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Abstract

The nested case-control (NCC) design is widely used in epidemiologic studies as a cost-effective 

subcohort sampling method to study the association between a disease and its potential risk 

factors. NCC data are commonly analyzed using Thomas' partial likelihood approach under the 

Cox proportional hazards model assumption. However, the linear modeling form in the Cox model 

may be insufficient for practical applications, especially when there are a large number of risk 

factors under investigation. In this paper, we consider a partially linear single index proportional 

hazard model, which includes a linear component for covariates of interest to yield easily 

interpretable results and a nonparametric single index component to adjust for multiple 

confounders effectively. We propose to approximate the nonparametric single index function by 

polynomial splines and estimate the parameters of interest using an iterative algorithm based on 

the partial likelihood. Asymptotic properties of the resulting estimators are established. The 

proposed methods are evaluated using simulations and applied to an NCC study of ovarian cancer.
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1. Introduction

Large cohort studies are precious resources to the study of disease etiology. However, it is 

costly to measure all the risk factors for the entire cohort, especially when disease is rare. As 

an alternative to the full-cohort design, the nested case-control (NCC) design (Thomas, 
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1979) has been widely used as a cost-effective subcohort sampling method. In this design, 

cases are ascertained within a large cohort. At the failure time of each case, a small number 

of controls are sampled among subjects who are still at risk, possibly matched to the case by 

some known confounders. Then covariates of interest are only measured on the cases and 

selected controls. The NCC design maintains the attractive feature of the full-cohort design 

to analyze biological specimens collected before the disease onset, providing an appropriate 

time sequence for a cause-effect relationship. In addition, both absolute risk and relative risk 

can be estimated under the NCC design (Langholz & Borgan, 1997).

NCC data are commonly analyzed using Thomas' partial likelihood approach under the Cox 

proportional hazards (PH) model (Thomas, 1979; Oakes, 1981), for which the hazard 

function is specified as λ(t|x) = λ0(t) exp{xTβ}, where λ0(t) is the unknown baseline hazard 

function and x is a p-dimensional covariate vector. A major assumption of the Cox PH 

model is that covariates have log-linear effects on the disease hazard. In epidemiologic 

studies where a large number of covariates are considered, covariates often exhibit more 

complex effects than log-linear format and there may exist interactions between them. 

Flexible models which could handle potential nonlinear effects of covariates with high 

dimensionality are greatly desired.

The single index model (Stoker, 1986; Hardle & Stoker, 1989; Ichimura, 1993) is a 

semiparametric model which achieves dimension reduction and avoids the “curse of 

dimensionality”. In the linear regression setting, the single index model is an extension of 

the generalized linear model, with link function unspecified (Yu & Ruppert, 2002). In the 

survival analysis context, the single index model has been incorporated into the 

multiplicative hazard model (Wang, 2004; Huang & Liu, 2006):

(1)

where ψ(·) is an unknown univariate smooth function. The multi-dimensional covariates are 

reduced to a linear combination as xTβ, namely a single index, and the coefficient β 

characterizes the relative importance of x. Note that if ψ(·) is monotone, β has a similar 

interpretation as the coefficient in the Cox PH model. Researchers have proposed various 

methods for fitting the single index model, such as kernel smoothing technique (Ichimura, 

1993; Hardle et al, 1993; Wang, 2004), average derivatives method (Stoker, 1986; Hardle & 

Stoker, 1989) and polynomial spline approximation (Yu & Ruppert, 2002; Huang & Liu, 

2006).

In model (1), all components of x are treated equally in the sense that no distinction is made 

between covariates of primary interest and nuisance ones. In epidemiologic studies, there are 

usually major risk factors of interest and multiple confounders such as demographics, 

anthropometric measures and socioeconomic status. Covariates that are most interesting to 

investigators would be modeled parametrically to render easy interpretation on their effects. 

Therefore, a partially linear single index (plSI) model has been proposed to extend model 

(1),
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(2)

where υ ∈ Rq, x ∈ Rp and ψ(·) is the unknown link function as above. In the linear regression 

setting, researchers have proposed to use local linear method (Carroll et al, 1997), kernel 

smoothing method (Xia et al, 1999) and penalized spline method (Yu & Ruppert, 2002) to 

fit the partially linear single index model. In survival analysis,Lu et al. (2006) considered 

model (2) with a parametric baseline hazard function; Sun et al. (2008) studied this model 

with the polynomial spline technique; Li & Zhang (2011) extended model (2) to time-

varying coefficients.

To the best of our knowledge, the inference of model (2) has not been studied for the NCC 

design. In this paper, we develop methods for the statistical inference of model (2) for NCC 

data and establish asymptotic properties of the resulting estimators. We are motivated by an 

NCC study investigating the association of inflammation-related cytokins and their 

modulators with the risk of ovarian cancer (Clendenen et al., 2011). This case-control study 

was nested within three prospective cohorts and for each case, two controls were selected at 

random from cohort members who fulfilled the risk set criteria. In total, we observed 230 

cases and 432 matched controls. The levels of cytokines and cytokine modulators were 

measured from stored blood samples collected at enrollment. Potential confounders included 

body mass index and medical history. Our main interest is to estimate the effect of 

biomarkers on the risk of ovarian cancer while adjusting for confounders. We thus study the 

partially linear single index proportional hazards model, which allows flexible and 

parsimonious modeling of nonlinear effects of confounders and easy interpretation on the 

parameters for covariates of interest.

This paper is organized as follows. In Section 2, we present methods for estimation, 

inference and implementation of the proposed model. Section 3 includes simulation studies 

evaluating the finite sample performance of our proposed estimator and the analysis of the 

NCC data on ovarian cancer as an illustration. We conclude in Section 4 with discussions 

and provide all the technical details in the appendix.

2. Methods

2.1. Notation and model

Suppose that we have a cohort with size of n. For the ith subject, i = 1,…,n, let zi = min(ti,ci) 

be the observed survival time subject to censoring, where ti denotes the survival time and ci 

denotes the censoring time. Define δi = I(ti ≤ ci) as the censoring indicator. At a specific time 

t, let R̃(t) = {i:zi ≥ t} denote the risk set. By the NCC design, subjects with observed event, 

i.e. δi = 1, are identified as cases. At the failure time of each case, (M − 1) controls are 

randomly sampled without replacement from the risk set, excluding the case itself. For case 

i, let  denote the indices of the (M − 1) selected controls and define the case-control set 

. Then covariate information is assembled for the cases and selected controls, 

consisting of two components: the q-dimensional vector υ denotes the primary risk factors to 

be modeled parametrically, and the p-dimensional vector x denotes confounders to be 

included in the nonparametric single index component.
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For the purpose of identifiability of the partially linear single index model (2), we impose 

the constraints that ψ(0) = 0, ║β║ = (βTβ)1/2 = 1 and the first nonzero component of β is 

positive (Wang, 2004). Following Huang & Liu (2006) and Sun et al. (2008), we use a 

polynomial spline function to first approximate the derivative of the unknown function ψ(·) 

by

(3)

where Bj(u),j = 1,…, k, are the B-spline basis functions (De Boor, 1978), k equals the sum of 

the number of interior knots and the order of B-spline,B(u) = {B1(u),…,Bk(u)}T and γ = (γ1,

…, γk)T. This approximation technique facilitates the incorporation of the constraint ψ(0) = 0 

as described below. The B-spline is chosen here for numerical stability, and other basis such 

as truncated power function basis can also be used. From the constraint ψ(0) = 0 and (3), we 

obtain

where , j = 1,…,k, are the integrals of the B-spline basis functions and B̃

(u) = {B̃
1(u),…, B̃

k(u)}T. In our numerical studies, quadratic B-splines are used in the basis 

expansion of ψ′(·) and thus ψ(·) is a cubic spline.

Let τ1 < … < τm be m distinctive ordered event times and (υi, xi) be the covariates associated 

with the subject that fails at τi. Then the log-partial likelihood function for NCC data under 

model (2) is

(4)

2.2. Parameter estimation

To maximize the log-partial likelihood (4), we first examine its score functions and Hessian 

matrix. Specifically, the score functions are:
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where  and the Hessian matrix 

is given in the appendix. It is easily seen that the log partial likelihood is a concave function 

of (γ, α) for fixed β, which leads us to consider an iterative alternating optimization 

procedure to calculate the maximum partial likelihood estimator. Specifically we propose 

the following iterative optimization algorithm:

• Step 1. Start with initial values β̂(0),γ̂(0) and α̂(0).

• Step 2. Given the current values β̂(d),γ̂(d) and α̂(d), update the estimate of β using 

one step of the Newton-Raphson method:

where Sβ and Hβ,β are the marginal score function and hessian matrix with respect 

to β. Standardize β̂(d+1) such that ‖β̂(d+1)‖ = 1 and its first component is positive.

• Step 3. Given the current values β̂(d+1), γ̂(d) and α̂(d), update the estimates of γ and 

α using one step of the Newton-Raphson method with step-halving as follows:

where k is the smallest nonnegative integer such that l(β̂(d+1), γ̂(d+1), α̂(d+1))≥ 

l(β(̂d+1), γ̂(d),α̂(d)), and Sγ,α and Hγ,α are the joint score function and hessian matrix 

with respect to (γ,α).

• Step 4. Repeat steps 2 and 3 until the parameter convergence criterion of 10−4 is 

met.

As the log-partial likelihood in (4) is concave in (γ, α) but not in β, it is not guaranteed that 

the algorithm converges to the global maximum. We use a variety of randomly generated 

initial values and choose the final estimate to be the one giving the largest log-partial 

likelihood. As pointed out by Huang & Liu (2006) and Sun et al. (2008), although the log-

partial likelihood could be maximized simultaneously with respect to (β,γ,α), the iterative 

alternating procedure is numerically more stable. In our simulation studies, the algorithm 

performs quite well. It converges within a few iterations about 96% of the time. The 

program is terminated if it does not converge in 60 iterations. To find initial values in a real 
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application, one could first fit some simple models such as a completely parametric (e.g. a 

linear Cox proportional hazards model) or a nonparametric model (e.g. a single index 

model). One could examine the estimated link function ψ(·) from the single index model, 

and if it is close to some known functions such as the trigonometric functions, one could fit 

a model with a specific link function to obtain initial values.

In our numerical studies, we use 3 to 10 knots equally spaced in the range of the estimated 

index values β̂Tx, and choose the final number of knots by minimizing the Akaike (AIC) or 

Bayesian information criterion (BIC). When the single index values are skewed or unevenly 

distributed, we suggest placing knots at sample quantiles of the single index values, which 

avoids placing a large number of knots in regions where data are sparse.

2.3. Inference

To estimate the variance-covariance matrix of the parameters, we first reparametrize β = 

β(σ) = {(1−║σ║2)1/2, σ1, …, σp−1}T with σ = (σ1,…, σp−1)T such that the constraints ‖β‖ = 

1 and β1 ≥ 0 are automatically satisfied. Because of the risk-set sampling mechanism of the 

NCC design, the size of each case-control set is fixed to be M and the asymptotics is driven 

by the increasing number of case-control sets (Langholz, 2005). We adopt the formulation 

for Thomas' maximum partial likelihood estimator used in Goldstein & Langholz (1992) and 

consider that the nonparametric function ψ(·) is a spline function with pre-specified knots. 

We show that the maximum partial likelihood estimators (σ̂, γ̂, α̂) are consistent and 

asymptotically normal. We estimate the asymptotic variance-covariance matrix by 

{−H(σ̂,γ̂,α̂)}−1, where H(σ,γ,α) is the Hessian matrix of (4). Details of regularity conditions 

and proofs are given in the appendix. By the delta method, (β̂, γ̂, α̂) are also asymptotically 

normal and the estimated asymptotic variance-covariance matrix var(β̂, γ̂, α̂) is

(5)

where Ip−1+k+q is an identity matrix of size (p − 1 + k + q) and 01 × (k+q) is a zero vector with 

dimension 1 × (k + q).

From the diagonal elements of the matrix var(β̂, γ̂, α̂ we can get the variance estimate for 

each of the estimated parameters. For a fixed u, the variance of the function ψ(·) evaluated at 

u can be estimated as var{ψ ^ (u)} = B̃(u)Tvar(γ̂)B̃(u). An approximate 95% point-wise 

confidence interval for ψ(u) is given by ψ̂(u) ± 1.96{var(ψ̂(u))}1/2.

3. Numerical studies

3.1. Efficacy simulations

To evaluate the finite sample performance of our proposed methods, we conducted extensive 

simulations under various settings. We generated the survival time T from the following 

models

• Log quadratic: λ0(t) exp[υTα + log{1 + (xTβ)2}];
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• Sine curve: λ0(t) exp{υTα + 5sin(xTβ/2)};

• Linear: λ0(t) exp{υTα + xTβ},

where V = (V1, V2) ∼ U(−3, 3) independently, and X = (X1, X2) ∼ U(−4,4), X3 ∼ N(0, 2) 

independently with X3 truncated to be within [-4, 4]. The true parameters were α0 = (−1, 2)T 

and β0 = (1, −1, 1)T/√3. The baseline hazard function was λ0(t) = 1. As NCC studies are 

usually used when the disease incidence rate is low, the censoring time C was generated 

independently by a Cox PH model with the same relative risk function but different baseline 

hazard functions to yield the incidence rates about 10% or 20%. The size of full cohort was 

1000 or 2000, and 2 controls were selected for each case. For each setting, 500 runs of 

simulations were conducted.

We used both the AIC and BIC to choose the number of knots for spline approximation as in 

Huang & Liu (2006), with knots equally spaced in the range of β̂Tx. For comparison, the true 

model with a known link function was fitted as a benchmark and the standard Cox PH 

model was also assessed. To evaluate the estimated coefficient β for the single index 

component, we used the angle between the true parameter vector β0 and its estimate β̂, 

defined as

where 〈a, b〉 denotes the inner product of two vectors a and b.

Table 1 shows the results for the log quadratic model, and indicates that the proposed 

method estimates the parameters reasonably well. The empirical coverage probabilities of 

the 95% confidence intervals for α are close to the nominal level, indicating that the 

standard error estimates are accurate. For a fixed censoring rate, when sample size increases, 

both the biases and standard errors of the estimates of α decrease; the same can be seen for 

the mean and standard deviation of the angle between β0 and β̂. The Cox PH model gives 

biased estimates for α, and the angles between β0 and β̂ are very large. Figure 1 shows the 

median of estimated function ψ(·) and 95% pointwise Monte Carlo intervals which are 

constructed using the 2.5% and 97.5% sample quantiles of the estimated link function from 

500 simulations. The estimated function approximates the true function very well. Table 2 

presents the results when the link function is a sine function, and shows similar results.

To evaluate the efficiency loss when the log relative risk function is indeed linear, we 

conducted simulation with the linear link function. Table 3 shows the parameter estimates 

from the Cox PH model and the proposed model. The estimates from the partially linear 

single index model are close to the Cox model and the relative efficiency for estimating α is 

about 0.90 and 0.96 for cohort size 1000 and 2000, respectively. The angles between β0 and 

β̂ from the two models are very close. Thus, the proposed model maintains good efficiency 

when the true log-hazard function is a linear function.
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When the number of knots is 5, the number of matched controls is fixed and the number of 

cases is 200, the computation time of one simulation run is about 6 seconds with a randomly 

generated initial value, and about 3 seconds with a good initial value close to the true 

parameter, on a 2.66 GHz processor with 4 GB of memory.

3.2. Sensitivity analysis

We performed sensitivity analysis to evaluate the proposed approaches when the model is 

misspecified. We first considered the scenario where the true model is the single index 

model, where the hazard function for the survival time T was specified as

We generated independent covariates V ∼ U(−4,4), X1,X2,X3 ∼ U(−4,4), X4 ∼ N(0,2) with 

X4 truncated to be within [-4, 4]. The true parameters were α0 = 1/√5 and β0 = (1, −1,1, −1)T/

√5. The baseline hazard function was λ0(t) = 1. The link function ψ(·) was the log-quadratic 

link or the sine link as specified previously The size of full cohort was 1000 or 2000, the 

disease incidence rate was about 20%, and 2 controls were selected for each case. The 

number of simulation runs was 200.

Since the true model is the single index model, only the direction of the parameter is 

identifiable. The angles between β̂ and β0 are given in Table 4a for the single index (SI) 

model, partially linear single index (plSI) model and Cox PH model. When fitting the plSI 

model, the covariate V was included in the parametric part of model (2). The results show 

that the plSI model performs reasonably well compared to the correctly specified single 

index model, and better than the Cox PH model.

We also considered the scenarios where the true model is the partially linear single index 

model but some covariates components are misspecified. The hazard function for T has the 

log-quadratic form specified previously. Four scenarios were considered.

(S1). A redundant variable was included in the X part. All other settings were the same 

as in Section 3.1, except that one extra variable X4 which followed N(0,1) independently 

of the other covariates was included in the nonlinear part when fitting the proposed 

model.

(S2). A covariate was omitted from the fitting of single index part. We considered that 

the single index component X included four covariates, with X1,X2 ∼ U(−4,4) 

independently; X3, X4 following a bivariate Normal distribution with mean 0, standard 

deviation 1 and correlation 0.8, and truncated to be within [-3, 3]. The true parameters 

were α0 = (−1, 2) and β0 = (1/√3, −1/√3, 1/√3, 0.1)T. Covariate X4 was omitted when 

fitting models.

(S3). The membership of V and X was misspecified with a linear covariate modeled 

nonlinear effect. The linear component V included three covariates, with V1,V2 ∼ 

U(−3,3), V3 ∼ N(0,2) independently and V3 truncated to be within [-4, 4]; the nonlinear 

part X included three covariates, with X1,X2,X3 ∼ U(−4,4) independently. The true 

Shang et al. Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2016 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters were α0 = (−1,2,0.1)T and β0 = (0.574,−0.574,0.574)T. When fitting the 

proposed model, V3 was included in the single index part.

(S4). The membership of V and X was misspecified with a covariate with nonlinear 

effect modeled in the linear part. X included four covariates, with X1,X2,X3 ∼ U(−4,4), 

X4 ∼ N(0,2) independently. The true parameters were α0 = (−1,2)T and β0 = (0.574, 

−0.574,0.574,0.1)T. When fitting the proposed model, X4 was assigned to the linear 

part.

The cohort size was 1000 and censoring rate was about 80%. We selected 2 controls for 

each case and ran 200 simulations for each setting. The results are shown in Table 4b. We 

observe that including a redundant covariate (S1) does not affect the proposed method much 

and the results are similar to Table 1, with the angle between β0 and β̂ slightly greater. For 

the other settings (S2)-(S4), the empirical coverage probability of 95% confidence interval 

for α deviates from the nominal level, and the angle between β0 and β̂ enlarges. In all of the 

scenarios the proposed model outperforms the Cox PH model and shows better flexibility of 

accommodating various model misspecifications. When other link functions are used, 

similar results are obtained (results not shown).

3.3. Analysis of the NCC study on ovarian cancer

The NCC study of ovarian cancer (Clendenen et al., 2011) assessed the association between 

circulating inflammatory cytokines and the risk of epithelial ovarian cancer. As an 

illustration, we studied the cytokine IL-6 adjusting for the confounders body mass index 

(BMI), age at menarche, ever been pregnant, ever use of oral contraceptive (OC) and ever 

use of hormone replacement therapy (HRT). The cytokine IL-6 was first cutted to categories 

using cohort-specific quartiles, and the first quartile was treated as the baseline. For the 

partially linear single index model, the indicators of IL-6 quartiles were assigned to the 

linear component, and the confounders were assigned to the nonlinear component. B-splines 

with equally spaced knots were used and 5 knots were selected by the AIC criterion. The 

standard Cox PH model with all the covariates assumed linear effects was also fitted for 

comparison. Since the Cox model is nested in the proposed model, a likelihood ratio test can 

be used to examine whether the Cox PH model is appropriate and has an approximate χ2 

distribution with k − 1 degrees of freedom. The null hypothesis was rejected (p = 0.006), 

indicating that the Cox PH model is insufficient for this dataset. When the relative risk 

scores of each model were used to classify cases and controls, the areas under the Receiver 

Operating Characteristic (ROC) curves are 0.59 and 0.63 for the Cox model and proposed 

model, respectively (p = 0.060, DeLong's test).

Figure 2 shows the estimated link function ψ(·), which is nonlinear and non-monotone. 

Table 5 presents the estimated parameters, standard errors and p-values from the two 

models. For ease of comparison, coefficients of the covariates in the nonlinear component of 

the proposed model were rescaled to have the same norm as those for the Cox model. In the 

Cox model, the fourth quartile of IL-6 has a significantly higher risk comparing to the first 

quartile (OR = 1.61, p = 0.045). Using the proposed model, the estimated coefficients and 

standard errors for IL-6 quartiles are similar to those of the Cox model. When the other 

covariates are fixed, the odds ratio of the fourth quartile vs. the first quartile of IL-6 is 1.57. 

Shang et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2016 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also modeled IL-6 linearly in its continuous level and obtained similar results. 

Regarding the confounders, ever use of HRT is a significant risk factor of ovarian cancer 

and has the largest effect size in both models. Age at menarche, ever been pregnant and ever 

use of OC are significant in the proposed model, but not in the Cox model. The angle 

between the estimated parameter vector β̂ from the two models is 21.84°.

4. Discussion

The partially linear single index model is a natural extension of partially linear model and 

single index model. The high-dimensional nuisance covariates with possible nonlinear 

effects are first combined as a single index, providing a flexible and parsimonious way of 

modeling. We have shown that the proposed model performs better than the standard Cox 

PH model for various link functions. Moreover, coefficients of covariates in the linear 

component have easy interpretation as the log hazard ratio.

In this paper we use polynomial splines to approximate the nonparametric single index 

function. Several other approaches have been proposed to fit the partially linear single index 

model in the full-cohort setting, such as kernel smoothing method and penalized spline 

method. However, the kernel weighted smoothing technique may not always be applicable 

to estimation of the plSI proportional hazards model with NCC data because the risk set for 

each case only consists of the case itself and its controls. If covariate X is an important risk 

factor with significant different distribution between cases and controls, the index value 

(βTX) of the control is rarely in the neighborhood of the case. This will cause the 

optimization of the kernel weighted partial likelihood run into difficulty.

We choose to use the polynomial regression spline instead of penalized spline due to 

computational and theoretical reasons. Penalized spline can be viewed as a compromise 

between regression spline and smoothing spline. While the fitting is more stable and less 

dependent on the location of knots for penalized spline, the computation and inference are 

more complicated. In particular, selecting a suitable value of smoothing parameter is crucial. 

As for survival data an iterative algorithm has to be utilized for the optimization of the 

penalized partial likelihood, the search of optimal smoothing parameter becomes 

computationally expensive.

With large and complex data, the single index assumption may be further relaxed to multiple 

index modeling. One could consider a partially linear multiple index model: λ(t|υ,x) = λ0(t) 

exp{υTα+ψ(xTβ1,…,xTβs)}, where ψ(·) is an unknown s-variate function and s is a pre-

specified integer less than p. The multiple index model has been studied by many 

researchers (Cook & Bing, 2002; Xia et al, 2002; Yin & Cook, 2002; Chen et al., 2011). 

When the number of indices s is large, the s-variate unknown function may be replaced by s 

univariate unknown functions, leading to the additive-index model (Chiou & Muller, 

2004).This model is closely related to the projection pursuit regression (Friedman & 

Stuetzle, 1981).

In this paper, we have assumed that the unknown function is a spline function with fixed 

number of knots in establishing the asymptotic properties. The bias caused by spline 

approximation is small compared to the variance of the estimated function, as shown by our 
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simulation studies. Alternatively without assuming the unknown function is a spline 

function, the number of knots needs to increase as sample size increases. Developing 

asymptotic results in that context is interesting but beyond the scope of this paper.

Appendix A: Formulas of the Hessian matrices of (β, γ, α)

Let

We have
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Appendix B: Formulas for H(σ,γ,α)

The Hessian matrix H(σ,γ,α) is

where Hγ,γ, Hγ,α and Hα,α are the same as those given in Appendix A. The rest of the 

components of H(σ,γ,α) are given as follows.

Let the vector x̃i = (xi2, …,xip)T, , i = 1,…,n. Let A = (aij) be a 

(p −1) × (p − 1) matrix with entries  and , i ≠ j, i, 

j = 1,…,p − 1. In other words, .
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Appendix C: Consistency and asymptotic normality of the maximum partial 

likelihood estimator (β,̂ γ,̂ α̂)

There are two types of asymptotics, one with increasing number of knots and one with fixed 

number of knots. We study the case of fixed number of knots because it is simpler and gives 

a practically useful result. It is assumed that the nonparametric function ψ(·) is a spline 

function with fixed knots.

Define Ni(t) = I(Zi ≤ t,δi = 1) and Yi(t) = I(Zi ≥ t). Then Ni(t) can be uniquely decomposed 

into the sum of its cumulative intensity process Λi(t) and a local square integrable martingale 

Mi:

for i = 1,…, n and t ∈ [0,1], where . Note that we consider the interval [0, 

1] for simplicity. The argument can be easily extended to the interval [0, ∞]. Let W = (W1, 

…, Wn)T denote the covariate processes such that  denote the 

counting process histories up to time t. The intensity process, in the manner of Cox (1972), 

can be written as

for i = 1,…,n, where ψ(·; θ0) is a function with known form and θ0 is a vector of unknown 

parameters. In our context,

where Vi(t) = (Vi1, …, Viq), Xi(t) = (Xi1, …, Xip) and θ = (β, γ, α).

As in Goldstein & Langholz (1992), define R̃(t), the risk set at time t+, by
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Let T1, T2,… be the ordered collection of event times of the Yi and Ni processes. Let R̃
k = R̃

(Tk). If i ∈ R̃
k−1, let Pm,i(R̃

k−1) be the set of all subsets of R̃
k−1 of size M that include i. Let 

R̄
k,i be independently and uniformly chosen from Pm,i(R̃

k−1). If i ∉ R̃
k−1, we let R̄

k,i be the 

empty set. Set ηij(0) = 0. We note that the preceding construction makes

predictable (Goldstein & Langholz, 1992).

The log partial likelihood can be written as

For a column vector a, denote |a| = (aTa)1/2, ║a║ = supiai and a⊗2 for the matrix aaT. For a 

matrix C, denote ║C║ = supi,jCi,j. For a function ψ(x;θ), let ψ̇(x;θ) and ψ̈(x;θ) denote the 

gradient and Hessian of ψ(·) with respect to θ. Define

Assume the following conditions:

C.1 . The at risk probability b(t) = P(Y(t) = 1) > 0 for every t ∈ [0,1].

C.2 The functions ψ(Wi,(t); θ0), ψ̇ (Wi(t);θ0) and ψ̈(Wi(t);θ0), for i = 1,…,n,t∈[0,1] are 

locally bounded.

C.3 (Lindeberg condition)
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for any ε > 0 and j = 1, 2,…,q + p.

C.4 Let , where U = {1, …, m}. Define

where YU(t) = ∏i∈U Yi(t). The matrix Γ = Γ(θ0,1) is positive definite.

We first state a lemma. The proof is straightforward based on Lemma 1 in Goldstein & 

Langholz (1992) and thus omitted. For simplicity, write Y = Y(s), W = W(s) and b = b(s) for s 

∈ [0,1].

LEMMA 1. Let ρ ∈ {1, 2}, (Yi, Wi), i∈{1,…, n} be independent copies of (Y, W) with W ∈ 

Rq+p, Y ∈ {0,1} and b = P(Y = 1) > 0. Let R = {j: Yj = 1}, P = {T⊂ R, |T| = M } and Pi = {T 

∈ P: i ∈ T}. With T ∈ P, let

Ai = exp{ψ(Wi;θ0)} and . Assume that conditions C.1 - C.4 hold. 

Then

where .

Proposition 1

If the nonparametric function ψ(·) with fixed knots satisfy conditions C.1 - C.4, there exists a 

sequence of roots θn̂ of the partial likelihood equation such that θ̂
n →pθ0.

Proof. Let
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and

Then the process

is a locally square integrable martingale for each θ, with predictable variation process at t 

given by

By conditions C.1, C.2 and Cauchy-Schwarz inequality, it is easy to show that 〈Zn(θ, ·)

−An(θ, ·), Zn(θ, ·)−An(θ,·)〉 →p 0. By the Lenglart inequality

in probability for all θ ∈ Θ. Since Θ is a compact set, we have that Zn(θ,t) converges to 

An(θ,t) in probability uniformly for θ ∈ Θ. Next,

By Lemma 1,

in probability, where
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So An(θ,1) converges to a function with first derivative 0 at θ = θ0.

With Γ in condition C.4, the second derivative of the limit of An(θ,1) equals to minus a 

nonnegative definite matrix for every θ and at θ0 equals to −Γ. Thus, θ0 is a local maximizer 

of An(θ,1). Therefore, the maximizer θ̂ of Zn(θ,1) converges to θ0 in probability.

Proposition 2

(Asymptotic normality of θ̂) If the nonparametric function ψ(·) with fixed knots satisfy 

conditions C.1 - C.4, there exists a sequence of roots θ̂n of the partial likelihood equation 

such that

Proof. Consider the score process

and the information process

Let

By the Taylor expansion,

where θ* lies between θ and θ0. Substitute θ̂
n for θ,
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We will show that

and

Define

Then  is a local square integrable martingale with predictable variation 

process at t given by

By conditions C.1 and C.2, .

By Lenglart’s inequality

Using Lemma 1, C(θ,1) →p Γ. Moreover, consistency of θ̂ implies that θ* →p θ0. By 

conditions C.1 and C.2, we have C(θ*, 1) →p Γ. Hence,

Next we show that . Let  and
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Then

The term  is a stochastic integral of a 

predictable process against a martingale and is thus a martingale. By Lemma 1,

as n → ∞. By condition C.3 and the martingale central limit theorem (Andersen & Gill, 

1982),

Moreover, as in Goldstein & Langholz (1992),

Therefore, . The proof is complete.
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Figure 1. 
The median of estimated link function and 95% pointwise Monte Carlo intervals for (a): log 

quadratic model; (b): sine model. Cohort size = 1000, censoring rate = 80%.
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Figure 2. 
The estimated link function (dashed) and 95% pointwise confidence interval (dotted) for the 

ovarian cancer data. The solid curve is the identity link function (y = x). The distribution of 

the covariates in the X part multiplied by estimated β was indicated in the bottom.
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Table 5
Results of the ovarian cancer NCC study

Cox PH plSI

Est. (se) p Est. (se) p

IL-6_q2 0.175 (0.243) 0.471 0.192 (0.249) 0.441

IL-6.q3 0.272 (0.241) 0.258 0.215 (0.246) 0.382

IL-6.q4 0.478 (0.238) 0.045 0.448 (0.244) 0.066

BMI -0.026 (0.022) 0.241 -0.006 (0.003) 0.081

Age at menarche 0.035 (0.061) 0.564 0.037 (0.017) 0.032

Ever been pregnant -0.248 (0.237) 0.294 -0.149 (0.069) 0.032

Ever use of OC -0.277 (0.212) 0.192 -0.102 (0.042) 0.015

Ever use of HRT 0.468 (0.220) 0.033 0.571 (0.023) < 0.001

IL-6_q2: the second quartile of IL-6; IL-6_q3: the third quartile of IL-6; IL-6_q4: the fourth quartile of IL-6.
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