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Abstract
Disease-modifying (DM) trials on chronic diseases such as Alzheimer’s disease (AD) require a
randomized start or withdrawal design. The analysis and optimization of such trials remain poorly
understood, even for the simplest scenario in which only three repeated efficacy assessments are
planned for each subject: one at the baseline, one at the end of the trial, and the other at the time
when the treatments are switched. Under the assumption that the repeated measures across
subjects follow a trivariate distribution whose mean and covariance matrix exist, the DM efficacy
hypothesis is formulated by comparing the change of efficacy outcome between treatment arms
with and without a treatment switch. Using a minimax criterion, a methodology is developed to
optimally determine the sample size allocations to individual treatment arms as well as the
optimum time when treatments are switched. The sensitivity of the optimum designs with respect
to various model parameters is further assessed. An intersection-union test (IUT) is proposed to
test the DM hypothesis, and determine the asymptotic size and the power of the IUT. Finally, the
proposed methodology is demonstrated by using reported statistics on the placebo arms from
several recently published symptomatic trials on AD to estimate necessary parameters and then
deriving the optimum sample sizes and the time of treatment switch for future DM trials on AD.
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1. Introduction
Many clinical trials require a switch of treatments in the middle of the studies, and yet are
not conducted through a standard crossover design. Examples include disease-modifying
(DM) trials on chronic diseases such as Alzheimer’s disease (AD) that strive not only to
establish the symptomatic efficacy for novel treatments in improving cognition, function,
and global measures or deferring decline over a relatively short period of time, but also to
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demonstrate that the course of AD has been altered and the rate of disease progression has
been slowed (Cummings 2006, Aisen 2006, Citron 2004, Mani 2004) over a relatively long
period of time. DM trials have been widely discussed in the AD research community (Leber
1997; Sampaio 2006; Whitehouse et al. 1998, Cummings et al. 2007). Clinicians have
conceptualized designs of DM trials to allow a definite distinction from the symptomatic
trials (Cummings 2006, Aisen 2006, Citron 2004). These designs in general require a switch
of treatments in the middle of trials for at least a proportion of subjects originally
randomized to either placebo or active treatment. One such design is the randomized start
design (Mani 2004). All patients in the design eventually will receive the active treatment,
but are randomized to two treatment groups that begin the active drug at different times.
During the initial time period of the study one group receives active drug and the other
placebo. After an interval of time sufficient to demonstrate the symptomatic efficacy for the
active drug, the placebo group switches to the active drug. If the patients who begin active
drug late ‘catch up’ with those who begin the active drug at baseline, the treatment effect is
assumed to be symptomatic. If there is no ‘catch-up’, it is assumed that the effect of the drug
is DM. Another DM design is the randomized withdrawal design (Mani 2004), which differs
from the randomized start design only in that subjects initially on active drug are switched to
placebo in the second phase. If the group withdrawn from the active drug maintains gains on
the efficacy measure relative to the placebo group, it is assumed that the drug is DM. In both
DM designs, in order to preserve the blinding, a second randomization must be performed to
the initial placebo (or active drug) arm so that a proportion of patients will maintain on
placebo (or active drug) throughout the trial. Figure 1 presents the expected longitudinal
cognitive growth profiles of a randomized start design on AD. To date, all FDA-approved
treatments to AD have been entirely based on their efficacy for treating symptoms (Kryscio
et al. 2004, Ringman et al. 2009, Andrieu et al. 2006), partly because the design and
analyses to establish the DM effectiveness of these treatments as well as many emerging
ones (Salloway et al. 2008) have not been fully established.

This paper focus on the DM trial with a randomized start or withdrawal design for which
only three repeated efficacy assessments are planned: one at the baseline, one at the end of
the trial, and the other at the time when the treatments are switched. We formulate the DM
hypothesis and propose a method to test the hypothesis, derive optimal sample size
allocations to different treatment arms and the optimum time of treatment switch, and assess
the sensitivity of these designs. Finally, we present optimum designs of future DM trials on
AD using the reported statistics from recently published symptomatic trials.

2. A model for DM trials with a randomized start design
2.1. Estimating DM efficacy and testing the DM hypothesis

We will discuss our methodology by focusing on the DM trials on AD with a randomized
start design, and point out that our proposed methods apply to many similar clinical trials on
other diseases that require a switch of treatments in the middle of the trial (i.e., randomized
withdrawal design). We use Y to denote the primary efficacy outcome in DM trials on AD
(Cummings 2008). The Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-
cog, Rosen et al. 1984) has been the most commonly used primary cognitive outcome in
symptomatic trials of AD. Recently, many modalities of biomarkers have now shown
promising ability to track the disease progression, including magnetic resonance imaging-
based brain volumes (Storandt et al. 2009), diffusion tensor imaging-based measures of
white matter microstructure (Head et al. 2004), cerebrospinal fluid (Fagan et al. 2006), and
molecular imaging of cerebral fibrillar amyloid with positron emission tomography using
the [11C] benzothiazole tracer, Pittsburgh Compound-B (Mintun et al. 2006).
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We use u=tt and pp to represent the group of subjects who are in the treatment arm and
placebo arm throughout the trial, respectively, and use u=pt to represent the group of
subjects who initially receive the placebo and then switch to the active treatment. Assume

that  is the observation of Y at time t for the j -th subject from treatment group u. Let t1,
t2, t3 be the three time points for repeated measures of Y in a DM trial with a randomized
start design, where t1 = 0 is the baseline, t3 is the time of the final assessment, and t2 is the

time for the treatment switch. Let ,i = 1,2,3, and let 
(superscript t means matrix transpose) be the vector of longitudinal measurements of the j -
th subject from treatment group u. Because the DM design requires the establishment of
both symptomatic efficacy prior to the treatment switch and the DM efficacy after the
treatment switch, the first objective is to compare the change from the baseline between the
treatment and the placebo before the treatment switch, and the second objective is to
compare the change in efficacy outcome between subjects treated throughout the trial and
those receiving the delayed treatment.

For subject j from treatment arm u, u=tt, pp, and pt, we assume a trivariate distribution for

 whose first and second moments exist. Notice that here we do not
assume a specific parametric family such as normal distributions for the joint distribution of

. This more general assumption on the distributions is justified, especially in the future
clinical trials on AD for which a wide range of cognitive and CSF and imaging biomarkers
(Storandt et al. 2009, Head et al. 2004, Fagan et al. 2006, Mintun et al. 2006) with highly

skewed distributions could potentially serve as efficacy endpoints. Let  be

the mean vector of  for group u. We assume that the duration of the trial, t3, is pre-
specified, but the time for the treatment switch, t2, can be designed. Let

(1)

be the shared covariance matrix of  for u=tt, pp, and pt. We point out that our proposed
methods described below can also be generalized to the case when the variance and
covariance parameters in Σ vary as a function of t2. Because of the randomization at the
baseline as well as the second randomization at the treatment switch time for those initially

assigned to the placebo, we can assume that  and . Further, we assume
that a linear trend adequately describes the longitudinal progression of the efficacy outcome
for the treated group and the placebo group throughout the trial, and let

be the mean slopes for u=tt and pp. Let

be the slope of efficacy outcome after the treatment switch. The comparative nature of

, u=tt, pp, and pt, determines whether the novel treatment is DM. More
specifically, before the treatment switch, it is expected that the symptomatic efficacy for
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treating AD will be established. This implies that the mean decline since baseline for the
treated and the placebo arms should be different, with the treated arm decline more slowly
before the time when the placebo is switched to the active treatment. This implies that

, i.e., βtt > βpp. After the treatment switch, the efficacy for modifying the
disease can only be established by the fact that the subjects whose treatment is delayed (i.e.,
u=pt) can never ‘catch up’ those whose treatment is not delayed if the trial continues
indefinitely. Mathematically, this implies that, after the treatment switch, the rate of decline
for the delayed treatment arm has to be equal to or faster than that for the treated arm

throughout the trial, i.e., , or equivalently, βtt ≥
βpt. Therefore, an appropriate statistical hypothesis for establishing the DM efficacy of the
novel treatment is βtt ≥ βpt > βpp. In order to test this hypothesis, we have to estimate two
differences on slopes: one is between the treated arm throughout the trial and the delayed
treatment arm, i.e., δ = βtt − βpt, and the other is between the delayed treatment arm and the
placebo arm throughout the trial, i.e., Δ = βpt − βpp.

Let nu be the sample size within group u. Let n = ntt + npp + npt be the total sample size. Let
λu = nu / n be the proportion (i.e., allocation) of the total sample size to each treatment group
u=pp, tt, and pt. It is clear that λpp + λtt + λpt = 1. Let d1 = t2 − t1, d2 = t3 − t2,

, s3 = σ13 − σ12, . Let

Because βtt can be estimated by two unbiased estimators

and

an optimum estimate to βtt is

(2)

for some constant c such that the variance of β̂tt, , as given in row 2 of Table 1, is
minimized over the choice of c. A simple calculus reveals the optimum c as given by

Let
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βpp can also be estimated by two unbiased estimators. One involves data from t1 = 0 to t2 for
both the placebo arm throughout the trial and the delayed treatment arm,

The other involves data from t2 to t3 for the placebo arm throughout the trial,

An optimum estimate to βpp is

(3)

for some constant f such that the variance of β̂pp, , as given in row 3 of Table 1, is
minimized over the choice of f. Another simple calculus reveals the optimum f as

Next, the slope βpt after the treatment switch can be estimated by

The variance of β̂pt, , is given by row 5 of Table 1. Finally, based on the optimum

estimator β̂tt, δ = βtt − βpt can be estimated by δ̂ = β̂tt − β̂pt. The variance of δ̂, , is given by
row 8 of Table 1, where the covariance of β̂tt and β̂pt, cov(β̂tt, β̂pt), is given by row 6 of Table
1. Likewise, based on the optimum estimator β̂pp, Δ = βpt − βpp can be estimated by Δ̂ = β̂pt −

β̂pp. The variance of Δ̂, , is given by row 9 of Table 1, where cov(β̂pt, β̂pp) is given by row
7 of Table 1. It is clear that under standard regularity conditions required for the joint

distribution of  in the Central Limit Theorem, the estimates, (δ̂,Δ̂), follow an asymptotic
bivariate normal distribution with mean (δ,Δ) and covariance matrix
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where the covariance of (δ̂,Δ̂), σδ̂Δ̂, is given by row 10 of Table 1 with the covariance of β̂tt

and β̂pp, cov(β̂tt, β̂pp), given by row 4 of Table 1.

Table 1 summarizes the variance and covariance of all estimated parameters for testing DM
efficacy as described above. Notice that the covariance in the third column of Table 1
becomes the variance when two estimates are the same.

To test the DM efficacy of the active treatment, we propose to test the null hypothesis H0 : δ
< 0 or Δ ≤ 0 against the alternative H1 : δ ≥ 0 and Δ > 0. The null hypothesis is the union of
two null hypotheses H0δ : δ < 0 and H0Δ : Δ ≤ 0, and the alternative is the intersection of two
alternative hypotheses H1δ : δ ≥ 0 and H1Δ : Δ > 0. For each individual set of null and
alternative hypotheses, let zδ = δ̂ / σδ̂ and zΔ = Δ̂ / σΔ̂ be the corresponding test statistic. If δ
= 0 or Δ = 0, the corresponding test statistic follows an asymptotic standard normal
distribution. To test the null hypothesis H0 : δ < 0 or Δ ≤ 0 against the alternative H1 : δ ≥ 0
or Δ > 0, an intersection-union test (IUT, Berger and Sinclair 1984, Berger 1989, Liu and
Berger 1995) rejects the null hypothesis when both zδ > M and zΔ > M for some constant M.
In order for the test to have a size of α (0 < α < 1), M has to be chosen such that

Notice that

(4)

where Z = (zδ,zΔ), mδ = M −δ / σδ̂ and mΔ = M − Δ/σΔ̂, and

Because limδ→+∞ mδ = −∞, it follows that if Δ = 0, i.e., still staying within H0, then, as
minu nu → ∞,

Therefore, when M = zα, the 100α upper percentile of the standard normal distribution, the
rejection region zδ > M and zΔ > M for the IUT provides asymptotic size α for testing H0 : δ
< 0 or Δ ≤ 0 against the alternative H1 : δ ≥ 0 and Δ > 0. The corresponding approximate
power function for the IUT is then given by

(5)

Thus, the sample sizes required to achieve an asymptotic statistical power of (1−η) (0 < η <
1) are the solutions to ntt, npp, and npt such that P(δ,Δ) =1 − η.

If the total spacing t3 has been determined, given the simple DM trial we consider here, an
important design question is how the treatment switch time, t2, should be chosen to give the
best estimate to the efficacy parameters δ and Δ. Another important set of design parameters
to be optimized is the sample size allocations λu, u = pp, tt, pt, subject to λu > 0,, and λpp +
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λtt + λpt = 1. Because the DM design requires simultaneous estimates to two parameters,
(δ,Δ), an optimum design must simultaneously minimize the variances associated with both
estimates, (δ̂,Δ̂). Hence, it is necessary to find the maximum possible variance from any
linear combinations of the two estimates. Let L̂(τ1, τ2) = τ1δ̂ + τ2Δ̂ be a linear combination
of the two estimators with weights (τ1, τ2) subject to τ12 + τ22. The variance of the linear
combination is

(6)

The maximum variance from all possible linear combinations is the largest eigenvalue of Ψ
(Noble and Daniel, 1977) as given by

(7)

Notice that  depends on both individual variances of (δ̂,Δ̂) and the
covariance between them, σδ̂Δ̂. In the extreme case when two estimators are independent,

i.e., σδ̂Δ̂ = 0,  is the maximum of the variances from (δ̂,Δ̂). To optimize
the DM design, one criterion is to use the ‘minimax’ criterion, i.e., to choose all design

parameters to minimize the maximum variance, , from all possible linear

combinations of (δ̂,Δ̂). Notice that n  (n is the total sample size) is a
function of λu, u = pp, tt, pt, and t2. Assuming that the duration t3 of the simple DM trial is
pre-specified, we locate the optimum treatment switch time t2 and the sample size

allocations λu, u = pp, tt, pt, by minimizing n . Notice that the focus of
the DM trial with a randomized start design is on the delayed and non-delayed treatment
arms, i.e., data from these two arms alone already allow the test of the DM efficacy.
Subjects randomized into the placebo again from the second randomization mainly serve to
preserve the blinding of subjects and investigators to the active treatment, albeit they have to
participate in the efficacy analyses based on the ‘intent-to-treat’ principle (Montori and
Guyatt 2001, Heritier et al. 2003). Hence, it is practical for the investigators to pre-specify a
small portion of subjects (denoted by λ0) to be randomized to placebo from the second
randomization, i.e., u=pp. The optimum treatment switch time t2 and sample size allocations

are then the solutions for minimizing n , subject to 0 = t1 < t2 < t3 and 0

< λtt = 1 − λ0 − λpt < 1. Mathematically, n , as a function of t2 and λpt, is
complicated. The minimization over t2 and λpt has no closed form, and can be done by
Newton–Raphson method (Bonnans et al. 2006) to solve the system of equations

(8)

2.2. Specification of covariance matrix for the trivariate distribution
It is important to point out that the optimum design we proposed above does not assume a

specific parametric family of trivariate distribution (e.g., normal distribution) for .
However, the proposed methodology does require the existence of the mean vector

 and the covariance matrix for . The common covariance structure
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assumed for u=pp, pt, and tt has to be specified to derive the optimum design parameters for
the DM trials. Because general linear mixed effects models have been very successful to fit
the longitudinal data from many of the outcomes in AD studies (Johnson et al. 2009,
Storandt et al. 2006), here we focus on the specific covariance structure that can be derived

from the random intercept and random slope models (Laird and Ware 1982) on , 0 = t1
≤ t ≤ t3, for group u=pp or tt. Assuming a linear trend over time for , a random intercept
and slope model assumes that

(9)

where  is subject-specific vector of latent intercept and slope, and  is the
within-subject random error over time. We further assume a bivariate (not necessarily

normal) distribution for  across subjects with a 2 by 2 covariance matrix

(10)

and a stationary error process for , 0 = t1 ≤ t ≤ t3, with  and the
autocovariance function given by

(11)

for h ≥ 0. For example, if ρ(h) is a constant when h>0, it corresponds to the compound
symmetry covariance structure in longitudinal models (Diggle et al., 2002). If

(12)

for h>0, it corresponds to the autoregressive covariance structure in longitudinal models
(Diggle et al., 2002). Finally, with the standard assumption of independence between

 and , 0 = t1 < t2 < t3 in the linear mixed model, the covariance matrix for

 is given by

(13)

To assess how different parameters in the covariance structure affect the optimum choices
for the treatment switch time and the sample size allocations to different treatment arms, we
compute the optimum design parameters in a hypothetical DM trial with a duration of unit 1,

i.e., t1 = 0, t3 = 1. We assume the following variance/covariance parameter for  in

Equation (10): , ω12 = 4γ, where γ is the correlation between the latent intercept
and the slope across subjects. We also assume an autoregressive covariance structure for

 in Equation (12) with τ2 = 6 and ρ, the correlation between  and . For a
wide range of γ and ρ, assuming 10% subjects are randomized to the placebo throughout the
trial, Table 2 presents the optimum time of treatment switch (t2) and optimum sample size
allocations (λtt, λpt) to treatment groups. Results in Table 2 suggest that the optimum sample
size allocations (λtt, λpt) are remarkably stable and robust as a function of the two
correlations γ and ρ. Further, the correlation γ only minimally affects the optimum choice of
treatment switch time t2, whereas the correlation ρ in the autoregressive covariance structure
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for  seems to play a moderately bigger role in affecting the optimum treatment switch
time, i.e., as ρ increases, the optimum treatment switch time t2 increases moderately.

3. Application: optimum DM trials on AD
We demonstrate the proposed methodology to design a future DM trial on AD using the
latest available information from the literature. AD is characterized by an insidious onset of
memory deterioration, progressive cognitive deterioration, emergence of neuropsychiatric
symptoms and behavioral disturbances, impairment of activities of daily living, and loss of
independent function. The looming public health crisis due to AD mandates a fast
development of novel DM treatments for the disease. Currently, several compounds have
been approved by the FDA to enhance cognition and global function of AD patients through
symptomatic trials alone. On the other hand, recent advances in understanding AD
pathogenesis have led to the development of numerous compounds that might modify the
disease process. A wide array of antiamyloid and neuroprotective therapeutic approaches are
under investigation on the basis of the hypothesis that amyloid beta (Abeta) protein plays a
pivotal role in disease onset and progression and that secondary consequences of Abeta
generation and deposition, including tau hyperphosphorylation and neurofibrillary tangle
formation, oxidation, inflammation, and excitotoxicity, contribute to the disease process
(Salloway et al. 2008). Interventions in these processes with agents that reduce amyloid
production, limit aggregation, or increase removal might block the cascade of events
comprising AD pathogenesis. Reducing tau hyperphosphorylation, limiting oxidation and
excitotoxicity, and controlling inflammation might be beneficial disease-modifying
strategies. Potentially neuroprotective and restorative treatments such as neurotrophins,
neurotrophic factor enhancers, and stem cell-related approaches are also under investigation
(Salloway et al. 2008). It is anticipated that these promising treatments will soon be tested
for their ability to modify the disease process of AD through well designed DM clinical
trials.

Unlike symptomatic trials for which a single randomization at baseline is generally
implemented, DM trials require an initial randomization followed by a re-randomization of
patients in either the placebo or treatment arm. Although the design and analysis of DM
trials on AD have been extensively discussed in the AD literature (Cummings 2006, Aisen
2006, Citron 2004, Mani 2004), no DM trials on patients with AD have been reported to
date. We therefore have to obtain necessary estimates to important model parameters
through recently reported symptomatic trials on AD. These parameters include between and

within subject variances and covariance , s = 1,2, ω12 in Equation (10) and τ2 and ρ (in

the autoregressive function of , t1 ≤ t ≤ t3). Using these estimates, here we provide
optimum design parameters for future DM trials on AD by applying our proposed
methodology to a variety of design scenarios. We assume a randomized start design in
which 10% subjects will be randomized to receiving placebo throughout the trial and then
optimize the sample size allocations to the treatment arm and the delayed treatment arm. We
also optimize the time of treatment switch for the delayed treatment arm. The optimum
weights c and f as given in Equations (2) and (3) are used to estimate βtt and βpp, as well as
subsequently in the IUT of the DM efficacy.

More specifically, we conducted a comprehensive literature review on symptomatic clinical
trials on AD. Most recently reported symptomatic trials on AD used ADAS-cog as the
primary efficacy outcome measure. We therefore assumed that the future DM trials will also
use the same cognitive outcome as the primary efficacy endpoint. Essentially all published
symptomatic trials on AD reported the efficacy analyses using the change of ADAS-cog
score from the baseline. These published symptomatic treatment trials on AD followed
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patients for a duration ranging from 4 weeks to 1.5 year (Qizilbash et al. 1998;
Kaduszkiewicz et al. 2005, Sano et al. 2011), and therefore the reported variance for the
change from baseline on ADAS-cog score also spanned a wide range. None of the published

symptomatic trials on AD directly reported estimates to model parameters , s = 1,2, ω12,
τ2, and ρ as given in Equations (10) and (12). We hence combined the reported statistics
from multiple published symptomatic trials on AD to obtain estimates necessary for
optimizing DM trials with three outcome assessments. Three recently published trials (two
published in 2011) that were reasonably large in sample size and long in follow-up duration
were identified. These three trials specifically reported the variance associated with the
change of ADAS-cog score from the baseline for the placebo arm (i.e., u=pp). Sano et al.
(2011) reported the effect of simvastatin in treating mild to moderate AD for an 18 months
trial from which 202 subjects were randomized to the placebo. Rafii et al. (2011) reported
the effect of huperzine A in treating mild to moderate AD for a 16 weeks trial from which
73 subjects were randomized to the placebo. Rogers et al. (1998) reported the effects of
Donepezil in treating AD for a 24-weeks trial from which 162 subjects were randomized to
placebo. Because of variable length of longitudinal follow-up for these trials, the reported
variance associated with the change of ADAS-cog score from the baseline is a function of
the length of follow-up. However, if model (9) is appropriate for the placebo arm of the
reported symptomatic trials, i.e., assuming a linear growth pattern of ADAS-cog over time,
the annual rate of change on ADAS-cog (i.e., the slope) in the placebo arm can be estimated
(sometimes through extrapolations with less than 1 year follow-up) by the reported mean
difference from baseline divided by the length of follow-up (in years). Therefore, the
standard deviation for the annual rate of change can be estimated by the reported standard
deviation on the change from baseline divided by the number of years in follow-up. Let D be
the duration of a reported symptomatic trial on AD. We linked the reported statistics on the
change score of ADAS-cog from the baseline with our proposed covariance structure in
Equation (13). Whereas these published trials did assess subjects at more than two time
points, our approach is likely the only practical one because none of these trials reported
relevant statistics on the efficacy at middle time points from the baseline to the final
assessment. Specifically, the model given by Equation (9) implies

It then follows that

(14)

where  is the reported variance for the change score of ADAS-cog from the baseline in the
placebo arm. In addition, all three published trials reported basic statistics of ADAS-cog at
baseline for the placebo arm, which can be used to estimate the variance parameters in our
covariance structure associated with the baseline outcome measure (Equation (13)). In fact,

at baseline, i.e., t = t1 = 0, , where  is the reported variance for the baseline
ADAS-cog. The reported statistics on the placebo arm from the three trials are given in
Table 3.

From the reported statistics of the three trials (Rogers et al. 1998, Rafii et al. 2011, and Sano
et al. 2011) along with Equation (14), we have the following system of equations:
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Solving the system of equations revealed that ρ = 0.319, , τ2 = 44.627. Finally,
using the baseline variance estimate from the largest trial in Table 3 (i.e., Sano et al. 2011),

we estimated  by , resulting .

We have now obtained estimates to variance and covariance parameters , s = 1,2, τ2 and ρ
in the covariance structure as given by Equation (13) except for ω12, the covariance between
the latent intercept and the slope across subjects in the random intercept and random slope
model (Equation (9)). No information was directly reported in published symptomatic trials
on AD that can be used to obtain an estimate to ω12. Because ω12 = γω1ω2, we therefore
searched for the optimum design parameters for future DM trials on AD as a function of γ,
the correlation between the latent intercept and the slope across subjects. For a range of γ,
λpp = 10%, t3 = 1.5 years or 2 years or 2.5 years, Table 4 reports the optimum sample size
allocations to different arms as well as the optimum time of treatment switch for future
simple DM trials on AD with three longitudinal assessments. Results in Table 4 confirm
what has been found in Table 2, i.e., the optimum sample size allocations (λtt, λpt) and the
optimum choice of treatment switch (t2) are very stable and robust as a function of the
correlation γ between the latent intercept and the slope.

Assuming a randomized start design with three efficacy assessments for a duration of 1.5
years, 2 years and 2.5 years, for a selected set of effect sizes typically reported in the AD
literature, Table 5 presents the sample sizes for different treatment arms (i.e., u=pt and u=tt)
required to detect the effect sizes with a statistical power of 80%. These individual sample
sizes are based on the optimum sample size allocations (in %) to group u=pt and u=tt (i.e.,
λpt and λtt) and optimum treatment switch time as presented in Table 4. 10% subjects are
assumed to be randomized into the placebo arm throughout the trial for preserving the
blinding. Because the correlation (γ) between the latent intercept and the slope across
subjects does not appreciably affect the optimum design parameters (i.e., sample size
allocations λpt and λtt, and treatment switch time t2) as evidenced in Table 4, we assumed
that γ = 0.5 in Table 5. Power function in Equation (5) was evaluated by SAS function
PROBBNRM (SAS Institute Inc., 1990) in Table 5.

4. Discussion
In order to design optimum clinical trials for establishing the DM efficacy of potential novel
treatments on chronic disease such as AD, we proposed a methodology to analyze the rate of
change for efficacy outcome variable in a randomized start trial. We focused on the simplest
longitudinal design with only three repeated outcome assessments from which the middle
one serves as the time of treatment switch. We assumed a trivariate distribution without a
specific parametric structure for the three repeated measures on the same subjects with a
covariance matrix that was derived from a random intercept and random slope model (Laird
and Ware 1982). Based on these assumptions, we first formulated the appropriate DM
hypothesis by comparing the rate of change in efficacy outcome between the treated group
throughout the trial and the delayed treatment group. Because of the second randomization
to the subjects who are initially randomized to the placebo in a DM trial, a third treatment
arm in which subjects are randomized to the placebo throughout the trial is available. The
third treatment arm complicated the statistical test of DM efficacy due to the ‘intent-to-treat’
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principle that requires that data from all randomized and treated subjects participate in the
efficacy analysis. Because multiple unbiased estimators were available to the rate of change
for the placebo and the treatment arms, we obtained optimum unbiased estimates to the rates
of change by minimizing the variance of linear combinations of multiple estimators. With
these optimum estimates, we developed a methodology to optimally determine the sample
size allocations to different treatment arms as well as the time for treatment switch for
subjects whose treatment was delayed. After the design parameters were optimally chosen,
we proposed an intersection-union test to assess the efficacy of potential DM agents. We
studied the size and the power of the IUT, and provided a method of determining the sample
sizes to adequately power the test of DM efficacy.

The simple DM trials with a randomized start design we considered here differ from the
standard crossover designs (Chi 1992) in the sense that the former allows some of the
subjects receiving only placebo throughout the trials. Further, whereas most crossover trials
are designed for testing the symptomatic efficacy of a novel treatment, the simple DM trials
aim to establish DM efficacy which mandates the symptomatic efficacy as a prerequisite
during the first phase of the trial. Therefore, the time of treatment switch becomes an
important parameter in designing DM trials. Our proposed methodology provided an
optimum choice of treatment switch time. Jarjoura (2003) considered the efficiency of a
clinical trial design which did allow crossing control to treatment (i.e., similar to our
designs), but optimal switching time for crossing controls to active treatment was only
discussed under the assumption that the treatment effect is constant across time (please see
page 311 of Jarjoura (2003)). Here, we have focused on the DM efficacy which requires not
only a symptomatic treatment efficacy that is time-varying prior to treatment switching time
but also a DM treatment efficacy that depends on whether the treatment is delayed or not. In
addition, our analytic approaches also differed from those of other authors (Jarjoura 2003).
The randomized start design we discussed here allowed the third arm of continued control
throughout the trial (to protect the blinding after second randomization), which complicated
the parameter estimations much more considerably than the two arm scenario that was
discussed in Jarjoura (2003). We have assumed a trivariate distribution without a specific
parametric structure for the three repeated measures on the same subjects whose mean
vectors across different arms were used to define the DM hypothesis. The covariance
structure of the trivariate distribution, however, was derived from a standard random
intercept and random slope model (Laird and Ware 1982) which assumed a bivariate
distribution for the latent intercept and slope and incorporated an autoregressive structure on
the error process. We assumed a linear trend over time for subjects whose treatment was not
switched in the middle of the trials. For individuals whose treatment was delayed, the simple
DM trials we considered here forced a piecewise linear pattern. Our approach allowed
potentially differential rate of change for subjects receiving delayed treatment as compared
to those receiving the treatment throughout the trial, as well as a correlation on the rates of
change before and after the treatment switch. Through a hypothetical DM trial, we found
that the optimum sample size allocations were very stable and robust against different
choices of the correlation (i.e., γ) between the latent intercept and the slope and the

correlation (i.e., ρ) in the autoregressive covariance structure for  in model (11). We

also found that the correlation ρ in the autoregressive covariance structure for  played a
moderately bigger role in determining the optimum treatment switch time than the
correlation γ.

The current definition of DM efficacy in clinical trials with a randomized start design
requires two conditions to be met simultaneously: one is the symptomatic efficacy before the
treatments are switched, and the other is the fact that the delayed treatment arm will never
‘catch up’ the continuously treated arm. It is therefore very intuitive to use some type of
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adaptive design in which the first condition (i.e., the symptomatic efficacy) is tested using
data prior to the treatment switch, and then the second condition tested after the treatment
switch. This type of adaptive design is called adaptive-hypotheses design (Chow and Chang
2008), and can be especially appealing for testing a novel treatment for which no
symptomatic efficacy has ever been established, because the adaptive testing can prevent the
trial from continuing (and thus saving cost) if the test of the first condition (symptomatic
efficacy) is not even successful. On the other hand, even if the test of the first condition is
successful, it can not establish the DM efficacy that requires both conditions simultaneously.
Because our goal is to optimize design parameters such as treatment switch time and sample
size allocations to different arms in a future DM trial and the cost of the clinical trial is not
considered in the optimum design of the DM trials for the current work, we have hence
chosen to use a randomized start design to test the DM efficacy by allowing a treatment
switch in the middle of the trial. These are especially relevant to the companies whose drugs
have already been approved by the FDA due to their successful symptomatic trials on the
symptomatic efficacy. What they would like to do next is to prove that their drugs have
additional DM efficacy. To achieve this, they would need to design a future DM trial
involving a treatment switch. Our proposed methods provide them parameters to optimally
design such trials.

We applied our proposed methodology to design future simple DM trials on AD. Because no
DM trials on AD have been reported, we conducted a literature review on published
symptomatic trials on AD, and located three recently reported symptomatic trials on AD that
were relatively large in sample size and long in follow-up and also reported the variance
associated with the change of ADAS-cog score from the baseline for the placebo arm
(Rogers et al. 1998, Rafii et al. 2011, and Sano et al. 2011). Given that none of the three
trials directly reported the estimates to parameters in the covariance structure in Equation
(13), we proposed a novel approach to obtain pilot estimates to these important parameters
by linking our proposed covariance structure with the reported statistics. More specifically,
we solved a system of three equations that were derived from the reported variances
associated with the change of ADAS-cog score from the baseline in the three trials. After
obtaining estimates to these parameters, we computed the optimum design parameters (i.e.,
sample size allocations, and treatment switch time) for future simple DM trials on AD, and
provided the sample sizes into different treatment arms required to detect a selected set of
effect sizes with a statistical power of 80%. Our results indicate that clinical trials for DM
treatments on AD can be adequately powered and optimized. Because a DM treatment, by
definition, requires symptomatic efficacy, it is no surprise that a DM trial on AD requires a
much larger sample size than symptomatic trials, as demonstrated by our findings. Another
contributing factor to the relatively large sample sizes in future DM trials on AD is the
relatively small effect sizes we have intentionally assumed in Table 5. This is based on the
fact that, although ADAS-cog has shown a wide range of effect sizes in published
symptomatic trials, smaller effect sizes are expected for future novel drugs on AD because
any future clinical trials on AD will have to be conducted on the patients who have already
been using approved drugs, i.e., the efficacy of future drugs on AD will have to be based on
the incremental effect from the already approved AD drugs. Further, Table 5 suggests that, if
the effect sizes are fixed, then the biggest effect on the required sample size is the trial
duration. Whereas we have specifically considered the simplest longitudinal design of the
DM trials with 3 observations per subject here, the issue of dropouts and missing data will
play an important role in determining the final sample sizes of future DM trials. Given that a
longer trial duration is in general associated with a higher likelihood of subject dropouts,
further research is needed to fully understand the trade offs in final sample sizes between
dropouts and the required three observations per subject. Finally, the relatively large sample
size in Table 5 is also partly due to the fact that the rate of change on ADAS-cog is subject
to a large variation as evidenced by Table 3 and therefore may not be an ideal efficacy
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outcome in future DM trials. More sensitive novel biomarkers will be needed to design
future DM trials on AD with a much smaller sample size. For example, MRI-based brain
volumes (Storandt et al. 2009), DTI-based measures of white matter microstructure (Head et
al. 2004), CSF-based biomarkers (Fagan et al. 2006), and molecular imaging of cerebral
fibrillar amyloid with PET using the [11C] benzothiazole tracer, Pittsburgh Compound-B
(PIB, Mintun et al. 2006), are all potential candidates of efficacy outcomes for future DM
trials on AD. Our study has some limitations. First, we have assumed a linear growth or
decline pattern over time for the efficacy outcome in group u=tt and u=pp and derived the
optimum design parameters. Although our proposed method can be generalized to address a
nonlinear pattern from time 1 to 2 to 3 in group u=tt and u=pp, the robustness of our
optimum design parameters with respect to the potentially nonlinear growth patterns
remained unknown. It is therefore important to carefully assess the linearity assumption
before applying our proposed optimum designs. Second, we have focused on the simplest
longitudinal design in which only three repeated efficacy assessments are planned for each
subject: one at the baseline, one at the end of the trial, and the other at the time when the
treatments are switched. More frequent observations per subject allow statistical assessment
of the assumption of a linear response within each of the three groups, as well as appropriate
analyses of missing data. Further, with reasonable statistical models, more frequent
observations will also imply better statistical power for testing the DM efficacy. In addition,
our proposed methodology has focused on one-sided tests to reflect the current definition of
DM efficacy, i.e., the requirement of both the symptomatic efficacy before the treatments
are switched and the additional efficacy demonstrating that the delayed treatment arm will
never ‘catch up’ the continuously treated arm. The generalization to the efficacy tests with
two-sided alternatives through the IUT is needed in real world applications when there is no
guarantee that a novel treatment is always better than the placebo. Further, our proposed
methodology only applies when the treatment will not have any serious side effect so that
treatment can be given without stop and there is no alternative treatment besides the
treatment in the trial. Finally, FDA typically requires two primary efficacy endpoints in
clinical trials on AD (cognition and function). Although our proposed method can be applied
to each efficacy endpoint in the DM trials of AD, the optimal design parameters for
cognition is not necessarily optimal for function. Future research is needed to address these
crucial questions.
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Fig. 1.
Expected cognitive progression in a simple disease modifying trial on AD
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Table 1

Variance and covariance of estimated parameters for testing DM efficacy (Notice that the covariance becomes
variance when two estimates are the same)

Estimate
1

Estimate
2

Covariance between
Estimate 1 and Estimator 2

β̂tt β̂tt

β̂pp β̂pp

β̂tt β̂pp

β̂pt β̂pt

β̂tt β̂pt

β̂pt β̂pp

δ̂ δ̂

Δ̂ Δ̂

δ̂ Δ̂
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Table 2

Optimum time of treatment switch (t2) and sample size allocations (λtt, λpt) as a function of the correlation (γ)
between the latent intercept and the slope and the correlation
(ρ) in the autoregressive covariance structure for  in a hypothetical DM trial. A total trial duration of unit
one assumed (i.e., t1 = 0,t3 = 1). 10% subjects assumed to receive the placebo throughout the trial.

γ ρ t2 λtt λpt

0.1 0.1 0.25 0.17 0.73

0.1 0.3 0.30 0.18 0.72

0.1 0.5 0.33 0.20 0.70

0.1 0.7 0.34 0.20 0.70

0.1 0.9 0.35 0.19 0.71

0.3 0.1 0.26 0.17 0.73

0.3 0.3 0.30 0.19 0.71

0.3 0.5 0.33 0.20 0.70

0.3 0.7 0.34 0.20 0.70

0.3 0.9 0.35 0.19 0.71

0.5 0.1 0.27 0.18 0.72

0.5 0.3 0.30 0.19 0.71

0.5 0.5 0.32 0.20 0.70

0.5 0.7 0.33 0.20 0.70

0.5 0.9 0.34 0.19 0.71

0.7 0.1 0.27 0.18 0.72

0.7 0.3 0.31 0.20 0.70

0.7 0.5 0.31 0.20 0.70

0.7 0.7 0.32 0.20 0.70

0.7 0.9 0.33 0.18 0.72

0.9 0.1 0.27 0.18 0.72

0.9 0.3 0.30 0.20 0.70

0.9 0.5 0.31 0.20 0.70

0.9 0.7 0.32 0.20 0.70

0.9 0.9 0.32 0.17 0.73

The optimum allocation to group pt is from 59% to 67% in Table 2 if 20% subjects are assumed to receive the placebo throughout the trial.
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Table 3

Reported statistics from three recently published symptomatic trials on ADAS-Cog for the placebo arm

Study:
author (year)

Sample
size

Years of
follow-up

Mean (SD) at
baseline

Mean (SD) for the
change from baseline

Rogers et al. 1998 162 0.46 27.28 (11.87) 1.82 (6.06)

Rafii et al. 2011 73 0.31 27.10 (10.58) −0.34 (5.17)

Sano et al. 2011 202 1.50 23.90 (10.50) 8.18 (8.70)
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Table 4

Optimum time of treatment switch (t2) and sample size allocations (λtt, λpt)in a DM trial on AD with three
repeated outcome assessments. γ = correlation between the latent intercept and the slope. 10% subjects
assumed to the placebo throughout the trial

Trial duration (years) γ λtt λpt t2 (years)

1.5 0.1 0.15 0.75 0.45

1.5 0.3 0.15 0.75 0.45

1.5 0.5 0.15 0.75 0.45

1.5 0.7 0.15 0.75 0.45

1.5 0.9 0.15 0.75 0.45

2.0 0.1 0.14 0.76 0.54

2.0 0.3 0.15 0.75 0.57

2.0 0.5 0.15 0.75 0.57

2.0 0.7 0.15 0.75 0.57

2.0 0.9 0.15 0.75 0.57

2.5 0.1 0.14 0.76 0.65

2.5 0.3 0.15 0.75 0.68

2.5 0.5 0.15 0.75 0.69

2.5 0.7 0.15 0.75 0.70

2.5 0.9 0.16 0.74 0.73

The optimum allocation to group pt is from 62% to 64% in Table 4 if 20% subjects are assumed to receive the placebo throughout the trial.
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