows from observing the largest

generalized R-squared, GR2, a measure that is based on the prediction errors. More specifically,

ĉGR2 = argmax
c∈C

1−

∑T
i=1

(
yi − X̂iθ̂c

)2
∑T

i=1 (yi − y)2

 , (20)

where y − X̂θ̂c = ũ is the residual from the second step regression, X̂ = Z
(
Z
′
Z
)−1

Z
′
X, and y is

the sample mean.

3 Linear IV Model Averaging Estimators

3.1 The Procedure

In this section we present MA estimation methods where the empirical weights are based on the

above mentioned instrument selection criteria for IV models. Consider K and c as defined in

(12) and the relevant objects indexed by c. Now, let ω =
(
ω1, ..., ω|C|

)′
be a weight vector in the

unit-simplex in <|C| :
HK = {ω ∈ [0, 1]|C| :

∑
c∈C

ωc = 1}. (21)

Although the weights need not be restricted, as in Kuersteiner and Okui (2010), we only consider

weights in the unit-simplex. In our approach, by assuming n = 1 and that all K1 exogenous

variables are kept in any model c, we combine over the K2 ≥ 1 instruments Z, which implies

|C| = 2K2 − 1 different elements in C. By the same token, if we partition Z in two blocks, ZF of

dimension K2F that is always kept in model c and ZV of dimension K2V that is left free to combine,
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such that K2 = K2F + K2V , then |C| = 2K2V − 1. Moreover, c ∈ C is restricted to cj = 1 for all

j corresponding to X and ZF and cs, s 6= j equals either one or zero, depending on whether the

correspondent instrument from ZV stays in the model or not. In practice, ZV can itself be a block

of instruments and the averaging scheme is over estimators that follow from models with distinct

blocks of instruments. In this case, the definitions are straightforward and should not lead the

reader to confusion.

Thus, a model averaging estimator of the unknown (1 +K1)× 1 vector θ is

θ̂ (ω) =
∑
c∈C

ωcθ̂c, (22)

and, in particular, for the scalar β it equals β̂ (ω) =
∑

c∈C ωcβ̂c. Clearly, the post-model selection

estimator is a special case for which no averaging occurs: ωc∗ = 1 for some selected model c∗ and

ωc′ = 0 for c′ 6= c∗ and θ̂ (ω) = θ̂c∗ . In general, the vector ω will be unknown. As in much of the

literature on model averaging, a data-dependent procedure will have to be used to determine the

weights in order to implement estimation according to (22). Thus, we suggest linking the problem

of selecting empirical weights ω̂ with model selection criteria obtained in the estimation stage by

doing direct ‘smoothing’ in line with Buckland, Burnham and Augustin (1997), which developed

an idea originally suggested by Akaike (1979) (see also Burnham and Anderson, 2002 and Hjort

and Claeskens, 2003).

Let ISCc denote the ’instrument selection criterion’ for candidate model M ∈M that is defined

by c ∈ C, according to our notation. Here, ISC may represent AMSE, MSC, RMSC or CCIC as

described earlier in the paper and GR2 is the appropriate goodness of fit measure. The averaging

scheme is obtained by using weights proportional to the exponential form of a given ISC or GR2 :

ω̂c(ISC) =
exp(−1

2ISCc)∑
c′∈C exp(−1

2ISCc′∈C)
, (23)

ω̂c(GR
2) =

exp(12GR
2
c)∑

c′∈C exp(12GR
2
c′∈C)

, (24)

where the sum term encompasses all, not necessarily nested, M ′ ∈M models of interest.

3.2 Computational Issues and Model Screening

An important issue that arises in this framework is that in some cases, the number of potential

combinations is inevitably quite large and increases very fast with the number of available instru-

ments - for example, five instruments generate 31 different combinations, while 10 instruments

allow for 1023 combinations. Averaging over many combinations is not in itself a problem, but a

large number of models implies that many weights will be effectively zero. Therefore, it makes sense

to consider a smaller number of specifications for averaging, by removing the poorest performing

models, as done in the regression literature, but so far unexplored in an IV setting.

We suggest that model screening can take place at different stages of the estimation procedure.

An initial form of screening can be achieved by incorporating the information that certain instru-
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ments are assumed to be valid (which could be based on formal testing) or based on instrument

strength, for example by looking at the first-stage R2. Moreover, one can exploit the fact that

certain blocks of instruments are either valid or invalid block by block, rather than instrument by

instrument, as suggested by Andrews (1999) in the context of model selection and as discussed in

sections 5 and 6.

Another possibility would be to consider a ‘backward elimination’ procedure as in Cleaskens,

Croux and Venkerckhoven (2006) (see also Zhang, Wan and Zhou, 2012). One can start from the

specification containing all instruments K, then remove one instrument at a time such that this

deletion leads to the smallest value for the information criterion. The procedure continues until

p ≤ K∗ < K instruments are obtained. The MA estimator then averages the estimates arising from

combinations of these K∗ instruments, which can reduce substantially the number of combinations,

as pointed out above. This is slightly different from Claeskens et al (2006) and Zhang et al (2012)

because in their case sub-models are nested after the selection of the most relevant regressors.

Furthermore, one can consider a screening method adapted from Yuan and Yang (2005). This

involves splitting the sample into two parts W (1) = (yi, Yi, Xi, Zi) , 1 ≤ i ≤ T/2 and W (2) =

(yi, Yi, Xi, Zi) , T/2 + 1 ≤ i ≤ T , and compute the selection criteria for each model c ∈ C based on

the first half of the sample, retaining the top m models (set Cs with M elements). Then, using the

remaining half of the data, and for each model c ∈ Cs, define ω̂∗c = 1
T/2

∑T
i=T/2+1 ω̂c,i for c ∈ Cs

where ω̂c,T/2+1 = 1/M and ω̂c,i is calculated from ω̂c for each criterion for the sample T/2 + 1, ..., i.

There are several possibilities for the choice of m (Yuan and Yang, 2005 set m = 40, for example),

but we suggest using a concave function of the number of combinations such as m = bP 1/2c, where

P denotes the number of instrument combinations and b.c denotes the integer part.

Finally, we consider a simplified screening procedure, which we designate by ‘trimming’, in

which selection criteria are computed for all possible combinations, but only the top m models are

retained for averaging. Again, we experimented with different choices for m’s, but we opted for the

sample dependent choice m = bP 1/2c.
Nonetheless, we should stress that there are important differences regarding model screening

in an IV setup. Contrary to LS, in IV regression the screening is applied to the reduced form

equation and not to the structural equation of interest. This may give less relevance to screening

in IV since instruments are not part of the structural equation and, thus, omitted variable bias due

to averaging will not be a factor.

4 Properties of the Linear IV Estimator

Given that the MA estimator θ̂ (ω) =
∑

c∈C ωcθ̂c is averaging over a list of candidate TSLS estima-

tors for a given ω, its limit statistical properties depend on a linear combination of the random pro-

cesses θ̂c, c ∈ C, possibly containing common instruments, which are
√
T -gaussian with asymptotic

variance Vc under standard regularity conditions, as stated in the following Assumption (implicit

9



at all Theorems and Corollaries of this paper):

Assumption 1 (Asymptotic normality of θ̂c)

Assume that the data is random; E
(
Ziui

)
= 0; E

(
ZiYi

)
is full column rank n, and Q̃Z,Z =

E
(
u2iZiZ

′
i

)
is nonsingular.

Hence, we show in the next theorem that θ̂ (ω) is also consistent and
√
T -gaussian. Note,

however, that the asymptotic variance will include covariance terms associated to θ̂c’s with common

instruments, which could complicate the derivation of its limiting behavior. We circumvent this

problem by defining a selection matrix that contains certain rows with zeros, operating on the full

list of instruments, Zc (here, c = c = ιK and |c| = K), as in Domowitz and White (1982), see

also Newey (1985). Let Λc be a matrix of dimension K by |c|, such that each column j = 1, ..., |c|
contains zeros, except a single ”1” at position i that corresponds to the instrument as defined in

model c = ιK . Then,

Zc = ZcΛc, (25)

and in this way we obtain the limiting distribution of our MA estimator in any general form of

heteroskedasticity, as shown in the following theorem.

Theorem 1 (Distribution of the MA estimator): Assume that the model is correctly specified.

As T →∞, for any ω ∈ HK ,

θ̂ (ω) =
∑
c∈C

ωcθ̂c
p→ θ, (26)

where θ̂c is the TSLS estimator for model c ∈ C. Moreover,

√
T
(
θ̂ (ω)− θ

)
d→ N (0, Vω) , (27)

where

Vω =

(∑
c∈C

ωcVcQX,Zc
Q̃−1
Zc,Zc

Λ′c

)
Q̃Zc,Zc

(∑
c∈C

ωcΛcQ̃
−1
Zc,Zc

QZc,X
Vc

)
. (28)

Note that the variance matrix in the middle corresponds to employing all instruments (i.e., c = c =

ιm).

The following Corollary is under the assumption of homoskedasticity noting that, in this case,

Q̃Zc,Zc
= σ2uQZc,Zc

.

Corollary 1 (Distribution of the MA estimator under homoskedasticity): Assume that the

model is correctly specified. As T →∞, for any ω ∈ HK ,

θ̂ (ω) =
∑
c∈C

ωcθ̂c
p→ θ, (29)

where θ̂c is the TSLS estimator for model c ∈ C. Moreover,

√
T
(
θ̂ (ω)− θ

)
d→ N (0, Vω) , (30)
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where

Vω =

(∑
c∈C

ωcVcQX,Zc
Q−1
Zc,Zc

Λ′c

)
QZc,Zc

σ2u

(∑
c∈C

ωcΛcQ
−1
Zc,Zc

QZc,X
Vc

)
. (31)

Remark. A post-model-selection estimator, PMSE, is indeed a special case of MA. Whenever

ωc̃ = 1 and ωc′ = 0, for all c′ 6= c̃, for some model c = c̃, we have θ̂ (ω) = θ̂c̃ and Vω = Vc̃.

Thus, for a given ω, and noting that Λc is known for all c ∈ C, a consistent estimator of Vω can

be obtained using consistent estimators for Q·c , for all c ∈ C, and for σ2u as well, and inference can

be carried out in the usual way. In the previous section, we recommend the use of a few criteria for

selecting ω. Clearly, the asymptotic covariance matrix Vω will differ across methods for obtaining

ω̂. Still, notice that the expression for Vω is derived independently on the criteria in section 3 that

we pick for replacing ω by ω̂.

Now, we provide asymptotic results for the MA estimator evaluated at ω̂. This is possible due to

the fact that we have closed form expressions for ω̂(ISC) and ω̂(GR2) and, for illustration purposes,

we now only consider the case of the RMSC using the AIC penalty term. For this particular case,

ω̂c(RMSC) =

∣∣∣V̂c∣∣∣− 1
2

exp(p− |c|)∑
c′∈C

∣∣∣V̂c′∣∣∣− 1
2

exp(p− |c′|)
, (32)

which converges in probability to

ωc(RMSC) =
|Vc|−

1
2 exp(p− |c|)∑

c′∈C |Vc′ |
− 1

2 exp(p− |c′|)
, (33)

as T →∞. Recall that, p = 1+K1 and |c| = K1c+K2c, where K1c,K2c are the number of exogenous

variables and instruments used in model c, respectively. Hence, |c| − p = K1c +K2c − 1−K1. For

simplicity, once we restrict to models that have exactly the same number of instruments (not

necessarily the same instruments), as T →∞,

ω̂c(RMSC) =

∣∣∣V̂c∣∣∣− 1
2

∑
c′∈C∗

∣∣∣V̂c′∣∣∣− 1
2
)

p→ |Vc|−
1
2∑

c′∈C∗ |Vc′ |
− 1

2 )
= ωc(RMSC), (34)

where

C∗ =
{
c ∈ <K\{0} : cj = 0 or 1, ∀1 ≤ j ≤ K, c = (c1, ..., cK)′ , s.t. |c| = K1c +K2c = K∗ < K,∀c

}
,

(35)

with, C∗ ⊂ C and
∑

c∈C ωc(RMSC) = 1.

Note that the empirical weights ω̂ follow from existing instrument selection criterion or a mea-

sure of the goodness of fit: AMSE, MSC, RMSC, CCIC and GR2. Hence, in order to study the

properties of the MA estimator for each criterion, we need the following additional assumption for

Theorem 2:

11



Assumption 2 (Regularity conditions for instrument selection criteria and goodness of fit)

Depending on the chosen MA approach, assume either the conditions (A2-MSC) for the MSC

as in Andrews (1999); or (A2-RMSC) for the RMSC as in Hall et al. (2007); or (A2-CCIC)

for the CCIC as in Hall and Peixe (2003); or (A2-GR2) for the GR2 as in Pesaran and Smith

(1994).

By a similar token, we can consider any information criteria such that ω̂(ISC)
p→ ω(ISC), as

T →∞, for some well defined ω(ISC) (similarly for ω̂(GR2)) to establish the next Theorem.

Theorem 2 (Distribution of the MA estimator evaluated at ω̂): Assume that the model is

correctly specified. As T →∞, for any ω ∈ HK ,

θ̂ (ω̂(ISC)) =
∑
c∈C

ω̂c(ISC)θ̂c
p→ θ, (36)

where θ̂c and ω̂c(ISC) are the TSLS estimator and the empirical weight, respectively, for model

c ∈ C. Moreover,
√
T
(
θ̂ (ω̂(ISC))− θ

)
d→ N (0, Vω(ISC)) , (37)

where

Vω(ISC) =

(∑
c∈C

ωc(ISC)VcQX,Zc
Q̃−1
Zc,Zc

Λ′c

)
Q̃Zc,Zc

(∑
c∈C

ωc(ISC)ΛcQ̃
−1
Zc,Zc

QZc,X
Vc

)
, (38)

for well a defined ω(ISC).

Note that for the AMSE, we cannot directly use the conditions in Donald and Newey (2001), as

their framework allows for K2 to increase with T at a suitable rate. However, for the purposes of

model averaging, their regularity conditions remain applicable for a fixed dimension of the candidate

set Zc.

5 Monte Carlo Study

In this section, we report results of a simple Monte Carlo study assessing the finite sample properties

of the proposed IV model averaging estimators. To facilitate comparisons, we base our experiments

on a modified version of the design used in Donald and Newey (2001), Eryuruk et al. (2009),

Kuersteiner and Okui (2010) and Okui (2011), for example, by also allowing for an exogenous

variable and the presence of heteroskedastic errors, which are relevant features in most applications.

The data generating process is

yi = β0Yi + γ0Xi + εi(1 + φ|z∗i |), Yi = π′Zi + ui + ηi, i = 1, ..., T, (39)

where the true parameter of interest is the scalar β0, which is fixed at 0.1. Yi and Xi are scalars,

with Xi = νi + ηi, νi and ηi being independently distributed N(0, 1) random variables. Note that
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Yi and Xi are correlated via ηi (which itself is independent from ui). Furthermore,

(
εi, ui, Z

′
i

)′ ∼ i.i.d.N (0,Σ) , where Σ =


1 0.5 01×M

0.5 1 01×M

0M×1 0M×1 IM

 . (40)

The degree of endogeneity is 0.5 and we define z∗i = z1i + ηi, where z1i is the first column of Z.

Thus, the error term is heteroskedastic when φ 6= 0, so we set φ ∈ {0, 0.1}. We also consider cases

with and without the exogenous variable Xi, that is, γ0 ∈ {0, 0.1}. The number of observations is

T ∈ {100, 250} and the number of replications is 5000.

We set the maximum number of instrumentsM to 10 and 20 and allow for different combinations

of instruments. We fix a block of moment conditions (Mfixed), assumed to be valid, namely

Mfixed = 2 when M = 10 (255 combinations) and Mfixed = 10 when M = 20 (1023 combinations).

For each replication, we select the instruments for the fixed block that maximize the correlation with

the endogenous regressor Yi, while using all possible combinations of the remaining instruments, up

to a maximum of 255/1023 combinations (i.e., all possible combinations of the ‘free’ instruments).

In terms of specifications for π, we have, for j = 1, ...,M,

Model A (equal coefficients) : πj =

√√√√ R2
f

M
(

1−R2
f

) , (41)

Model B (declining coefficients) : πj = c (M)

(
1− j

M + 1

)4

, (42)

where c (M) is set so that π satisfies π′π = R2
f/
(

1−R2
f

)
, where R2

f ∈ {0.1, 0.01} .
Note that in model A, all instruments are equally important (and relatively weak), which

means that instrument selection methods may not be very effective. In model B, the strength

of the instruments declines gradually, but the ordering matters. The value of R2
f = 0.01 can be

interpreted as the “weak instruments” case, quite common in empirical applications.

As in Kuersteiner and Okui (2010) and Okui (2011), we use the selection method of Donald and

Newey (2001) as the benchmark against which our procedures are compared. Following Donald

and Newey (2001), we compute their estimator (TSLS-DN) using a cross-validation criterion for the

first-stage reduced-form model. Notice that for Model B, the instruments should be included in the

order of their explanatory power, which corresponds to the case in which the practitioner knows the

relative importance of the instruments. Thus, these conditions may favour selection methods such

as that of Donald and Newey (2001) - the experiments in Okui (2011) and Eryuruk et al. (2009)

suggest that sequentially adding the instruments in the ‘wrong’ order causes the performance of

selection methods to deteriorate.

On the other hand, we consider smooth MA estimators using different ω̂(.) based on the different

criteria discussed in section 2 (denoted as MA-DN, MSC-BIC, RMSC, CCIC and GR2) and for each

estimator we compute the median bias (MB) and the median absolute deviation (MAD) relative to
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Table 1: Model Averaging Estimators, Model A

M = 10, Mfixed = 2 DNTSLS MA-DN MSC-BIC RMSC CCIC GR2

T = 100, R2
f = 0.1 MB

[RMB]
0.1918 0.1812

[ 0.9446]
0.1670

[ 0.8708]
0.1917

[ 0.9992]
0.1829

[ 0.9534]
0.1791

[ 0.9337]
MAD

[RMAD]
0.2725 0.1966

[ 0.7217]
0.1943

[ 0.7133]
0.2147

[ 0.7881]
0.2068

[ 0.7591]
0.1965

[ 0.7214]
IDR 1.0117 0.4928 0.5580 0.5687 0.5526 0.5152

R2
f = 0.01 MB

[RMB]
0.2421 0.2424

[ 1.0014]
0.2384

[ 0.9848]
0.2503

[ 1.0341]
0.2437

[ 1.0067]
0.2420

[ 0.9998]
MAD

[RMAD]
0.2614 0.2523

[ 0.9650]
0.2570

[ 0.9830]
0.2652

[ 1.0145]
0.2651

[ 1.0141]
0.2535

[ 0.9697]
IDR 0.5869 0.5698 0.6482 0.6444 0.6770 0.5894

T = 250, R2
f = 0.1 MB

[RMB]
0.1365 0.1235

[ 0.9051]
0.1060

[ 0.7772]
0.1391

[ 1.0197]
0.1436

[ 1.0521]
0.1170

[ 0.8571]
MAD

[RMAD]
0.1733 0.1424

[ 0.8215]
0.1388

[ 0.8011]
0.1663

[ 0.9597]
0.1660

[ 0.9581]
0.1416

[ 0.8171]
IDR 0.4545 0.3947 0.4299 0.4894 0.4581 0.4109

R2
f = 0.01 MB

[RMB]
0.2300 0.2113

[ 0.9189]
0.2162

[ 0.9400]
0.2289

[ 0.9952]
0.2227

[ 0.9682]
0.2192

[ 0.9530]
MAD

[RMAD]
0.2473 0.2219

[ 0.8973]
0.2337

[ 0.9448]
0.2497

[ 1.0096]
0.2510

[ 1.0150]
0.2316

[ 0.9365]
IDR 0.5421 0.6094 0.6040 0.6426 0.6796 0.5646

M = 20, Mfixed = 10

T = 100, R2
f = 0.1 MB

[RMB]
0.2214 0.2088

[ 0.9431]
0.2008

[ 0.9073]
0.2079

[ 0.9391]
0.2088

[ 0.9431]
0.2079

[ 0.9390]
MAD

[RMAD]
0.2970 0.2103

[ 0.7079]
0.2057

[ 0.6925]
0.2170

[ 0.7305]
0.2126

[ 0.7156]
0.2102

[ 0.7075]
IDR 0.4795 0.3690 0.4171 0.4949 0.3998 0.3743

R2
f = 0.01 MB

[RMB]
0.2505 0.2515

[ 1.0040]
0.2506

[ 1.0007]
0.2504

[ 0.9996]
0.2460

[ 0.9823]
0.2504

[ 0.9995]
MAD

[RMAD]
0.2584 0.2524

[ 0.9768]
0.2541

[ 0.9831]
0.2541

[ 0.9832]
0.2491

[ 0.9639]
0.2516

[ 0.9736]
IDR 0.4315 0.3973 0.4651 0.5156 0.4372 0.4075

T = 250, R2
f = 0.1 MB

[RMB]
0.1781 0.1611

[ 0.9046]
0.1539

[ 0.8641]
0.1607

[ 0.9020]
0.1703

[ 0.9561]
0.1591

[ 0.8929]
MAD

[RMAD]
0.2272 0.1644

[ 0.7236]
0.1600

[ 0.7045]
0.1788

[ 0.7869]
0.1768

[ 0.7785]
0.1616

[ 0.7112]
IDR 0.4364 0.3339 0.3572 0.4904 0.3948 0.3442

R2
f = 0.01 MB

[RMB]
0.2480 0.2461

[ 0.9925]
0.2475

[ 0.9983]
0.2504

[ 1.0097]
0.2449

[ 0.9877]
0.2420

[ 0.9758]
MAD

[RMAD]
0.2559 0.2473

[ 0.9665]
0.2497

[ 0.9760]
0.2639

[ 1.0313]
0.2489

[ 0.9729]
0.2440

[ 0.9535]
IDR 0.4067 0.3872 0.4219 0.5446 0.4697 0.4076

Notes: numbers in square brackets are measures relative to the Donald-Newey estimator; standard

deviations in round brackets; (R)MD and (R)MAD denote (Relative) Median Bias and Median Absolute

Deviation.
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Table 2: Model Averaging Estimators, Model B

M = 10, Mfixed = 2 DNTSLS MA-DN MSC-BIC RMSC CCIC GR2

T = 100, R2
f = 0.1 MB

[RMB]
0.1714 0.1754

[ 1.0228]
0.1627

[ 0.9490]
0.1892

[ 1.1038]
0.1698

[ 0.9904]
0.1768

[ 1.0315]
MAD

[RMAD]
0.1996 0.1884

[ 0.9439]
0.1903

[ 0.9532]
0.2067

[ 1.0351]
0.1898

[ 0.9508]
0.1895

[ 0.9490]
IDR 0.4895 0.4771 0.5404 0.5499 0.5330 0.4953

R2
f = 0.01 MB

[RMB]
0.2368 0.2441

[ 1.0309]
0.2411

[ 1.0179]
0.2441

[ 1.0308]
0.2427

[ 1.0246]
0.2444

[ 1.0321]
MAD

[RMAD]
0.2598 0.2552

[ 0.9823]
0.2570

[ 0.9894]
0.2615

[ 1.0066]
0.2627

[ 1.0113]
0.2560

[ 0.9856]
IDR 0.5853 0.5770 0.6509 0.6539 0.6747 0.5990

T = 250, R2
f = 0.1 MB

[RMB]
0.1038 0.1070

[ 1.0317]
0.1014

[ 0.9773]
0.1419

[ 1.3677]
0.0927

[ 0.8930]
0.1212

[ 1.1679]
MAD

[RMAD]
0.1388 0.1278

[ 0.9207]
0.1290

[ 0.9295]
0.1653

[ 1.1905]
0.1257

[ 0.9057]
0.1399

[ 1.0076]
IDR 0.4172 0.3757 0.4111 0.4659 0.4107 0.3988

R2
f = 0.01 MB

[RMB]
0.2194 0.2270

[ 1.0347]
0.2344

[ 1.0685]
0.2251

[ 1.0258]
0.2181

[ 0.9942]
0.2241

[ 1.0213]
MAD

[RMAD]
0.2348 0.2468

[ 1.0512]
0.2449

[ 1.0428]
0.2553

[ 1.0874]
0.2541

[ 1.0824]
0.2401

[ 1.0226]
IDR 0.5513 0.5828 0.6196 0.6375 0.6550 0.5679

M = 20, Mfixed = 10

T = 100, R2
f = 0.1 MB

[RMB]
0.1995 0.2048

[ 1.0266]
0.1971

[ 0.9878]
0.2100

[ 1.0529]
0.2010

[ 1.0076]
0.2051

[ 1.0283]
MAD

[RMAD]
0.2095 0.2073

[ 0.9896]
0.2012

[ 0.9602]
0.2160

[ 1.0310]
0.2051

[ 0.9791]
0.2068

[ 0.9873]
IDR 0.3912 0.3650 0.4127 0.4647 0.3872 0.3721

R2
f = 0.01 MB

[RMB]
0.2478 0.2521

[ 1.0172]
0.2504

[ 1.0103]
0.2483

[ 1.0021]
0.2487

[ 1.0035]
0.2510

[ 1.0128]
MAD

[RMAD]
0.2571 0.2528

[ 0.9833]
0.2534

[ 0.9856]
0.2527

[ 0.9828]
0.2508

[ 0.9757]
0.2521

[ 0.9805]
IDR 0.4325 0.3971 0.4653 0.5090 0.4304 0.4053

T = 250, R2
f = 0.1 MB

[RMB]
0.1505 0.1534

[ 1.0194]
0.1419

[ 0.9429]
0.1675

[ 1.1129]
0.1493

[ 0.9918]
0.1553

[ 1.0315]
MAD

[RMAD]
0.1652 0.1577

[ 0.9544]
0.1491

[ 0.9024]
0.1781

[ 1.0776]
0.1552

[ 0.9392]
0.1584

[ 0.9589]
IDR 0.3673 0.3193 0.3443 0.4386 0.3542 0.3291

R2
f = 0.01 MB

[RMB]
0.2195 0.2067

[ 0.9417]
0.2141

[ 0.9752]
0.2278

[ 1.0378]
0.2208

[ 1.0059]
0.2175

[ 0.9910]
MAD

[RMAD]
0.2402 0.2175

[ 0.9055]
0.2335

[ 0.9718]
0.2479

[ 1.0319]
0.2484

[ 1.0339]
0.2311

[ 0.9621]
IDR 0.5431 0.6029 0.6048 0.6445 0.6719 0.5617

See notes to Table 1.
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that of TSLS-DN (RMB and RMAD), as well as the inter-decile range (IDR, the difference between

the 10% and 90% deciles), as in Kuersteiner and Okui (2010).

Tables 1 and 2 contain results for Models A and B, respectively. A few interesting conclusions

emerge from this simple study. First, the MA estimators perform almost uniformly better than

the DN selection procedure across all specifications in terms of median absolute deviations, with

substantial reductions in this measure. The gains in terms of bias can be sizeable, although they

depend on the setting at hand. Second, the MSC-based MA estimator appears to be the most robust

in all settings, but the differences between estimators are generally small. Third, even in the case

where one would expect the DN procedure to dominate (Model B), MA estimators have comparable

MB performances, usually bettering the DN method in terms MAD. In fact, for this specification

the comparison favors some MA methods, namely the MSC-BIC procedure, as the sample size and

the number of instruments increase. Fourth, varying the strength of the instruments through R2
f

has the effect of equalizing the performance of selection and MA procedures for R2
f = 0.01 for both

models A and B. Though less striking, the performance of the MA estimators is slightly superior

to the DN estimator in many instances, displaying a better balance between bias and dispersion.

Concerning estimation with screening procedures, we focus on the case of Model B with M = 20

and Mfixed = 10, such that the strength of the instruments varies and the number of combinations

is the largest, and therefore screening methods might be most useful. Results in Table 3, however,

are mixed, as there is no clear pattern across specifications or MA procedures. For example, the

‘trimming’ approach improves the performance of all MA estimators in terms of bias when T = 250

and R2 = 0.1, but for R2 = 0.01 no screening is a better choice, while the converse is true for

T = 100. In fact, of the three screening procedures, the simple ‘trimming’ seems to behave the

best, while the performance of the MA estimators deteriorates most with the split-sample screening

of Yuan and Yang (2005), particularly in terms of MAD. Interestingly, the ‘backward elimination’

procedure can lead to significant gains in bias for the MA-DN and RMSC approaches, but not in

a consistent way. Overall, it appears that non-screened estimators display a well balanced finite

sample bias-variance trade-off, suggesting that the averaging schemes studied here are able to

correctly filter poorer models by appropriately weighing them down, while averaging over a larger

number of models helps to decrease dispersion.

Finally, in Table 4 we observe that the performance of the estimators in terms of median bias

relative to DN is largely unaffected by the presence of an endogenous variables and heteroskedas-

ticity when M = 10 and Mfixed = 2, but these additional features improve the relative behavior

of MA estimators when M = 20 and Mfixed = 10. Note, however, that the advantages of MA

estimators are substantial in terms of the RMAD measure when an exogenous variable is included.

Moreover, the MA estimators show, in general, a great deal less dispersion, as can be seen by the

IDR rows, with the DN selection procedures performing a lot worse when the exogenous variable is

in place. This seems to imply that MA procedures do indeed attenuate the trade-off between bias

and dispersion relative to instrument selection procedures.
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Table 3: MA Estimation with Screening, Model B, M = 20, Mfixed = 10

T = 100, R2
f = 0.1 DNTSLS MA-DN MSC-BIC RMSC CCIC GR2

Trimming MB
[RMB]

0.1995 0.2138
[1.0692]

0.2109
[1.0546]

0.2191
[1.0956]

0.2144
[1.0721]

0.2156
[1.0779]

MAD
[RMAD]

0.2095 0.2180
[1.0383]

0.2202
[1.0484]

0.2223
[1.0584]

0.2162
[1.0297]

0.2186
[1.0411]

IDR 0.3912 0.3653 0.3876 0.3843 0.3751 0.3661
Screening MB

[RMB]
0.2130
[1.0652]

0.2100
[1.0498]

0.2168
[1.0840]

0.2223
[1.1114]

0.1253
[0.6264]

MAD
[RMAD]

0.2227
[1.0607]

0.2222
[1.0579]

0.2340
[1.1141]

0.2279
[1.0853]

0.1391
[0.6625]

IDR 0.4556 0.4354 0.4756 0.4934 0.3248
Backward elimination MB

[RMB]
0.1065
[0.5858]

0.1897
[1.0435]

0.0983
[0.5411]

0.1965
[1.0815]

0.4626
[2.5455]

MAD
[RMAD]

0.2235
[1.1564]

0.1938
[1.0025]

0.2848
[1.4730]

0.2394
[1.2382]

0.4707
[2.4350]

IDR 0.7864 0.3807 1.0106 0.7171 0.4603
R2
f = 0.01

Trimming MB
[RMB]

0.2478 0.2423
[0.9691]

0.2432
[0.9729]

0.2498
[0.9992]

0.2455
[0.9819]

0.2418
[0.9672]

MAD
[RMAD]

0.2571 0.2426
[0.9331]

0.2474
[0.9517]

0.2529
[0.9726]

0.2482
[0.9546]

0.2422
[0.9316]

IDR 0.4325 0.3879 0.3889 0.4270 0.4162 0.3875
Screening MB

[RMB]
0.2638
[1.0554]

0.2651
[1.0605]

0.2609
[1.0437]

0.2539
[1.0155]

0.1602
[0.6409]

MAD
[RMAD]

0.2692
[1.0355]

0.2720
[1.0462]

0.2628
[1.0109]

0.2609
[1.0036]

0.1655
[0.6365]

IDR 0.5047 0.4803 0.5227 0.5262 0.3542
Backward elimination MB

[RMB]
0.1839
[0.7608]

0.2399
[0.9926]

0.2095
[0.8670]

0.2546
[1.0537]

0.5318
[2.2005]

MAD
[RMAD]

0.2768
[1.1010]

0.2439
[0.9700]

0.3677
[1.4627]

0.2934
[1.1670]

0.5329
[2.1197]

IDR 0.8503 0.4217 1.0830 0.7154 0.4798
T = 250, R2

f = 0.1
Trimming MB

[RMB]
0.1505 0.1537

[0.9604]
0.1451
[0.9071]

0.1536
[0.9601]

0.1503
[0.9396]

0.1546
[0.9663]

MAD
[RMAD]

0.1652 0.1554
[0.9144]

0.1499
[0.8818]

0.1568
[0.9221]

0.1533
[0.9015]

0.1555
[0.9145]

IDR 0.3673 0.3060 0.3136 0.3323 0.3228 0.3042
Screening MB

[RMB]
0.2149
[1.4231]

0.2040
[1.3508]

0.2198
[1.4554]

0.2110
[1.3976]

0.1822
[1.2063]

MAD
[RMAD]

0.2169
[1.2759]

0.2057
[1.2103]

0.2256
[1.3270]

0.2174
[1.2786]

0.1848
[1.0872]

IDR 0.4565 0.4260 0.4960 0.4858 0.4109
Backward elimination MB

[RMB]
0.1527
[1.0408]

0.1587
[1.0821]

0.1005
[0.6853]

0.1773
[1.2084]

0.4127
[2.8135]

MAD
[RMAD]

0.2325
[1.4530]

0.1611
[1.0070]

0.2407
[1.5043]

0.2241
[1.4002]

0.4151
[2.5939]

IDR 0.7758 0.3278 0.9231 0.6258 0.3832
R2
f = 0.01

Trimming MB
[RMB]

0.2195 0.2304
[1.0474]

0.2336
[1.0617]

0.2426
[1.1028]

0.2345
[1.0658]

0.2290
[1.0408]

MAD
[RMAD]

0.2402 0.2306
[0.9601]

0.2338
[0.9733]

0.2433
[1.0130]

0.2372
[0.9875]

0.2301
[0.9580]

IDR 0.5431 0.3844 0.4051 0.4492 0.4447 0.3887
Screening MB

[RMB]
0.2336
[1.0620]

0.2110
[0.9590]

0.2398
[1.0898]

0.2251
[1.0233]

0.2209
[1.0042]

MAD
[RMAD]

0.2833
[1.1803]

0.2469
[1.0288]

0.3084
[1.2851]

0.2963
[1.2344]

0.2685
[1.1189]

IDR 0.8668 0.7513 0.9472 0.9873 0.8176
Backward elimination MB

[RMB]
0.2564
[1.0560]

0.2452
[1.0102]

0.2376
[0.9789]

0.2651
[1.0919]

0.5340
[2.1996]

MAD
[RMAD]

0.3296
[1.3082]

0.2464
[0.9779]

0.3856
[1.5304]

0.2984
[1.1844]

0.5360
[2.1270]

IDR 0.9468 0.3892 1.0593 0.7887 0.4557

See notes to Table (1); Trimming corresponds to the case where the m = b10231/2c best models are used for

averaging; Screening denotes the split-sample procedure as in Yuan and Yang (2005); ‘Backward elimination’

designates the screening procedure following Claeskens et al. (2006).
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Table 4: Model A, R2 = 0.1, with an Exogenous Regressor and/or Heteroskedasticity

M = 10, Mfixed = 2 DNTSLS MA-DN MSC-BIC RMSC CCIC GR2

T = 100
γ0 = 0, φ = 0.1 MB

[RMB]
0.2163 0.2019

[ 0.9335]
0.1881

[ 0.8694]
0.2162

[ 0.9995]
0.2053

[ 0.9490]
0.2016

[ 0.9319]
MAD

[RMAD]
0.3068 0.2198

[ 0.7165]
0.2183

[ 0.7114]
0.2388

[ 0.7783]
0.2327

[ 0.7585]
0.2200

[ 0.7170]
IDR 0.6103 0.5507 0.6256 0.6385 0.6185 0.5761

γ0 = 0.1, φ = 0.1 MB
[RMB]

0.2544 0.2413
[ 0.9485]

0.2248
[ 0.8837]

0.2715
[ 1.0673]

0.2530
[ 0.9948]

0.2409
[ 0.9471]

MAD
[RMAD]

0.6289 0.2713
[ 0.4313]

0.2577
[ 0.4098]

0.2895
[ 0.4604]

0.3082
[ 0.4901]

0.2651
[ 0.4216]

IDR 3.7933 0.7081 0.7160 0.7064 0.9051 0.6794

T = 250
γ0 = 0, φ = 0.1 MB

[RMB]
0.1512 0.1395

[ 0.9226]
0.1184

[ 0.7827]
0.1551

[ 1.0253]
0.1595

[ 1.0544]
0.1308

[ 0.8652]
MAD

[RMAD]
0.1942 0.1604

[ 0.8261]
0.1553

[ 0.7998]
0.1866

[ 0.9609]
0.1864

[ 0.9601]
0.1574

[ 0.8105]
IDR 0.4877 0.4457 0.4837 0.5467 0.5179 0.4619

γ0 = 0.1, φ = 0.1 MB
[RMB]

0.1625 0.1363
[ 0.8387]

0.1340
[ 0.8244]

0.1828
[ 1.1248]

0.1723
[ 1.0602]

0.1437
[ 0.8846]

MAD
[RMAD]

0.5139 0.1814
[ 0.3530]

0.1754
[ 0.3414]

0.2172
[ 0.4227]

0.2333
[ 0.4540]

0.1805
[ 0.3512]

IDR 3.1121 0.6275 0.5474 0.6279 0.7278 0.5388
M = 20, Mfixed = 10

T = 100
γ0 = 0, φ = 0.1 MB

[RMB]
0.2468 0.2339

[ 0.9475]
0.2248

[ 0.9108]
0.2333

[ 0.9450]
0.2346

[ 0.9503]
0.2331

[ 0.9444]
MAD

[RMAD]
0.3382 0.2360

[ 0.6979]
0.2303

[ 0.6810]
0.2429

[ 0.7184]
0.2380

[ 0.7037]
0.2360

[ 0.6980]
IDR 0.5318 0.4124 0.4702 0.5486 0.4464 0.4186

γ0 = 0.1, φ = 0.1 MB
[RMB]

0.3460 0.3004
[ 0.8681]

0.2887
[ 0.8344]

0.3042
[ 0.8791]

0.2977
[ 0.8602]

0.3001
[ 0.8672]

MAD
[RMAD]

0.6201 0.3052
[ 0.4922]

0.2909
[ 0.4690]

0.3091
[ 0.4984]

0.3024
[ 0.4877]

0.3020
[ 0.4870]

IDR 3.3227 0.4917 0.5516 0.5868 0.5553 0.4831

T = 250
γ0 = 0, φ = 0.1 MB

[RMB]
0.1512 0.1404

[ 0.9283]
0.1199

[ 0.7926]
0.1547

[ 1.0230]
0.1606

[ 1.0623]
0.1320

[ 0.8727]
MAD

[RMAD]
0.1942 0.1621

[ 0.8350]
0.1595

[ 0.8213]
0.1866

[ 0.9609]
0.1876

[ 0.9663]
0.1604

[ 0.8262]
IDR 0.4877 0.4517 0.4962 0.5555 0.5200 0.4761

γ0 = 0.1, φ = 0.1 MB
[RMB]

0.3012 0.2280
[ 0.7568]

0.2194
[ 0.7284]

0.2349
[ 0.7799]

0.2275
[ 0.7554]

0.2277
[ 0.7560]

MAD
[RMAD]

0.6092 0.2297
[ 0.3770]

0.2221
[ 0.3646]

0.2426
[ 0.3982]

0.2424
[ 0.3979]

0.2293
[ 0.3763]

IDR 3.0986 0.4491 0.4645 0.5923 0.5542 0.4483

See notes to Table 1.
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These results suggest that for higher dimensional problems, when there are more instruments to

choose from (and to combine), selection procedures may lead to worse estimates, whereas a model

averaging approach may use all available information more efficiently. The same appears to be true

for different sample sizes, i.e., the relative performance of MA estimators improves when T = 250,

particularly for M = 20 and Mfixed = 10. Interestingly, of the additional features we considered,

heteroskedasticity seems to have a lighter impact, whereas the presence of an exogenous variable

in the model leads to better results for MA estimators.

6 Empirical Illustration: Returns to Education

This section provides an empirical example of our linear IV model averaging approach, in which

we reexamine the analysis in Donald and Newey (2001) concerning instrument selection in the well

known study of returns to schooling of Angrist and Krueger (1991). Using the quarter of birth

and its interactions with other covariates as instruments, Angrist and Krueger (1991) report that

their TSLS estimates are close to standard least squares estimates when the log of weekly wages

of 329,509 men born between 1930-1939 is regressed on the number of years of schooling, thus

suggesting that bias in conventional estimates is negligible (the original dataset and estimation

replication files are available from Joshua Angrist’s webpage).

Donald and Newey (2001) consider a particular version of the model in which an intercept plus

nine year-of-birth dummies and 50 state-of-birth dummies are also used as explanatory variables.

These authors then consider the problem of optimal instrument selection by defining 8 different

instrument sets, treating each set of dummies as complete blocks. Following Donald and Newey’s

(2001) notation, the blocks of instruments are: 3 quarter-of-birth dummies (denoted as Q); 27

dummies resulting from the interaction of quarter-of-birth with 9 year-of-birth dummies (denoted

as Q*Y ); 150 dummy variables obtained by interacting quarter-of-birth dummies with 50 state-of-

birth dummies (Q*S). In addition, Donald and Newey (2001) consider a set of regional dummies

based on the 1980 Census classification of states into four (R4) and nine (R9) regions, interacted

with quarter-of-birth dummies, thus resulting in a set of 9 instruments (Q*R4) and 24 instruments

(Q*R9), respectively. All sets include block of quarter-of-birth dummies Q, as well as the complete

set of 60 exogenous variables (intercept, Y and S), so that the smallest instruments set comprises

63 instruments. Each possible combination of these blocks was then considered, using instrument

selection criteria to determine the ‘optimal’ instrument set.

Interestingly, the different estimators considered by Donald and Newey (2001) - TSLS, LIML

and bias-corrected TSLS - yielded distinct optimal sets, although the estimates of returns to school-

ing differ very little across different instrument sets. Our approach, on the other hand, rather than

picking one particular version of the competing models, allow us to obtain an averaged estimate of

the different specifications.

For simplicity and to save space, we consider TSLS MA estimation using the AMSE, the BIC-

based RMSC-BIC and the GR2 criteria. The Donald and Newey (2001) AMSE criterion is com-
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puted by using a first-stage Mallows criterion based on the largest instrument set. Though slightly

different from our results, it would be straightforward to obtain MA estimates by combining the

information on selection criteria in Table VII and the estimates for each set in Table VIII of Donald

and Newey (2001). Each criteria is calculated for each set of instruments and the weights for aver-

aging are then constructed by using the methods described in section 3. Table 5 contains estimates

for each set (standard errors in brackets), alongside selection criteria and the corresponding weights

for each specification. The final row shows the averaged estimate for each procedure.

Table 5: Model Averaging Estimates of Returns to Schooling

Instrument Set K TSLS AMSE ω̂AMSE RMSC ω̂RMSC GR2 ω̂GR2

Q 63 0.1077
(0.0195)

4.8153 0.1240 203.42 0.019 0.0289 0.125

Q+Q*Y 90 0.0869
(0.0157)

4.8148 0.1241 201.45 0.050 0.0289 0.125

Q+Q*S 213 0.0991
(0.0099)

4.8119 0.1242 202.82 0.025 0.0291 0.125

Q+Q*Y +Q*S 240 0.0928
(0.0093)

4.8112 0.1243 202.45 0.031 0.0291 0.125

Q+Q*R4 72 0.0520
(0.0046)

4.7890 0.1257 198.55 0.215 0.0292 0.125

Q+Q*Y +Q*R4 99 0.0518
(0.0045)

4.7885 0.1257 198.83 0.187 0.0292 0.125

Q+Q*R9 87 0.0636
(0.0042)

4.7846 0.1260 198.22 0.253 0.0295 0.125

Q+Q*Y +Q*R9 114 0.0632
(0.0042)

4.7841 0.1260 198.50 0.220 0.0295 0.125

Model Averaging estimates 0.0770
(0.0017)

0.0626
(0.0011)

0.0771
(0.0017)

Note: standard errors in brackets.

First, it is interesting to note that all selection criteria tend to favor the specifications that

include regional dummies, in particular the 9-region classification interactions (unlike the results

in Donald and Newey, 2001). Consequently, the ‘smoothed’ weights are larger for estimates from

instrument sets containing these variables, in the case of RMSC considerably so. The weights from

the AMSE and GR2 measures tend to weigh equally all models, given that the statistics are similar

(and low, in the case of GR2), although they agree with the results of RMSC concerning models

with regional dummies.

The resulting MA estimates can be read in the last row of Table 5. Given that the estimates

of returns to education involving R4 and R9 are somewhat lower than the other specifications, the

MA estimates inevitably reflect that. However, the results for the three different criteria are quite

similar and close to the values obtained by OLS, which is consistent with the thrust of Angrist and

Krueger (1991). Noticeably, the standard errors are considerably smaller, which suggests that MA

estimation may yield substantial efficiency gains when compared to standard procedures.
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7 Conclusion

This paper develops novel model averaging estimators in the linear instrumental variables regression

framework. It is not confined to homoskedastic errors but allows for general forms of heteroskedas-

ticity. Moreover, the approach is suitable in the context of many of instruments as it is the case

when distinct blocks of instruments are at competition. We use different selection criteria to select

weights for averaging across estimates. This is achieved by direct smoothing of information criteria

arising from the estimation stage. We study the asymptotic properties of the resulting estimators.

A simple Monte Carlo experiment shows that our MA estimators compare very favourably in

many relevant setups. It suggests that for higher dimensional problems a model averaging approach

may use all available information more efficiently than standard selection procedures. In particular,

the MA estimator based on a BIC selection criterion is an easily implementable and robust choice,

as it appears to provide the best balance in terms of reducing both bias and dispersion in different

settings. Also, we illustrate our method with an empirical application to the well known study

of returns to schooling of Angrist and Krueger (1991). The results are quite close to the values

obtained by OLS, which is consistent with the thrust of Angrist and Krueger (1991).

There are a few aspects that should deserve further attention. We have considered a fixed num-

ber K of instruments to combine. An alternative would be to allow K to grow with T at a certain

rate, in which case the number of candidate models also increases with T and at a faster rate. Thus,

it would be interesting to determine the optimal rate and to evaluate the efficiency gains of this

case when compared to the fixed-K framework. Another important issue is to study the behavior

of the MA estimator under different settings, such as the cases of weak or invalid instruments. In

either case, consistency of the TSLS estimator is no longer achieved and nonstandard asymptotic

theory is required. In addition, one should further investigate the statistical properties of the MA

estimators for models with irrelevant instruments since it would simply make estimation less effi-

cient. In this case (and unlike this paper, in which we assume instruments are valid), pretesting as

in Andrews (1999) could be useful in putting our methodology into practice. Furthermore, using

invalid instruments in combinations will result in poorer specifications, so model screening can play

a more significant role under these conditions. We leave these topics for future research.
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A Proofs

A.1 Proof of Theorem 1

Consistency follows from

θ̂ (ω) =
∑
c∈C

ωcθ̂c
p→
∑
c∈C

ωcθ = θ, (43)

because
∑

c∈C ωc = 1. The asymptotic distribution follows from the limiting law for
√
T
(
θ̂c − θ

)
,

noting that
√
T
(
θ̂ (ω)− θ

)
=
∑

c∈C ωc
√
T
(
θ̂c − θ

)
where

θ̂c − θ =

(
X
′
Zc

(
Z
′
cΣ̂ucZc

)−1
Z
′
cX

)−1(
X
′
Zc

(
Z
′
cΣ̂ucZc

)−1
Z
′
cu

)
.

For a given c ∈ C,

√
T
(
θ̂c − θ

)
=

(
X
′
Zc

(
Z
′
cΣ̂ucZc

)−1
Z
′
cX

)−1
X
′
Zc

(
Z
′
cΣ̂ucZc

)−1√
TZ
′
cu (44)

=

X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Z
′
cX

T

−1 X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Z
′
cu√
T

(45)

=

X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Z
′
cX

T

−1 X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Λ′c
Z
′
cu√
T

(46)

with Z
′
cu√
T

not indexed by c and asymptotically normal with zero mean and variance Q̃Zc,Zc
. Hence,

√
T
(
θ̂ (ω)− θ

)
=

∑
c∈C

ωc

X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Z
′
cX

T

−1 X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Λ′c

 Z ′cu√
T

(47)

is also asymptotically normal with zero mean and the asymptotic variance-covariance matrix is

given by

Vω = Γ1Q̃Zc,Zc
Γ2, (48)
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where

Γ1 =

(∑
c∈C

ωc

(
QX,Zc

Q̃−1
Zc,Zc

QZc,X

)−1
QX,Zc

Q̃−1
Zc,Zc

Λ′c

)
(49)

Γ2 =

(∑
c∈C

ωcΛcQ̃
−1
Zc,Zc

QZc,X

(
QX,Zc

Q̃−1
Zc,Zc

QZc,X

)−1)
(50)

such that

Vω =

(∑
c∈C

ωcVcQX,Zc
Q̃−1
Zc,Zc

Λ′c

)
Q̃Zc,Zc

(∑
c∈C

ωcΛcQ̃
−1
Zc,Zc

QZc,X
Vc

)
(51)

QED.

A.2 Proof of Theorem 2

Proof : Consistency follows from Slutsky as

θ̂ (ω̂(ISC)) =
∑
c∈C

ω̂c(ISC)θ̂c
p→
∑
c∈C

ωc(ISC)θ = θ, (52)

because
∑

c∈C ωc(ISC) = 1. The asymptotic distribution follows from

√
T
(
θ̂ (ω̂(ISC))− θ

)
(53)

=

∑
c∈C

ω̂c(ISC)

X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Z
′
cX

T

−1 X ′Zc
T

(
Z
′
cΣ̂ucZc
T

)−1
Λ′c

 Z ′cu√
T
. (54)

QED.
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