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Abstract

Practical estimation procedures for local linear estimation of an unrestricted failure rate when more informa-
tion is available than just time are developed. This extra information could be a covariate and this covariate
could be a time series. Time dependent covariates are sometimes called markers, and failure rates are some-
times called hazards, intensities or mortalities. It is shown through simulations and a practical example that
the fully local linear estimation procedure exhibits an excellent practical performance. Two different band-
width selection procedures are developed. One is an adaptation of classical cross-validation, and the other
one is indirect cross-validation. The simulation study concludes that classical cross-validation works well on
continuous data while indirect cross-validation performs only marginally better. However, cross-validation
breaks down in the practical data application to old-age mortality. Indirect cross-validation is thus shown to
be superior when selecting a fully feasible estimation method for marker dependent hazard estimation.

Keywords: Local linear estimation, Bandwidth, Cross-validation, Indirect cross-validation, Aalen’s multi-
plicative model, Survival

1. Introduction

Marker dependent hazard estimation is omnipresent in the mathematical statistical literature. Applications
exist in many fields, such as actuarial science, applied statistics, biostatistics, econometrics, engineering and
finance. The semiparametric structure considered in Cox (1972) and Andersen and Gill (1982) is widely
used in the literature and in practice. Additionally, an enormous amount of semi-parametric dynamic sur-
vival models can be found in the literature (see for example Andersen et al. (1993), Fleming and Harrington
(1991) and Martinussen and Scheike (2009)). We study the fully unspecified multivariate hazard estima-
tion problem, which has received less attention in the literature than semiparametric hazard models. We
work with general filtered survival data, allowing for repeated left truncations and right censoring, as well
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as fully general time dependent structures on our markers or covariates. Our starting point is the multi-
variate local linear estimator of Nielsen (1998). It arises from a local linear minimisation principle around
the observed counting process, mimicking the delta function approach developed earlier in one-dimensional
density estimation by Jones (1993).It is perhaps surprising that a fully feasible estimation procedure has
not yet been published for the multivariate local linear estimator (see Nielsen and Tanggaard (2001) and
Bagkavos (2011) for bandwidth selectors in the one-dimensional situation). In this paper we develop the
classical cross-validation procedure for the marker dependent hazard estimator and we show that it works
well in our finite sample studies. However, cross-validation breaks down in our application based on ag-
gregated data. Indirect cross-validation is known to have a better theoretical and practical performance than
cross-validation, and it is known to be more robust when applied to discrete data (see Martı́nez-Miranda et
al. (2009), Savchuk et al. (2010), Mammen et al. (2011) and Gámiz et al. (2013) for the related density case.
Consequently, in this paper we develop indirect cross-validation for the local linear estimator, which works
well when applied to our aggregated data.

The remainder of the paper is organised as follows. In Section 2 we formulate the estimation problem
and present the local linear principle following Nielsen (1998). The estimator is formulated in the general
counting process formulation. Direct and indirect cross-validation methods are developed in Section 3. The
asymptotic theory necessary to implement indirect cross-validation is provided in Appendix A. Simulation
experiments are presented in Section 4 and a real data application to old-age mortality is presented in Sec-
tion 5. These sections are supplemented by Appendix B, which contains discrete approximations of the
estimation strategy in order to work with occurrences and exposures. The explicit algorithms used in the
simulation experiments are also described there. Some concluding remarks are given in Section 6.

2. The local linear principle for multivariate kernel hazard estimation

In this section we define the local linear marker dependent hazard estimator. We assume that the data follow
Aalen’s multiplicative intensity model (see Aalen (1978) and Andersen et al. (1993)), which is defined as
follows: Let Z(t) be a d-dimensional time dependent covariate or marker dependent process, and let λ(t)
be the stochastic hazard for an individual with history {Z(s); s ≤ t}. We examine the following marker
dependent hazard model:

λ(t) = α{t,Z(t)}Y(t),

where Y(t) is an indicator of survival at time t. Suppose we are observing n individuals and let Ni count
observed failures for the ith individual in the time interval, which for simplicity is assumed to be (0, 1), for
i = 1, . . . , n. Let N(n) = (N1, . . . ,Nn) be a n-dimensional counting process with respect to an increasing, right
continuous, complete filtration Ft, t ∈ (0, 1), i.e. one that obeys les conditions habituelles (see Andersen et
al. (1993, pp.60)). The random intensity process λ(n) = (λ1, . . . , λn) of N(n) is then modelled as depending
on the d-dimensional marker dependent processes Z1(t), . . . ,Zn(t) by

λ(n)
i (t) = α{t,Zi(t)}Yi(t), (1)
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with no restriction on the functional form of α(·). Here Yi is a predictable process taking values in {0, 1},
indicating (by the value 1) when the ith individual is under risk, for i = 1, . . . , n. The marker process
Zi = (Zi1, . . . ,Zid) is a d-dimensional, predictable, CADLAG covariate. Let Fs(z) = Pr (Zi(s) ≤ z |Yi(s) = 1)
be the conditional distribution function of the covariate process at time s. Furthermore, let fs(z) be the
corresponding density with respect to the d-dimensional Lebesgue measure. We assume that the marker
process is supported on the unit cube and that E {Yi(s)} = y(s), where y(·) is continuous. The marker Zi(s) is
only observed for those s where Yi(s) = 1. Let

Z∗i (s) =

 Zi(s) when Yi(s) = 1
−∞ when Yi(s) = 0

and assume that the stochastic processes (N1,Z∗1 ,Y1), . . . , (Nn,Z∗n ,Yn) are i.i.d. for n individuals and Ft =

σ(N(n)(s),Z(s),Y(s); s ≤ t), where Y = (Y1, . . . ,Yn) and Z = (Z1, . . . ,Zn). Hereafter we simplify the notation
by writing x = (t, z) and Wi(s) = {s,Zi(s)}, both being vectors with dimension d+1 and elements enumerated
from 0 to d. LetK be a d + 1-dimensional kernel and b = (b0, . . . , bd) a d + 1-dimensional bandwidth vector.
Let Kb(x − y) = |b|−1K{(x0 − y0)/b0, . . . , (xd − yd)/bd}, where x = (x0, . . . , xd) and y = (y0, . . . , yd) are
(d + 1)-dimensional vectors and |b| =

∏d
j=0 b j. We restrict ourselves to the case of multiplicative kernels,

that is, K(u) =
∏d

j=0 K j(u j), where K j is a univariate kernel.
The local linear estimator of the hazard rate α is then defined as the solution of the following minimisation
problem: Θ̂0

Θ̂1

 = arg min
Θ0,Θ1

n∑
i=1

∫ ∆Ni(s) − Θ0 −

d∑
j=0

Θ1 j(x j −Wi j(s))


2

Kb(x −Wi(s))Yi(s)ds. (2)

Here we have used the notation
∫

g(s)∆Ni(s)ds ≡
∫

g(s)dNi(s) for any function g. By solving the above
problem in Θ0, the estimator can be written as an intuitive ratio of the smoothed occurrences and smoothed
exposures given by:

α̂K ,b(x) =

n∑
i=1

∫ 1

0
{1 − utD(x)−1c1(x)}Kb(x −Wi(s))dNi(s)

n∑
i=1

∫ 1

0
{1 − utD(x)−1c1(x)}Kb(x −Wi(s))Yi(s)ds

:=
O11(t, z)
E11(t, z)

, (3)

where c1(x) = (c10(x), c11(x), . . . , c1d(x))t (here at denotes the transpose of the vector a) with

c0(x) =
∑n

i=1

∫ 1

0
Kb{x −Wi(s)}Yi(s)ds,

c1k(x) =
∑n

i=1

∫ 1

0
Kb{x −Wi(s)}{x j −Wi j(s)}Yi(s)ds,

for k = 0, 1, . . . , d. Moreover, D(x) = (d jk(x)) j,k is the (d + 1) × (d + 1) matrix with elements:

d jk(x) =
∑n

i=1

∫ 1

0
Kb{x −Wi(s)}{x j −Wi j(s)}{xk −Wik(s)}Yi(s)ds,

3



for j, k = 0, 1, . . . , d.
While our model and the local linear hazard estimator are identical to those of Nielsen (1998), the above rep-
resentation of the estimator as a simple fraction of local linear smoothed occurrences divided by local linear
smoothed exposures is new. This representation will be quite useful when exploring the underlying hazards
in real data applications. Sometimes areas of very low exposure mean that the estimator divides two num-
bers close to zero. Spurious peaks often arise from pure randomness and these peaks will have a tendency
to dominate the visual impression from the graph. In our application to an old-age mortality study based
on Swedish data, this is exactly what happens. Simply splitting the hazard estimator into occurrences and
exposures as we do above makes it possible to analyse them separately and restrict the visual representation
of the hazard to the area of interest.
A generalisation of the recent estimators of Spierdijk (2008) and Kim et al. (2010) to our counting process
framework are obtained by the above minimisation principle when it is adjusted to be local linear in the
covariates only and local constant in the time direction. We call this estimator the local linear local constant
estimator, or the LLLC estimator. In Sections 4 and 5 we study its practical performance and compare it
with the fully local linear estimator in (3).

3. Choosing the amount of smoothing

Mammen et al. (2011) and Gámiz et al. (2013) point out that indirect cross-validation seems to be superior
to classical cross-validation in practice. The next two subsections introduce classical cross-validation and
indirect cross-validation, respectively. Cross-validation works for the local linear estimator as well as for the
LLLC estimator, whereas indirect cross-validation only works for the local linear estimator.

3.1. The cross-validation method

In this section the local constant cross-validation method of Nielsen and Linton (1995) is adapted to both the
local linear estimator and the LLLC estimator. Let α̂K ,b denote any kernel estimator of the hazard rate that
depends on a vector of bandwidths b = (b0, b1, . . . , bd) and a multivariate kernelK . The bandwidth selection
problem is formulated as follows: Ideally, one would like to choose the smoothing parameter vector as the
minimiser of

Q0(b) = n−1
n∑

i=1

∫ 1

0

[
α̂K ,b{s,Zi(s)} − α{s,Zi(s)}

]2
Yi(s)ds, (4)

which is equivalent to minimising

n−1

 n∑
i=1

∫ 1

0

[
α̂K ,b{s,Zi(s)}

]2
Yi(s)ds − 2

n∑
i=1

∫ 1

0
α̂K ,b{s,Zi(s)}α{s,Zi(s)}Yi(s)ds

 .
Only the second of these terms depends on the unknown true α. An estimate of the second term could be
given by

n∑
i=1

∫ 1

0
α̂K ,b{s,Zi(s)}Yi(s)dNi(s),
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but this estimator is biased due to the correlation between α̂K ,b{s,Zi(s)} and dNi(s). This problem can be
solved by replacing α̂K ,b{s,Zi(s)} by the leave-one-out version α̂[i]

K ,b{s,Zi(s)}, which is the estimator arising
when the dataset is changed by setting the stochastic process Ni equal to 0 for all s ∈ (0, 1). Then, the
cross-validation bandwidth estimate is defined as the minimiser of the following cross-validation score:

Q̂0(b) = n−1

 n∑
i=1

∫ 1

0

[
α̂K ,b{s,Zi(s)}

]2
Yi(s)ds − 2

n∑
i=1

∫ 1

0
α̂[i]
K ,b{s,Zi(s)}dNi(s)

 . (5)

Hereafter this bandwidth estimate will be denoted as b̂CV .

3.2. Indirect cross-validation

Mammen et al. (2011) introduced do-validation for density estimation as the simple average of the left and
right one-sided cross-validation bandwidth estimates of Martı́nez-Miranda et al. (2009). The motivation for
all of these forms of indirect cross-validation is that classical cross-validation tends to work better when
the smoothing problem is difficult. Thus, the general indirect cross-validation method starts by formulating
a more complex estimation problem to estimate the bandwidth. Then, the resulting bandwidth is rescaled
to the original estimation problem (see Martı́nez-Miranda et al. (2009) and Savchuk et al. (2010) for more
details).
The extension of the do-validation method to dimensions higher than one complicates the problem. However,
the problem can be simplified by assuming a multiplicative structure for the multidimensional kernel, i.e.
K =

∏d
j=0 K j. Based on this assumption, a multivariate version of the do-validation method of Mammen et

al. (2011)), which works with the local linear multivariate hazard estimator given in (3), is formulated in the
following:

For any symmetric one-dimensional kernel K, the left-sided kernel is KL(u) = 2K(u)I(−∞, 0) and the right-
sided kernel is KR(u) = 2K(u)I(0,∞). The multiplicative (d + 1)-dimensional kernel can be defined by
choosing for each component, j = 0, . . . , d, any of the asymmetric versions, KL or KR. Therefore, we can
build an (asymmetric) d + 1-dimensional one-sided kernel such that

∏d
j=0 K j, where each K j is KL or KR (for

j = 0, . . . , d). Let us denote such a kernel by KA. We now consider the local linear hazard estimator α̂KA,b

as in (3) but with K replaced by KA. Accordingly, we define the one-sided cross-validation score as:

OS CV(b) = n−1

 n∑
i=1

∫ 1

0

[
α̂KA,b{s,Zi(s)}

]2
Yi(s)ds − 2

n∑
i=1

∫ 1

0
α̂[i]
KA,b
{s,Zi(s)}dNi(s)

 .
Let b̂A denote the minimiser of the above score. Note that such a bandwidth vector is not a suitable bandwidth
estimate for the original estimator α̂K ,b. However, such a suitable bandwidth can be derived by rescaling
b̂A. The rescaling constant is defined as the ratio of the MISE-optimal bandwidth for α̂K ,b and its one-sided
version α̂KA,b. Let this ratio be denoted by C. As we prove in Appendix A, this rescaling ensures that
Cb̂A is a consistent estimate for the optimal bandwidth of the estimator α̂K ,b. Accordingly, the one-sided
cross-validation bandwidth is defined as

b̂A,OS CV = Cb̂A. (6)
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In the one-dimensional setting, do-validation averages one-sided cross-validated bandwidths. In our mul-
tivariate setting we have 2d+1 different one-sided versions of (6). The generalisation of the do-validated
bandwidth to our setting is defined as the average of these 2d+1 one-sided bandwidth estimates.
Finally, to ensure that we are defining a bandwidth estimator that is feasible in practice, the rescaling constant
C should be a known value. We can see that this requirement is satisfied when we consider the local linear
estimator, which exhibits a suitable convergence rate. Using the asymptotic theory developed in Nielsen
(1998) we can derive the following exact expression for this constant:

C =

κ2/κ
2
1

κ̄2/κ̄
2
1

1/(d+5)

,

where κ1 =
∫

u2K(u)du, κ2 =
∫

K(u)2du and κ̄1, κ̄2 are defined analogously but involving one-sided kernels
(KL or KR). The details about this calculation are provided in Appendix A. From the above expression we
can confirm that the constant C can be derived without any prior information, since it only depends on the
chosen and known kernel K.
For example, the rescaling constant for the kernel K(u) = 3003/2048(1 − u2)6I(−1 < u < 1) and a one-
dimensional covariate (d = 1) becomes C = 0.5105. Similarly, for the Epanechnikov kernel K(u) = 3/4(1 −
u2)I(−1 < u < 1) and again d = 1 we have the value C = 0.5232.

4. Simulation experiments

The following finite sample study shows that the above defined cross-validation method and the particular
case of indirect cross-validation (named as the do-validation method) work well when continuous data is
available.

4.1. The objectives

The objectives we pursue through simulation experiments are twofold: (1) to compare the local linear (LL)
estimator with the local linear and local constant (LLLC) estimator that generalises the estimator by Spierdijk
(2008), and (2) to evaluate the performance of the two bandwidth selectors described in Section 3, namely
the cross-validation bandwidth b̂CV and the do-validation bandwidth b̂DO.
To achieve the first objective we provide a numerical comparison in two scenarios. The first scenario is the
ideal one, where we work in the best possible situation for the estimators.
This amounts to finding the best possible bandwidth, b̃0, for each simulated set of data, in the sense of having
the smallest error (4). We also consider a second infeasible strategy for bandwidth selection, the average
best bandwidth strategy, which amounts to finding the bandwidth b0 which minimises the averaged error
over S simulated samples. Clearly, such optimal bandwidths will be infeasible in practice, and thus we call
the derived estimators infeasible estimators. The second scenario establishes a comparison in a practical
situation, where the bandwidth is estimated from the data. Here we consider three fully-feasible estimators:
the LLLC estimator with cross-validated bandwidth and the LL estimator with both cross-validated and
do-validated bandwidths. Note that do-validation can only be developed for the fully local linear estimator.
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Figure 1: The true two-dimensional hazards in the simulation study.

The second objective is addressed by comparing the two proposed bandwidth estimates for the local linear
estimator with the infeasible bandwidth selectors considered as benchmarks. Such a comparison will give
some guidance as to how well the feasible bandwidth selectors are doing.

4.2. Simulation settings

We consider a model with a one-dimensional constant marker Z that takes values in the interval [0, τ]. We
consider four two-dimensional hazards. The first two were also considered in Nielsen (1998) and the other
two were also considered in Spierdijk (2008). The assumed true hazard rates are:

α1(t, z) = B(t, 2, 2) × B(z, 2, 2), t, z ∈ [0, 1]
α2(t, z) = B(t, 4, 4) × B(z, 4, 4), t, z ∈ [0, 1]

α3(t, z) =
1
t
ψ(log(t) − z)
Φ(z − log(t))

, t ∈ (0, 5], z ∈ [0, 1]

α4(t, z) = 3
2 t1/2 exp

(
− 1

2 cos(2πz) − 3
2

)
, t ∈ (0, 5], z ∈ [0, 1]

(7)

where B(·, a, a) denotes the density of a Beta with shape and scale parameters equal to a, and ψ(·) and Φ(·)
denote the density and the cumulative distribution function of a Standard Normal, respectively. These four
true hazards are shown in Figure 1.
We consider two different sampling schemes to provide complete and also filtered samples. The filtration
includes right censoring and left truncation. From each model and sampling scheme, we simulate S = 100
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samples of size n = 100, 500, 1000 and 5000. The explicit algorithms to simulate both types of samples are
provided in Appendix B, specifically in subsections Appendix B.2 and Appendix B.3. From these algorithms
the data are recorded in a discrete way so that the estimators (local linear and LLLC) can be calculated from
the discrete versions provided in subsection Appendix B.1. This simulation strategy is similar to the one
considered in Nielsen (1998) and Nielsen and Tanggaard (2001). We discretise the simulated data in a two-
dimensional grid into [0, τ] × [0, 1] with size M × M′ and τ = 1 for models 1 and 2 and τ = 5 for models
3 and 4. To ensure the stability of the results and therefore the validity of the approximation we choose the
values M = M′ = 100. Bigger grid sizes do not appear to alter our conclusions.
Finally, the kernel estimators are always calculated using the kernel K(x) = 3003/2048(1 − x2)6I(−1 < x <
1). The bandwidth selectors are calculated as minimisers of the corresponding scores into an equally spaced
grid of bandwidths. We define a two-dimensional grid of 100 bandwidths, b = (b0, b1), with b0 ∈ [τ/n, τ/2]
and b1 ∈ [1/n, 0.5] for each model.
The comparison among hazard estimators is made by evaluating the following performance measure:

err(α̂K,b) = n−1
M∑

r=1

M′∑
r′=1

[
α̂K,b(xr,r′ ) − α(xr,r′ )

]2 Er,r′ , (8)

for any estimator α̂K,b with bandwidth b = (b0, b1) and kernel K. This is just the discrete version of the
global measure of the estimation error in (4). From each simulated sample, each estimator provides a value
of the error (8), and the comparisons are made from the averaged errors over the S simulated samples in each
scenario.

4.3. Simulation Results

In this section we go through the obtained results from the simulation experiments under the scenarios
defined above and draw some conclusions about the two objectives we pursue.
Each true hazard is estimated using two types of estimators: the local linear (LL) and the LLLC. The
comparison between these two estimators is done in two steps. Firstly, by considering the best possible
situation, i.e. at their respective best optimal bandwidths (defined and denoted above by b̃0 and b0). Secondly,
we compare the estimators using data-driven bandwidth selection, which would be the case in practice.
The simulation results are shown in Table 1 and Table 2. The numbers in these tables correspond to the
averaged (along the S simulated samples) values of the performance measure in (8). The last three columns
in the tables correspond to the practical estimators, specifically the LLLC estimator with cross-validated
bandwidth (̂bCV ) and the local linear estimator with do-validated bandwidth (̂bDO).
We can clearly see that the local linear estimator beats the LLLC estimator in all cases. Columns 3 and
6 show the percentage of error reductions by the local linear estimator in the best possible cases. Column
9 shows the reduction in the practical situation where the bandwidth is chosen from the data. We can see
reductions in the error of up to 40%. This result is not surprising due to the lack of boundary adjustment in
the time direction by the LLLC estimator. This issue will also be observed in the data analyses below. When
considering the simulated scenarios in more detail, it turns out that the local linear estimator indeed works
much better at the boundaries, as can be seen in Figure 2. In this figure we plot the ratio between the two

8



Bandwidth choice

Optimal (sample) Optimal (global) Data-driven

Model n LLLC LL Rat. LLLC LL Rat. LLLC LL Rat.

1 100 0.0760 0.0756 0.99 0.0774 0.0760 0.99 0.1006 0.1038 1.03
200 0.0597 0.0523 0.88 0.0605 0.0530 0.88 0.0650 0.0654 1.01
500 0.0292 0.0254 0.87 0.0299 0.0257 0.87 0.0381 0.0268 0.71

2 100 0.1032 0.0942 0.91 0.1067 0.0983 0.91 0.2321 0.1179 0.51
200 0.0687 0.0573 0.84 0.0692 0.0597 0.84 0.1124 0.0663 0.59
500 0.0368 0.0311 0.85 0.0380 0.0319 0.85 0.0398 0.0360 0.90

3 100 0.0443 0.0369 0.83 0.0450 0.0398 0.83 0.0619 0.0425 0.69
200 0.0340 0.0247 0.73 0.0342 0.0247 0.73 0.0380 0.0299 0.79
500 0.0231 0.0139 0.60 0.0231 0.0139 0.60 0.0261 0.0203 0.78

4 100 0.0400 0.0263 0.66 0.0413 0.0274 0.66 0.0510 0.0380 0.74
200 0.0244 0.0158 0.65 0.0250 0.0162 0.65 0.0298 0.0262 0.88
500 0.0172 0.0117 0.68 0.0175 0.0118 0.68 0.0241 0.0155 0.65

Table 1: Comparison between the local linear local constant (LLLC) estimator and the local linear (LL) estimator -case of complete
samples. The numbers in the table show the average (along the simulated samples) of the performance measure in (8). Columns 5,
8 and 11 show the ratio between the LL and LLLC errors. Columns 3–5 correspond to the estimators calculated at their best optimal
bandwidth at each sample (̃b0). Columns 6–8 correspond to the best global optimal bandwidths (b0). Columns 9–11 correspond to the
data-driven bandwidth choice, which is cross-validation for LLLC and do-validation for LL.

Bandwidth choice

Optimal (sample) Optimal (global) Data-driven

Model n LLLC LL Rat. LLLC LL Rat. LLLC LL Rat.

1 100 0.0947 0.0870 0.92 0.0965 0.0902 0.92 0.1641 0.0980 0.60
200 0.0569 0.0499 0.88 0.0599 0.0534 0.88 0.0830 0.0578 0.70
500 0.0262 0.0212 0.81 0.0267 0.0216 0.81 0.0478 0.0229 0.48

2 100 0.1280 0.1151 0.90 0.1326 0.1233 0.90 0.2026 0.1530 0.75
200 0.1007 0.0961 0.95 0.1022 0.0997 0.95 0.1262 0.1047 0.83
500 0.0521 0.0488 0.94 0.0530 0.0497 0.94 0.1016 0.0523 0.52

3 100 0.0441 0.0362 0.82 0.0456 0.0374 0.82 0.0538 0.0406 0.75
200 0.0288 0.0193 0.67 0.0289 0.0200 0.67 0.0377 0.0239 0.63
500 0.0181 0.0102 0.56 0.0181 0.0103 0.56 0.0198 0.0147 0.74

4 100 0.0365 0.0311 0.85 0.0380 0.0330 0.85 0.0443 0.0372 0.84
200 0.0304 0.0237 0.78 0.0308 0.0254 0.78 0.0357 0.0283 0.79
500 0.0176 0.0137 0.78 0.0180 0.0138 0.78 0.0245 0.0178 0.73

Table 2: Comparison between the local linear local constant (LLLC) estimator and the local linear (LL) estimator -case of filtered
samples (20% censoring and 25% truncation). The reported numbers are defined as in Table 1.
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Figure 2: Ratio between the LLLC estimator and the local linear estimator from the 5% best sample for the LLLC estimator (sample
size n = 500 and no filtration). The estimators are calculated with their respective best optimal bandwidths.

estimators from one simulated sample (the estimators were calculated using their best possible bandwidths
with this sample). The sample we choose for the plots is one of the best for the LLLC estimator. Specifically,
we choose the sample corresponding to the 5% quantile of the performance measure, which is calculated
by ordering the samples according to the reported error by the estimator, and then choosing the sample that
gives the highest error of the 5% simulated samples with the best performance.
As a next step we asses the performance of the bandwidth selectors considered for the local linear estimator
(our second objective). Table 3 shows the results of the performance measure in (8) for each method in each
simulated scenario. To gain a clearer insight into the performance of the different methods, we calculate the
relative error with respect to the infeasible best possible bandwidth at each sample (̃b0). This measure is
defined as

Rerr =
averrDO − averr0

averrCV − averr0
, (9)

where averr• is the average of the error measure in (8) along the S simulated samples and considering a
specific criterion for the bandwidth selection (CV, DO or b̃0). The resulting values for each model and the
corresponding sample size are reported in columns 5 and 8 of Table 3, for complete samples and filtered
samples respectively. Note that Rerr indicates the reduction (if lower than 1) or increase (if bigger than
1) of the error using do-validation instead of standard cross-validation. The conclusion from the results
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Table 3: Comparison between cross-validation and do-validation for the local linear estimator. The numbers in the table consist of the
average (along the simulated samples) of the performance measure in (8). Columns 5 and 8 show the relative error defined in (9).

Complete samples Filtered samples

Model n CV DO Rerr CV DO Rerr

1 100 0.1036 0.1038 1.01 0.1887 0.0980 0.11
200 0.0573 0.0654 2.61 0.0748 0.0578 0.32
500 0.0385 0.0268 0.11 0.0441 0.0229 0.07

2 100 0.2286 0.1179 0.18 0.1762 0.1530 0.62
200 0.1008 0.0663 0.21 0.1276 0.1047 0.27
500 0.0365 0.0360 0.90 0.1052 0.0523 0.06

3 100 0.0553 0.0425 0.31 0.0479 0.0406 0.38
200 0.0284 0.0299 1.39 0.0269 0.0239 0.61
500 0.0166 0.0203 2.40 0.0129 0.0147 1.69

4 100 0.0357 0.0380 1.24 0.0342 0.0372 1.93
200 0.0195 0.0262 2.78 0.0279 0.0283 1.10
500 0.0197 0.0155 0.48 0.0198 0.0178 0.68

reported in Table 3 is that do-validation outperforms cross-validation most of the time for both complete and
filtered samples.

5. An application to old-age mortality

In this section we provide an illustration of the methods described in this paper to the dataset used by
Fledelius et al. (2004), which consists of old-age mortality data of Swedish women. Fledelius et al. (2004)
argue that local linear estimation is particularly important in studies of old age mortality because of its su-
perior bias properties (compared to local constant estimation). The dataset covers the calendar years 1988
to 1997 and the ages 90 and above. The aim is to estimate the two-dimensional hazard or force of mortal-
ity, α(t, z). In our formulation of the hazard function, age is time and calendar year is a one-dimensional
covariate. In the study by Fledelius et al. (2004), the estimation was calculated using the same local lin-
ear estimator we defined in (3), but with a subjective bandwidth choice. Based on experience, the authors
considered a bandwidth parameter for the time dimension of b0 = 7 and b1 = 4 for the covariate. Here
we consider two practical data-driven bandwidth choices, namely the cross-validated and the do-validated
bandwidths, which were defined in Section 3. To calculate the estimators, we use the Epanechnikov kernel
as the symmetric kernel K, which was also used by Fledelius et al. (2004).
Figure 3 shows the resulting smooth two-dimensional hazard estimates of the force of mortality for ages 90
and above between 1988 and 1997. The top left panel shows the local linear estimator with cross-validated
bandwidths, which in this case are b̂CV = (5, 2). The hazard estimate using the do-validated bandwidths
of b̂DO = (3.75, 17.25) is shown in the top right panel. The LLLC estimator is shown below using the
cross-validated bandwidths of b̂CV = (1, 8). From the surfaces in Figure 3, one can see that all methods
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provide surfaces which are increasing with respect to age. However, they exhibit different shapes and rates
of increase. The ratio between the LLLC estimator and the LL estimator is plotted in the right bottom panel
in Figure 3. As we would expect, the major differences between the estimators arise at the boundary points.
We should also point out that cross-validation (for both the local linear and the LLLC estimators) does not
work well in this case. The cross-validation score is minimised at unacceptable undersmoothing levels which
lead to very noisy estimates.
In order to gain a better insight into the differences among our estimates, we have plotted in Figure 4 the
estimated force of mortality for three different years, 1989, 1992, and 1996.
Each panel in Figure 4 shows the three practical estimates that we are comparing, namely the cross-validated
and do-validated local linear estimator and the cross-validated LLLC estimator. We have also plotted the
local linear estimator with the bandwidth vector used by Fledelius et al. (2004). The mortality curves in
this figure, as well as the surfaces in Figure 3, show that there has been a slight decline in female mortality
over the decade which is in line with the results of previous studies. However, the time trend exhibited by
each estimate is quite different for the ages 105 and above. Clearly, the LLLC estimator fails dramatically in
this age range, although the cross-validated local linear estimator in years 1989 and 1992 seems to perform
equally bad.
As discussed above, the fact that the estimator is a ratio (see equation 3) leads to problems in areas with very
small exposures. The visualisation technique provided in Figure 5 makes it possible to understand when
dramatic peaks might be due to the level of exposures approaching zero. In this figure, the top graphs show
the smoothed local linear occurrences and exposures (given by O11(·, ·) and E11(·, ·) in equation (3)). From
this we can see that the estimated mortality above 105 years of age is based on almost no information and
the visual analysis becomes difficult. Therefore, the estimators should be compared in the area with more
exposure, which we do in the lower graphs of Figure 5. This analysis confirms that the do-validated local
linear estimator gives a better estimate of the mortality rates than the estimators based on cross-validated
bandwidths. In fact, the do-validated LL estimator provides conclusions similar to the ones guided by expert
opinion in Fledelius et al. (2004)).

6. Conclusion

In this paper, a practical and fully feasible methodology for fully nonparametric multivariate local linear
hazard estimation has been developed. Such a method did not exist before. First, classical cross-validation
was adapted to this setting, and then indirect cross-validation was introduced. Both of these two new feasible
methods were shown to work well in finite sample studies with continuous data, but indirect cross-validation
was shown to be superior in the practical study of old-age mortality. The difference between the local
linear estimator by Nielsen (1998) and the LLLC estimator (which generalises the estimators of Spierdijk
(2008) and Kim et al. (2010)) is that the latter is local constant in the time direction. This simplification can
have dramatic effects around the boundary regions, where the fully local linear estimator is shown to work
much better than the LLLC estimator. This result naturally leads to the research question of whether further
bias reduction could be useful around the boundaries. Variable bandwidth methods (see Nielsen (2003)
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Figure 3: Two-dimensional hazard estimates for the ages 90 and above, between 1988 and 1997. The top left and right panels show
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Figure 4: Estimated force of mortality for women age 90-110 for the years 1989, 1992 and 1996.
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with ages up to 105 years).
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and Bagkavos and Patil (2008), transformation methods (see Spreeuw et al. (2013) or multiplicative bias
correction methods (see Mammen and Nielsen (2007)) could be useful starting points for further research.
It is perhaps surprising that so little focus has been given to provide plots of the fully unrestricted hazard
estimator given the enormous popularity of structured hazard models. While structured models, like the
popular Cox model, might summarise data in a convenient way, it is also true that important details of the
overall hazard might be missed when imposing structure. Therefore, the unrestricted hazard considered in
this paper should be recommended as an important part of the applied statisticians tool box when working
with survival data.
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Appendix A. Asymptotic properties of the local linear hazard estimator

The asymptotic properties of α̂K ,b are derived in Nielsen (1998) and are established as follows: Let ϕ(x) =

ft(z)y(t) and ϕ(x) > 0, additionally we assume the following regularity conditions:

(i) The hazard function, α and ϕ are fourth and twice continuously differentiable at x, respectively.

(ii) The kernel K has bounded support, is symmetric around zero and is continuous.

(iii) Suppose that n|b| → ∞ and b→ 0, where |b| =
∏d

j=0 b j.

(iv) There exist a function γ ∈ C1([0, τ]) positive in t which is the limit of the exposure function that is

sups∈[0,τ]

∣∣∣Y (n)(s)/n − γ(s)
∣∣∣ P
−→ 0. Moreover sups∈[0,τ]

∣∣∣∣nE
{
I(Y (n)(s))/Y (n)(s)

}−1
− {γ(s)}−1

∣∣∣∣ −→ 0.

Let the kernel moments be defined as: κ1 j =
∫

Rd+1 υ
2
jK(υ)dυ, for j = 0, . . . , d, and κ2 =

∫
Rd+1 K(υ)2dυ.

Then the pointwise asymptotic distribution of α̂K ,b(x) is analysed by splitting the error α̂K ,b(x) − α(x) into
the variable part and a stable part, which leads to the following

(n|b|)1/2{α̂K ,b(x) − α(x) − Bx}
D
−→ N(0, σ2

x)

where

Bx =

d∑
j=0

κ1 jb2
j

1
2
∂2α(x)
∂x2

j

 + o

 d∑
j=0

b2
j

 ,
and

σ2
x = κ2

α(x)
ϕ(x)

The required symmetry for the kernel K in assumption (ii) is not essential in developing these asymptotics;
however, it allows for simpler expressions. In fact, in the limit the stochastic local linear kernel Kx,b(u) sim-
ply becomes the deterministic K(u)/ϕ(x). For asymmetric kernels these asymptotic results hold in exactly
the same way apart from the involved kernel constants κ2 and κ1 j, j = 0, 1, . . . , d. Specifically, these con-
stants take on the values κ̄2 =

∫
[K∗(u)]2 du and κ̄1 j =

∫
u2

jK
∗(u)du, by involving a deterministic equivalent
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kernel K∗(u) which is rather more complicated. For the particular case that d = 1 this equivalent kernel can
be written as

K∗(u0, u1) =
1
ϕ(x)

µ2(K) + µ1(K)2 − µ1(K)(u0 + u1)
µ2(K) − µ1(K)2 K(u0)K(u1),

where µ1(K) =
∫

vK(v)dv and µ2(K) =
∫

v2K(v)dv. For higher d the expression of the equivalent kernel can
also be derived, but this would require some more calculations.
The martingale nature of the problem transfers weak convergence into L2–convergence (see Andersen et al.
(1993)), when we assume that the second condition in assumption (iv) holds. Thus we get that

E
[
α̂K ,b(x) − α(x)

]2
= B2

x + (n|b|)1/2Vx + o

 d∑
j=0

b4
j + (n|b|)1/2

 .
Applying Fubini’s Theorem therefore leads to the following asymptotic expansion of the Mean Integrated
Square Errors (MISEs)

MIS E
(
α̂K ,b(x)

)
=

∑d
j=0 κ1 jb2

j

∫ 1
0

{
1
2
∂2α(x)
∂x2

j

}2
dx

+(n|b|)−1κ2
∫ 1

0
α(x)
ϕ(x) dx + o

(∑d
j=0 b4

j + (n|b|)1/2
)
,

(A.1)

involving the symmetric multiplicative kernelK , where κ2 and κ1 j, j = 0, . . . , d are defined above. Similarly,
we can write the expression for MIS E

(
α̂KA,b(x)

)
for the case of asymmetric KA analogously to (A.1) by

replacing κ2 and κ1 j with κ̄2 and κ̄1 j for j = 0, . . . , d.
The above MISE calculations are required to develop the do-validation method of Mammen et al. (2011).
The key is to find the correct rescaling constant C that allows us to transform the MISE optimal bandwidth
for the local linear estimator using asymmetric kernelsKA to be a MISE optimal bandwidth for the estimator
using the kernel with symmetric components K . In the paper by Mammen et al. (2011) this constant C was
derived by first obtaining closed-form expressions for the MISE-optimal bandwidths for each local linear
estimator. However, such closed-form expressions are not available for dimensions d > 1 unless we assume
that the vector of bandwidths is determined by a single scalar b > 0. Instead we start by assuming a simpler
situation to get the MISE-optimal bandwidths and calculate C and later we prove that in the general case of
b = (b0, . . . , bd) this C remains exactly the same. For b = b × (1, . . . , 1) with b > 0, the MISE-optimal b is
given by:

bMIS E =

κ2

κ2
1

∫
α(x){ϕ(x)}−1dx∑d
j=0

∫
( ∂

2α(x)
∂x2

j
)2dx


1/(d+5)

n−1/(d+5), (A.2)

where we assume a symmetric multiplicative kernel with equal components K j = K for all j = 0, . . . , d.
Similarly, the MISE-optimal bandwidth for the estimator α̂KA , involving the asymmetric kernel KA, is given
by:

bA
MIS E =

 κ̄2

κ̄2
1

∫
α(x){ϕ(x)}−1dx∑d
j=0

∫
( ∂

2α(x)
∂x2

j
)2dx


1/(d+5)

n−1/(d+5). (A.3)
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Therefore the rescaling constant C which is defined as the ratio between (A.2) and (A.3) becomes:

C =

κ2/κ
2
1

κ̄2/κ̄
2
1

1/(d+5)

. (A.4)

Now we assume the general case of b = (b0, . . . , bd) but with the restriction that K j = K for all j = 0, . . . , d.
Let bA

MIS E denote the MISE-optimal bandwidth for the estimator α̂KA . Through some simple calculations we

can prove that the rescaled CbA
MIS E with C =

(
κ2/κ

2
1

κ̄2/κ̄
2
1

)1/(d+5)
is optimal in the MISE sense for the estimator α̂K .

We can therefore conclude that for any consistent estimator b̂
A

of the optimal bA
MIS E , the rescaled version

Cb̂
A

will be a consistent estimator of the optimal bMIS E for the preferred hazard estimator α̂K .

Appendix B. Simulation and approximation strategies

The purpose of this section is to derive the discrete version of the hazard estimator and the corresponding
scores defined for bandwidth selection purposes in the the paper. These expressions are necessary to deal
with data applications such as mortality studies, where the data are given as occurrences and exposures for
discrete points. These occurrences and exposures are just discretised versions of the counting processes
Ni and Yi, defined in Subsection 2. Deriving an expression of the estimator from discretised variables is a
simple exercise that we will carry out in Subsection Appendix B.1.
Apart from being required to deal with data applications, the discrete versions are useful for computational
purposes in simulation studies. Instead of simulating the continuous scenario formulated in the model di-
rectly, it is much faster and more convenient to simulate the data on a lower level of aggregation and then
to implement the methods using the discrete versions. Specific algorithms to simulate this kind of data are
provided in Subsections Appendix B.2 and Appendix B.3. Note that this strategy in practice is justified as
a numerical approximation of the integrals involved in the estimators. Thus, the level of aggregation should
be low enough to provide stable approximations. In the simulation experiments described in Section 4 we
used a grid of 100 two dimensional points, which was enough to guarantee the stability of the results.

Appendix B.1. Discrete approximations of the hazard estimators and the bandwidth selection strategies

In the continuous scenario we assume that we observe n individuals and have observations of type {(N1,Z1,Y1),
. . . , (Nn,Zn,Yn)} which are independent and identically distributed. In a practical scenario such detailed data
may be provided in an aggregated way. To simplify the derivations presented here we assume that the marker
Z is unidimensional (d = 1). Let us assume a practical situation where we only have observations at M < n
discrete time points, t1, . . . , tM , and M′ < n discrete values of the covariate, Z1, . . . ,ZM′ . Then for each
r′ = 1, . . . ,M′ we have a sample path {(Nr′,1,Yr′,1, . . . , (Nr′,nr′ ,Yr′,nr′ )} of the counting process with intensity
process λk(t,Zr′ ) = α(t,Zr′ )Yr′,l(t), l = 1, . . . , nr′ and

∑M′
r′=1 nr′ = n. In this situation the local linear estimator
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at any estimation point x = (t, z)t given in (3) can be approximated as follows:

α̂K,b(x) =

M′∑
r′=1

nr′∑
l=1

M∑
r=1

∫ tr

tr−1

[1 − (x − xr,r′ )tD(x)−1c1(x)]Kb0 (t − s)Kb1 (z − Zr′ )dNr′,l(s)

M′∑
r′=1

nr′∑
l=1

M∑
r=1

∫ tr

tr−1

[1 − (x − xr,r′ )tD(x)−1c1(x)]Kb0 (t − s)Kb1 (z − Zr′ )Yr′,l(s)ds

≈

M′∑
r′=1

M∑
r=1

[1 − (x − xr,r′ )tD(x)−1c1(x)]Kb0 (t − t∗r )Kb1 (z − Zr′ )
nr′∑
l=1

∫ tr

tr−1

dNr′,l(s)

M′∑
r′=1

M∑
r=1

[1 − (x − xr,r′ )tD(x)−1c1(x)]Kb0 (t − t∗r )Kb1 (z − Zr′ )
nr′∑
l=1

∫ tr

tr−1

Yr′,l(s)ds

with xr,r′ = (tr, zr′ ) and t∗r = (tr−1 + tr)/2, for r = 1, . . . ,M and r′ = 1, . . . ,M′. Here the bandwidth is
b = (b0, b1)t and we assume the same kernel K for both the marker and time. From the expression above we
can identify the occurrences and the exposures as follows:

Or,r′ =

nr′∑
j=1

∫ tr

tr−1

dNr′, j(s),

and

Er,r′ =

nr′∑
j=1

∫ tr

tr−1

Yr′, j(s)ds,

for r = 1, . . . ,M and r′ = 1, . . . ,M′. Note that Or,r′ represents the observed occurrences of the count-
ing processes {Nr′,1, . . . ,Nr′,nr′ }, and Er,r′ represents the observed exposures from the counting processes
{Yr′,1, . . . ,Yr′,nr′ } in the interval [tr−1, tr) (for r = 1, . . . ,M and r′ = 1, . . . ,M′). Thus, from a common dis-
crete dataset consisting of {(xr,r′ = (tr, zr′ ), Er,r′ ,Or,r′ ); r = 1, . . . ,M, r′ = 1, . . . ,M′}, the local linear hazard
estimator can be calculated from the following discrete approximation:

α̃K,b(x) =

M′∑
r′=1

M∑
r=1

{1 − (x − xr,r′ )tD̃(x)−1c̃1(x)}Kb0 (t − t∗r )Kb1 (z − Zr′ )Or,r′

M′∑
r′=1

M∑
r=1

{1 − (x − xr,r′ )tD̃(x)−1c̃1(x)}Kb0 (t − t∗r )Kb1 (z − Zr′ )Er,r′

, (B.1)
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where c̃1(x) = (̃c1,0(x), c̃1,1(x))t and D̃(x) = (d̃ j,k(x)) j,k ( j, k = 0, 1) are approximations of the moments c1(x)
and D(x) in (3), which are given by:

c̃1,0(x) =

M∑
r=1

M′∑
r′=1

Kb0 (t − t∗r )Kb1 (z − zr′ )(t − t∗r )Er,r′

c̃1,1(x) =

M∑
r=1

M′∑
r′=1

Kb0 (t − t∗r )Kb1 (z − zr′ )(z − zr′ )Er,r′

d̃0,0(x) =

M∑
r=1

M′∑
r′=1

Kb0 (t − t∗r )Kb1 (z − zr′ )(t − t∗r )2Er,r′

d̃0,1(x) =

M∑
r=1

M′∑
r′=1

Kb0 (t − t∗r )Kb1 (z − zr′ )(t − t∗r )(z − zr′ )Er,r′

d̃1,1(x) =

M∑
r=1

M′∑
r′=1

Kb0 (t − t∗r )Kb1 (z − zr′ )(z − zr′ )2Er,r′ .

Using similar arguments one can define discrete versions of the performance measure in (4) and the cross-
validation score as follows:

Q0(b) ≈ n−1
M∑

r=1

M′∑
r′=1

[
α̃K,b(xr,r′ ) − α(xr,r′ )

]2
Er,r′ , (B.2)

and

Q̂0(b) ≈
M∑

r=1

M′∑
r′=1

(
α̃K,b(xr,r′ )

)2
Er,r′ − 2

M∑
r=1

M′∑
r′=1

α̃[r,r′]
K,b (xr,r′ )Or,r′ , (B.3)

where α̃[r,r′]
K,b is the (discrete) hazard estimator arising when the dataset is changed by setting Or,r′ = Or,r′ − 1.

Appendix B.2. Simulating complete samples

Here we describe an algorithm to simulate complete samples from the models defined in (7). As we indi-
cated above, the data are obtained in an aggregated way so that each simulated sample will be a set such
that {(xr,r′ = (tr, zr′ ), Er,r′ ,Or,r′ ); r = 1, . . . ,M, r′ = 1, . . . ,M′}. The models are defined with Z being a unidi-
mensional marker with range (0, 1) and time is defined in [0, 1] for models 1 and 2 and in (0, 5] for the two
last models. Let us now consider the time interval [0, τ]. The algorithm to simulate a complete (not filtered)
sample can be described as follows:

Algorithm.

Step 1. Define the grid points {tr : r = 1, . . . ,M} and {zr′ : r′ = 1, . . . ,M′} as regular sequences between
[0, τ] and [0, 1], respectively. Let δM be the step length of the time sequence i.e. δM = t2 − t1.

Step 2. Draw n i.i.d. markers Z1, . . . ,Zn from a Uniform in [0, 1].
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Step 3. For each marker value in the grid zr′ , r′ = 1, . . . ,M′, the occurrences and the exposures, {Or,r′ , Er,r′ ; r =

1, . . . ,m}, are derived as follows:

(i) Calculate the number of individuals at risk at the initial time t1 by counting the number of simu-
lated Zi falling into [zr′−1, zr′ ). Let nr′ denote the total number of observations for each r′ (clearly∑M′

r′=1 nr′ = n). Using the notation from subsection Appendix B.1 the discretised risk processes
satisfy: Y (nr′ )

r′ (t1) :=
∑nr′

l=1 Yr′,l(t1) = nr′ .

(ii) Generate the number of failures or occurrences at the initial time t1, which is denoted by O1,r′ .
This is done by simulating from a Binomial with size Y (nr′ )

r′ (t1) and probability α(t1, zr′ )δM .

(iii) Calculate the size of the risk set, Y (nr′ )
r′ (tr), and generate the occurrences, Or,r′ , at the rest of the

time points in the grid tr (r = 2, . . . ,M) by the following recursive expressions:

Y (nr′ )
r′ (tr) = Y (nr′ )

r′ (tr−1) − Or−1,r′ ,

Or,r′ ↪→ B
(
Y (nr′ )

r′ (tr), α(tr, zr′ )δM

)
.

(iv) Finally, the exposures Er,r′ is calculated as Er,r′ = Y (nr′ )
r′ (tr)δM .

Step 4. Repeat Step 3 for each r′ = 1, . . . ,M′ to get the sample {(xr,r′ = (tr, zr′ ), Er,r′ ,Or,r′ ); r = 1, . . . ,M, r′ =

1, . . . ,M′}.

Appendix B.3. Simulating left truncation and right censoring

We will now introduce truncation and censoring following a similar method as Buch-Kromann and Nielsen
(2012). For the models 1 to 4 in (7), the number of censored observations was generated from a Binomial
distribution with success probability pcens = 0.01. This corresponds to an overall proportion of right cen-
soring of about 20% with a grid size of M = 100 time points. The proportion of left truncated observations
in the sample was ptrun = 0.25. The algorithm to simulate one sample with these levels of censoring and
truncation follows a similar structure to the algorithm in subsection Appendix B.2. The difference is just in
Step 3, which now runs as follows:

Step 3. For each marker value in the grid zr′ , r′ = 1, . . . ,M′ the occurrences and exposures, {Or,r′ , Er,r′ ; r =

1, . . . ,m}, are derived as follows:

(i) Calculate the number of simulated Zi which fall into [zr′−1, zr′ ) and let this number be denoted
by nr′ (

∑M′
r′=1 nr′ = n). Calculate the number of individuals at risk at the initial time t1 as:

Y (nr′ )
r′ (t1) = nr′ (1 − ptrun) := ñr′ .

(ii) Generate ñr′ random values {T1,r′ , . . . ,Tñr′ ,r′ } from a Uniform in [0, τ/2]. Calculate the number
of truncated observations that enter the sample at each time tr (r = 1, . . . ,M) by counting the
number of simulated T·,r′ (r = 1, . . . ,M) which fall into [tr−1, tr). Let Tr,r′ denote the resulting
counts and update the number of individuals at risk at the initial time t1 by calculating Y (nr′ )

r′ (t1) =

Y (nr′ )
r′ (t1) + T1,r′ .
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(iii) Generate the number of failures or occurrences at the initial time t1, which is denoted by O1,r′ .
This is done by simulating from a binomial with size Y (nr′ )

r′ (t1) and probability α(t1, zr′ )δM .

(iv) Generate the censoring level at time t1 from a binomial with size Y (nr′ )
r′ (t1)−O1,r′ and probability

pcens. Let the the generated value be denoted by C1,r′

(v) Calculate the size of the risk set (Y (nr′ )
r′ (tr)) and generate the occurrences (Or,r′ ) and the censoring

levels (Cr,r′ ) at the rest of time points in the grid tr (r = 2, . . . ,M) by the following recursive
expressions:

Y (nr′ )
r′ (tr) = Y (nr′ )

r′ (tr−1) − Or−1,r′ + Cr−1,r′ − Tr−1,r′ ,

Or,r′ ↪→ B
(
Y (nr′ )

r′ (tr), α(tr, zr′ )δM

)
,

Cr,r′ ↪→ B
(
Y (nr′ )

r′ (tr−1) − Or−1,r′ , pcens

)
.

(vi) Finally, the exposure Er,r′ is calculated as Er,r′ = Y (nr′ )
r′ (tr)δM .
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